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Parc Scientifique et Technologique de Luminy,
163, avenue de Luminy - Case 901,
F-13288 Marseille Cedex 9, France.

gardi@lidil.univ-mrs.fr

Abstract/Résumé

In this paper the problem of the partition of an interval graph into proper interval subgraphs

is considered. It arises in a study about the problem of working schedules planning. Here

we give some upper bounds on the minimum size of such a partition as well as some efficient

algorithms to compute it. In particular, we prove that every K1,t-free interval graph, t ≥ 3, is

partitionnable into b t
2
c proper interval subgraphs. The proof of this proposition yields a linear

or quasi-linear time algorithm to compute such a partition. Moreover, we give a linear-time

algorithm to compute the minimum t such that an interval graph is K1,t-free. Next, we show

that each n-vertex interval graph can be partitionned into O(log n) proper interval subgraphs

always in linear or quasi-linear time. Finally, we construct interval graphs for which this

bound is sharp. Keywords: graph partition, working schedules planning, interval graphs,

proper interval graphs, linear-time algorithms.

Nous abordons dans cet article le problème de la partition d’un graphe d’intervalles en sous-

graphes d’intervalles propres. Celui-ci intervient dans une étude sur la problématique de

la planification d’horaires de travail. Nous donnons ici des bornes sur la taille minimum

d’une telle partition ainsi que des algorithmes efficaces pour la calculer. En particulier, nous

prouvons que tout graphe d’intervalles sans K1,t, t ≥ 3, peut être partitionné en b t
2
c sous-

graphes d’intervalles propres. Nous donnons un algorithme linéaire ou quasi-linéaire en temps

pour déterminer une telle partition dans la preuve de cette proposition. De plus, nous pro-

posons un algorithme linéaire en temps pour calculer le minimum t pour lequel un graphe

d’intervalles est sans K1,t. Ensuite, nous montrons que tout graphe d’intervalles à n sommets

peut être partitionné en O(log n) graphes d’intervalles propres, toujours en un temps linéaire

ou quasi-linéaire. Enfin, nous construisons des graphes d’intervalles pour lesquels cette borne

est atteinte. Mots-clés: partition de graphes, planification d’horaires de travail, graphes

d’intervalles, graphes d’intervalles propres, algorithmes linéaire en temps.

Relecteurs/Reviewers: Michel Van Canegehem, Victor Chepoi.



1 Introduction and preliminaries

An undirected graph G = (V, E) is an interval graph iff to each vertex v ∈ V
an open (resp. closed) interval Iv in the real line can be associated, such that
for each pair of vertices u, v ∈ V , u 6= v, uv ∈ E if and only if Iu ∩ Iv 6= ∅.
Here we consider only open intervals but all our results can be easily extended
to closed intervals. For an interval graph G = (V, E), an interval representation
of G will be noted {Iv}v∈V with lv, rv ∈ R the left and right endpoints of Iv

and |Iv | its size (i.e. its length). G is called a proper interval graph iff there is
an interval representation for G in which no interval properly (strictly) contains
another. In the same way, G is called an unit interval graph iff there is an interval
representation for G in which each interval has unit size. Interval graphs arise in
many practicle applications because they modelize many structures of the real-
life world. They appear notably in areas like genetics, psychology, sociology,
archæology, scheduling and others. The interested reader can consult [4] and
[8] for surveys. In this paper, interval graphs are used to model a problem of
working schedules planning, which can be defined as follows.

WSP problem:

Let T1, . . . , Tn be n tasks such as Ti = (li, ri) where li, ri ∈ N are the start-

ing and ending dates of Ti. Let m ∈ N be the number of employees available

and qualified to execute these tasks. Knowing that the tasks allocated to an

employee must not overlap and the reglementation imposes no more than k ∈ N

tasks by employees, are there enough employees to execute all the tasks ?

