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Abstract/Résumé

In this paper, the mutual exclusion scheduling (MES) problem for proper interval graphs is

considered. Given an undirected graph G and an integer k, the problem is to find a minimum

coloring of G, such that each colour is used at most k times. The complexity of this problem

is known to be NP-complete for interval graphs. We prove that MES can be solved in linear

time for proper interval graphs thanks to a greedy algorithm. As a byproduct of the proof

of this result, we also obtain a linear-time algorithm to solve MES for interval graphs under

certain conditions. Finally, this study yields some results about the complexity of finding an

uniform coloring of proper interval graphs. Keywords: mutual exclusion scheduling, working

schedules planning, proper interval graphs, colorings, linear-time algorithms.

Dans ce papier, un problème d’ordonnancement avec exclusion mutuelle (appelé MES) est

étudié pour les graphes d’intervalles propres. Etant donné un graphe G non-orienté et un

entier k, le problème est de trouver une coloration minimum de G, tel que chaque couleur ne

soit pas utilisée plus de k fois. Ce problème est NP-complet pour les graphes d’intervalles.

Nous montrons que le MES peut être résolu en temps linéaire pour les graphes d’intervalles

propres par un algorithme glouton. La preuve de ce résultat nous fournit aussi un algorithme

linéaire en temps pour résoudre le MES pour les graphes d’intervalles sous certaines condi-

tions. Enfin, au travers de cette étude nous obtenons des résultats annexes portant sur la

complexité du problème de la coloration uniforme des graphes d’intervalles propres. Mots-

clés: ordonnancement avec exclusion mutuelle, planification d’horaires de travail, graphes

d’intervalles propres, colorations, algorithmes linéaires en temps.

Relecteurs/Reviewers: Michel Van Canegehem, Victor Chepoi.



1 Introduction

The following problem arises in scheduling theory: n unit-time jobs must be
complete on k processors in a minimum time with the constraint that some jobs
cannot be executed at the same time because they share a same ressource. Many
variants of this problem have been studied in Combinatorial Optimization and
Operations Research litterature (see [3, 8, 12] for some practical applications).
Therefore, such scheduling problems can be alternatively formulated in graph
theoretic terms. Indeed, by creating an undirected graph G = (V, E) with a
vertex for each of the n jobs and an edge between each pair of conflicting jobs,
we can see that a minimum length of schedule corresponds to a partition of V
into a minimum number of independent sets of size at most k. In this way, B.S.
Baker and E.G. Coffman called Mutual Exclusion Scheduling (shortly MES) the
following graph theoretical problem: given an undirected graph G and k ∈ N,
find a minimum coloring of G, such that each colour is used at most k times [2].
In this paper we will analyse the complexity of the MES problem in the case
where G is a proper interval graph.
A graph G = (V, E) is an interval graph iff to each vertex v ∈ V a closed (resp.
open) interval Iv in the real line can be associated, such that for each pair of
vertices u, v ∈ V , u 6= v, uv ∈ E if and only if Iu ∩ Iv 6= ∅. An interval repre-
sentation of G will be noted {Iv}v∈V , with left(Iv), right(Iv) ∈ R the left and

right endpoints of Iv . The complement G of an interval graph can be transi-
tively oriented with (u, v) ∈ F iff right(Iu) < left(Iv). This orientation F of
the edges induces a partial order P = (V, F ) which is called an interval order.
We will write Iu ≺ Iv iff right(Iu) < left(Iv). Now, G is called a proper interval
graph iff there is an interval representation for G in which no interval contains
properly (strictly) another. In the same way, G is called an unit interval graph
iff there is an interval representation for G in which each interval has a unit
size. Interval graphs arise in many practical applications because they modelize
many structures of the real-life world. They appear notably in areas like ge-
netics, psychology, sociology, archæology, scheduling and others. The interested
reader can consult [6] and [15] for surveys.

Our interest to the particular case of MES for (proper) interval graphs comes
from the following working schedules planning (WSP) problem, which has ac-
tually inspired this research.