We will see that this problem can be formulated in graph-theoretic terms
as a problem of coloring of an interval graph such that each colour is used at
most k times. But before, we must remind some useful definitions from graph
theory. Let G = (V, E) be an undirected graph. We denote by Adj(v) the set
of neighboors of a vertex v ∈ V and by d(v) the cardinality of Adj(v) (i.e. the
degree of v). Given a subset A ⊆ V of the vertices, we define the subgraph
induced by A to be GA = (A, EA), where EA = {xy ∈ E | x ∈ A and y ∈ A}.
A clique of G is a set C ⊆ V such that for all x, y ∈ C, xy ∈ E. A clique C is
maximal if no clique of G properly contains C as a subset. A stable set (shortly
a stable) of G is a set S ⊆ V such that for all x, y ∈ S, xy /∈ E. α(G) denotes
the size of the largest stable in G. A q-coloring or a partition of size q into
stables of G, q ∈ N, is a partition S = {S1, . . . , Sq} of V such that each Si is
a stable. In the same way, we can define a partition of size q into cliques of G
a partition C = {C1, . . . , Cq} of V such that each Ci is a clique. κ(G) denotes
the size of the partition of G into the least number of cliques. At last, a graph
will be called K1,t-free if it does not contain K1,t as an induced subgraph, t ∈ N

(see Fig. 1).

t
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Fig. 1. The graphs K1,3 and K1,t.

F.S. Roberts has shown that the following classes of interval graphs coincide
(see [7, 2, 3] for different proofs):

- proper interval graphs,

- unit interval graphs,

- K1,3-free interval graphs.

To conclude, let us cite three fundamental properties of interval graphs which
we will use later (see [4] for proofs).

Proposition 1 (Gilmore and Hoffman, 1964) Let G = (V, E) be an inter-
val graph. There is a linear order < on the maximal cliques of G such that for
each vertex v ∈ V , the maximal cliques containing v occur consecutively in this
order.

Proposition 2 (Hajnal and Surànyi, 1958) If G is an interval graph, then
α(G) = κ(G).

Proposition 3 (Booth and Leuker, 1976) Let G be an interval graph with
n vertices and m edges. An interval representation of G such as the endpoints
of intervals are in {0, . . . , n} can be computed in O(n + m) time.

Notice that a much simpler linear-time algorithm to compute such an interval
representation of G is given in [6].

2 Motivations

Having reminded these definitions, we can clearly see that the WSP problem is
equivalent to the problem of the partition of an interval graph by some stables
of size at most k ∈ N. Unfortunately, H.L. Bodlaender and K. Jansen have
shown that this problem is NP-complete even if k is a constant such that k ≥ 4
[1]. On the other hand, in [3] it is proved that if the graph of intersections of
the tasks is K1,3-free (i.e. a proper interval graph) then the WSP problem can
be solved in O(n log n) time by a greedy heuristic. Moreover, this one generates
plannings which have some good properties increasing their robustness facing
the different risks of real-life situations (delays of tasks, insertions/suppressions
of tasks). So an idea is to partition the set of tasks initially hardly tractable
into subsets which we will be able to treat better. That’s why in this paper we
are interested in the problem of the partition of an interval graph G into proper
interval subgraphs. Especially, we give some bounds on the minimum size of
this partition which we will denote by p(G). First, we prove that every K1,t-
free interval graph, t ≥ 3, is partitionnable into b t

2c proper interval subgraphs.
The proof of this proposition yields a linear or quasi-linear time algorithm to
compute such a partition. Moreover, we give a linear-time algorithm to compute
the minimum t such that an interval graph is K1,t-free. Next, we show that
each n-vertex interval graph can be partitionned into O(log n) proper interval
subgraphs always in linear or quasi-linear time. Finally, we construct interval
graphs for which this bound is sharp.
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3 The main results

Here is a sufficient condition which gives us a first upper bound for p(G) .

Theorem 1 Let G = (V, E) be an interval graph with n vertices and m edges.
If G is K1,t-free with t ≥ 3 then p(G) ≤ b t

2c. Moreover, a partition of G into b t
2c

proper interval subgraphs can be done in O(n + m) time (given G by adjacency
lists in input) or O(n log n) time if we have an interval representation of G (i.e.
given G by the list of endpoints of intervals in input).

Proof. The following algorithm computes a partition of G into b t
2c K1,3-free

interval subgraphs (i.e. proper interval subgraphs by Roberts’ theorem) if G is
K1,t-free, t ≥ 3.

Algorithm F

Input: a K1,t-free interval graph G with t ≥ 3;
Output: a partition of G into b t

2
c proper interval subgraphs;

begin;

compute a minimum partition of G into cliques;

let C1, . . . , Cκ(G) be such a partition linearly ordered according to <;

let V1, . . . , Vb t
2
c be some sets of vertices;

V1 ← ∅, . . . , Vb t
2
c ← ∅ and i← 1;

for j from 1 to κ(G) do

Vi ← Vi ∪ Cj ;

i← i + 1;

if i > b t
2
c do

i← 1;

for i from 1 to b t
2
c do

let Gi be the subgraph of G induced by Vi;

return G1, . . . , Gb t
2
c;

end;

Algorithm F runs in linear or quasi-linear time since computing C1, . . . , Cκ(G)

can be done in O(n + m) time [4] or O(n log n) time if we have an interval
representation of G [5]. Now, we must prove its correctness, i.e. that each
Gi returned by the algorithm is a K1,3-free interval graph. Let {C i

1, . . . , C
i
k},

k ≥ 1, be the set of cliques of G which have been assigned to Vi, linearly
ordered according to <. We are going to prove that V1 induces no copy of K1,3

by an induction on the choice of C1
j made by Algorithm F. First, the clique C1

1

included in V1 cannot of course induce K1,3. Now supposing that {C1
1 , . . . , C1

j }

induces a K1,3-free interval graph, we can prove that {C1
1 , . . . , C1

j+1} induces
a K1,3-free interval graph too for j ∈ {1, . . . , k − 1} (see Fig. 2). Here we
consider an interval representation of G. Let us suppose that there are four
intervals I, X ∈ C1

j−1, Y ∈ C1
j and Z ∈ C1

j+1 inducing K1,3 in {C1
1 , . . . , C1

j+1}.
Reminding that the cliques of G are linearly ordered according to <, there are,
by Algorithm F, b t

2c cliques between C1
j−1 and C1

j and still b t
2c cliques between

C1
j and C1

j+1. Then α(G) = κ(G) (Proposition 2) implies that there is a stable

of size 2b t
2c + 1 with t ≥ 1, which each interval is intersected by the interval I .

Now 2b t
2c + 1 ≥ t, which implies the existence of the induced subgraph K1,t in

G: a contradiction.
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Fig. 2. An illustration of K1,3 ⇒ K1,t in the proof of Theorem 1.

So, we prove effectively that G1 contains no induced copy of K1,3, i.e. is a
proper interval graph. By applying the same proof technic to V2, . . . , Vb t

2 c
, we

obtain the whole correctness of Algorithm 1.

♦

Corollary 1 Let G be an interval graph with n vertices.

p(G) ≤ bn
2 c

Proof. G is trivially K1,n-free, so we can employ Theorem 1 with t = n.

♦

Next, we will see that one can improve this last result for p(G) by establish-
ing a logarithmic upper bound. Before this, we will give an efficient algorithm
to compute the minimum value t such that an interval graph G is K1,t-free, in
order to apply Theorem 1 at best for any interval graphs.