WSP problem:

Let T1, . . . , Tn be n tasks such that Ti = [li, ri] where li, ri ∈ N are the start-

ing and ending dates of Ti. Let m ∈ N be the number of employees available and

qualified to execute these tasks. Given that the tasks allocated to an employee

must not overlap and the reglementation imposes no more than k ∈ N tasks by

employees, are there enough employees to execute all the tasks ?

Clearly, we can see that the WSP problem is equivalent to the decision ver-
sion of MES for interval graphs.
The MES problem is NP-complete for general graphs since that the coloring
problem is NP-complete [10]. Thus, MES was studied for classes of graphs for
which the coloring problem is polynomial, notably for some classes of perfect
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graphs (see [6] for an introduction to the world of perfect graphs). Therefore,
the MES problem remainsNP-complete for many classes of perfect graphs: per-
mutation graphs [9], complement of comparability graphs [13], bipartite graphs,
cographs and interval graphs [4]. At our knowledge, MES is polynomially solv-
able only for split graphs [13] and complement of interval graphs [4].
The MES problem (and so the WSP problem) are also NP-complete for inter-
val graphs if k is a constant such that k ≥ 4 [4] (its complexity for a constant
k = 3 is still an open question at our acquaintance). Our motivation for this
work was to study the complexity of MES for the basic subclass of interval
graphs: the class of proper interval graphs. Here we establish that a greedy
algorithm can solve it in linear time. As a byproduct of the proof of this result,
we also obtain a linear-time algorithm to solve the MES problem for interval
graphs under certain conditions (which will be given in Lemma 2). Finally, this
study yields some results about the complexity of finding an uniform coloring
of proper interval graphs.

2 Preliminaries

First, we recall some definitions from graph theory (see [6] for more details). Let
G = (V, E) be an undirected graph. Given a subset A ⊆ V of vertices, we define
the subgraph induced by A to be GA = (A, EA), where EA = {xy ∈ E | x ∈ A
and y ∈ A}. A clique of G is a set C ⊆ V such that xy ∈ E for all x, y ∈ C.
An independent set or a stable of G is a set S ⊆ V such that xy /∈ E for all
x, y ∈ S. A q-coloring or a partition of size q into stables of G is a partition
S = {S1, . . . , Sq} of V such that each Si is a stable. The chromatic number
χ(G) of G is the size of a partition of G into the least number of stables. We
will denote by χ(G, k) the size of a minimum partition of G into stables of size
at most k ∈ N. Immediatly, we can give a trivial lower bound for χ(G, k).

Proposition 1 Let G be an undirected graph with n vertices and k ∈ N,

χ(G, k) ≥ max(χ(G), dn
k
e).

Finally, a q-coloring is called uniform if all the stables induced by the col-
oring have size bn

q
c or dn

q
e. A graph is called K1,3-free iff it does not contain

K1,3 as an induced subgraph (see Fig. 1).

Fig. 1. The graph K1,3.

F.S. Roberts has proved that “proper = unit = K1,3-free” for interval graphs
(see [14] or [6] for details and proofs).
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Proposition 2 (Roberts, 1969) Let G be an undirected graph. The following
conditions are equivalent:

(1) G is a proper interval graph,

(2) G is an unit interval graph,

(3) G is a K1,3-free interval graph.

To conclude, we must precise that proper interval graphs have significant
algorithmic properties: recognizing them or finding a minimum coloring of their
vertices can be done in linear time by simple algorithms [5, 7].

3 The MES problem for proper interval graphs

In order to show that the MES problem is solvable in linear time for proper
interval graphs, we proceed in three stages. First, we will prove that for a n-
vertex proper interval graph G, there exists a minimum partition S1, . . . , Sχ(G)

into stables such that each stable Si has a size at most k (a) or each stable Si

has a size at least k (b). Then we will show that in the case (a), χ(G, k) =
χ(G) and in the case (b), χ(G, k) = dn

k
e, which will allow us to conclude that

χ(G, k) = max(χ(G), dn
k
e). Finally, we will prove that always there exists a

partition of G into stables such that the intervals satisfy a certain order (which
will be described precisely in Lemma 3). Remind that an interval representation
of G is denoted by {Iv}v∈V , let us begin the first stage.