Algorithm G

Input: G = (V, E) an interval graph;
Output: the minimum t such that G is K1,t-free;

begin;

compute an interval representation {Iv}v∈V
of G;

t← 0;

for each v ∈ V do

order Adj(v) according to the increasing right endpoints;

compute α(Gv) where Gv is the subgraph induced by Adj(v);

if t < α(Gv) do

t← α(Gv);

return t+1;

end;

Theorem 2 Let G = (V, E) be an interval graph with n vertices and m edges.
Algorithm G determines the minimum t such that G is K1,t-free in O(n + m)
time or O(n2) time if we have an interval representation of G.
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Proof. The correctness of the algorithm comes from the definition of a K1,t-
free graph. By Proposition 3, computing an interval representation of G such
that each endpoint of the intervals are in {0, . . . , n} can be done in O(n+m) time
[4, 6]. Now, in the loop, ordering Adj(v) can be done in O(d(v)) time by using
O(d(v)) space. Thus, a maximum stable of Gv can be computed in O(d(v)) time
[5]. Consequently, the total time complexity of Algorithm G is in O(n + m). In
the same way, we can prove that if we have an interval representation of G, the
algorithm runs in O(n2) time.

♦

Now, we will prove the promised logarithmic upper bound for p(G).

Theorem 3 Let G be an interval graph with n vertices.

p(G) ≤ b t+2
2 cdlogtne with t ∈ {2, . . . , n − 2}.

Proof. Let I = {I1, . . . , In} be an interval representation of G such that
∀i, |Ii| ∈ N. Let l = maxIi∈I |Ii|. We claim that p(G) ≤ b t+2

2 cdlogtle with
t ∈ {2, . . . , n − 2}. Indeed, we can partition the set of intervals I into dlogt le
subsets I1, I2, . . . , Idlogt le such that:

- I1 contains the intervals Ii of I of size |Ii| ∈ {1, . . . , t},

- I2 contains the intervals Ii of I of size |Ii| ∈ {t, . . . , t2},
...

- Idlogt le contains the intervals Ii of I of size |Ii| ∈ {tdlogt le−1, . . . , l}.

We affirm that each set Ij , j ∈ {1, . . . , dlogt le}, does not contain the induced
subgraph K1,t+2. Indeed, for each Ij , we have maxIi∈Ij

|Ii| ≤ t minIi∈Ij
|Ii|,

which implies that no interval of Ij contains properly a stable of size t. Now
let us suppose that a set of intervals of Ij induces K1,t+2, this would imply
that a stable of size at least t is properly contained in one interval of Ij , in
contradiction with the previous affirmation. Consequently, by Theorem 1, we
can partition the graph induced by each subset Ij into b t+2

2 c proper interval
subgraphs, which proves the claim. Now, by Proposition 3, there is an interval
representation of G such that the endpoints of each interval are some integers
and l = n, which allows us to conclude.

♦

Corollary 2 Let G be an interval graph with n vertices.

p(G) ≤ 2(log3 n + 1).

Moreover, a partition of G into 2(log3 n+1) proper interval subgraphs can be ob-
tained in O(n+m) time or O(n log n) time if we have an interval representation
of G.
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Proof. By Theorem 3, we have p(G) ≤ b t+2
2 c(logtn+1) with t ∈ {2, . . . , n−

2}. Now, the minimum of the function 1
ln t

b t+2
2 c is reached for t = 3 (see Fig.

3 below). Consequently, the best bound that we can obtain from Theorem 3 is
p(G) ≤ 2(log3 n + 1). Moreover, the construction of the sets I1, I2, . . . , Idlog3 le

can be done in O(n) time by sorting the intervals according to their size. Indeed,
by Proposition 3, we can compute in O(n+m) time an interval representation of
G such that the size of the intervals are in {0, . . . , n} [4, 6]. Thus sorting can be
done in O(n) time by using a space in O(n). If we have an interval representation
of G, the construction of these sets can clearly be done in O(n log n) time. Then,
by Theorem 1, we can conclude as for the time complexity.

♦

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14
t

Fig. 3. The evolution of 1
ln t

b t+2
2

c in accordance with t.

Finally, we will prove that this last bound is asymptotically almost reached.

Theorem 4 There exist some n-vertex interval graphs G such that p(G) =
log3(2n + 1).

Proof. Here we will give the interval representation of an interval graph Gq

with nq vertices such that p(Gq) = log3(2nq + 1), q ∈ N. This graph Gq owns
q stables S1, . . . , Sq constructed recursively. S1 just consists of one interval of
length 3(q−1). Then, each Si will be built like this: “clone” the stable Si−1 and
subdivide each interval of this “cloned” stable into three intervals of equal size
in order to include them in Si (see Fig. 4 for an example).
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Fig. 4. An example of construction of Gq with q = 3.

Consequently, the number of intervals in Gq will be nq =
∑q

i=1 3i−1 = 3q−1
2

(i). Trivially, we can see that p(Gq) ≤ q (each stable of Gq induces a proper
interval subgraph). Now we can show that Gq must be partitionned into at
least q proper interval subgraphs. We can do an induction on i ∈ {1, . . . , q}, the
number of stables of Gi. Trivially p(G1) = 1. Now supposing that p(Gi) = i
(ii), we are going to prove that p(Gi+1) = i+1 for i ∈ {1, . . . , q−1}. For this, let
us suppose on the contrary that p(Gi+1) = i: G is partitionnable into I1, . . . , Ii

sets of intervals which induces each of them a K1,3-free interval graph. Without
loss of generality, let us suppose that the unique interval I ∈ S1 belongs to I1.
In this case, the other intervals of I1 must make at most two cliques Ca and
Cb with I because a third clique Cc implies clearly the existence of an induced
copy of K1,3 in I1 (see Fig. 5).

S1

S2

S3

Si+1

Ca Cb Cc

I ∈ I1

Gi

Gi+1

Fig. 5. An illustration of the proof of p(Gi+1) = i + 1.

Then there are necessarily an interval of S2 and all the intervals of S3, . . . , Si+1

stemming from its subdivision (the framed and colored intervals on Fig. 5)
which don’t belong to I1. This set of intervals induces clearly a graph Gi and
by hypothesis (ii), needs i sets to be partitionned into proper interval subgraphs.
Now, we have just I2, . . . , Ii, that is to say i − 1 sets, to realize this partition,
which implies a contradiction. Consequently p(Gi+1) = i+1 for i ∈ {1, . . . , q−1}
and so p(Gq) = q. Now by (i), we have q = log3(2nq + 1) which allows us to
conclude.

♦

Corollary 3 There exist some K1,t-free interval graphs G with n vertices such
that p(G) = blog3(t − 1)c + 1 for t ∈ {2, . . . , n − 1}.

Proof. The graph Gq constructed in Theorem 4 is without K1,3(q−1)+1.
Now, it suffices to state t = 3q−1 +1 and we have p(Gq) = q = blog3(t − 1)c+1.

♦

9



4 Conclusion

Table 1 relates some results about p(G) for K1,t-free interval graphs, obtain
from Theorem 1, with some small values for t.

G has no induced copy of theoretical upper bound for p(G) reached bound for p(G)
K1,3 1 1
K1,4 2 2
K1,5 2 2
K1,6 3 2
K1,7 3 2
K1,8 4 2
K1,9 4 2
K1,10 5 3
K1,11 5 3

...
...

...
K1,t-free b t

2c blog3(t − 1)c + 1

Table 1. Some bounds that we obtain for p(G).

Now we can give a general result about the size p(G) of the minimum par-
tition of an interval graph G into proper interval subgraphs.

Theorem 5 Let G be an interval graph with n vertices.

p(G) = O(log n)

Moreover, this bound is asymptotically reached for some interval graphs and an
O(log n)-partition of G into proper interval subgraphs can be computed in linear
or quasi-linear time.

We can note that this result gives immediately an O(log n)-approximation
for the following optimization problem.

Problem: Partition of an interval graph into proper interval subgraphs.

Input: An interval graph G.

Goal: Find a partition of G into a minimum number of proper interval sub-

graphs.

We conjecture that this problem is NP-complete.

At last, we must precise that Theorem 5 can be easily extended to the class
of circular-arc graphs which englobes the class of interval graphs (see [4] for an
introduction and different applications of circular-arc graphs).
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