Lemma 1 Let G = (V, E) be a proper interval graph, k ∈ N and q ∈ {χ(G), . . . , n}.
Then there exists a partition S1, . . . , Sq of G into stables such that one of the
two conditions below is satisfied:

(a) for all i = 1, . . . , q, |Si| ≤ k,

(b) for all i = 1, . . . , q, |Si| ≥ k.

Proof. Let S1, . . . , Sq be a partition of G into stables. If there are some Si

and Sj such that |Si| > k and |Sj | < k, we employ the following algorithm to
bring us back to the cases (a) or (b). The principle of this one is to exchange
some vertices of the stables Si and Sj in order to have one the two new stables
of size k.

Algorithm A

Input: S1, . . . , Sq a partition of G into stables;
Output: S1, . . . , Sq satisfying (a) or (b);

begin;

Stage 1:

if ∀i, |Si| ≤ k do return S1, . . . , Sq ;

if ∀i, |Si| ≥ k do return S1, . . . , Sq ;

choose two stables Si and Sj such that |Si| > k and |Sj | < k;

Stage 2:

exchange some vertices of Si and Sj in order to redefine
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two new stables Si and Sj such that |Si| = k or |Sj | = k;

goto Stage 1;

end;

We are now going to show the correctness of this algorithm by proving there
is always an exchange of vertices as described in Stage 2. First, we can prove
the next claim.

Claim 1 Let Si and Sj be two stables of G such that |Si| = k + ri and |Sj | =
k − rj with ri, rj ∈ N∗. There is an exchange of vertices of the stables Si and
Sj redefining these such that |Si| = k + ri − α and |Sj | = k − rj + α with
α ∈ {1, . . . , min(ri, rj)}.

Proof of Claim 1. Let Si = {Ii1 , . . . , Iik+ri
} and Sj = {Ij1 , . . . , Ijk−rj

}

where Ii1 ≺ · · · ≺ Iik+ri
and Ij1 ≺ · · · ≺ Ijk−rj

. First, if there is an interval

I ∈ Si such that ∀J ∈ Sj , I ∩ J = ∅ then the exchange of vertices Si ← Si \ {I}
and Sj ← Sj ∪ {I} proves the lemma with α = 1. Oterwise, each interval in
Si is intersected by at least one interval of Sj . Since the graph G is K1,3-free
(Proposition 2), each interval of Sj can intersect at most two intervals of Si,
which must be consecutive. There are at least k pairs of consecutive intervals
in Si (ri ≥ 1). On the other hand, there are at most k − 1 intervals in Sj

(rj ≥ 1). Consequently, there exists necessarily one pair of consecutive intervals
{Iiu

, Iiu+1
} ∈ Si with u ∈ {1, . . . , k + ri − 1} such that {@J ∈ Sj | J ∩ Iiu

6= ∅
and J ∩ Iiu+1

6= ∅} (see Fig. 2 for an example).

Ii1

Si

Sj
Ij1 Ijv

Iiu Iiu+1

Ijv+1

Ii7

Ij5

S ′j S ′′j

S ′′iS ′i

Fig. 2. An example with k = 6: from a stable of size 7 and a stable

of size 5, we redefine two stables of size 6 (the black and the white).

In this way, we can define Si = S′

i ∪ S′′

i , with S′

i = {Ii1 , . . . , Iiu
} and

S′′

i = {Iiu+1
, . . . , Iik+ri

}, and Sj = S′

j ∪ S′′

j , with S′

j = {Ij1 , . . . , Ijv
} and

S′′

j = {Ijv+1
, . . . , Ijk−rj

}, such that Ijv
∩ Iiu+1

= ∅ and Iiu
∩ Ijv+1

= ∅. By

the previous discussion, we have |S ′

j | < |S′

i| and |S′′

j | < |S′′

i | and so we can
pose |S′′

j | = |S′′

i | − α with α ∈ {1, . . . , min(ri, rj)}. Consequently, we can do
the exchange of vertices Si ← S′

i ∪ S′′

j and Sj ← S′

j ∪ S′′

i in order to have
|Si| = k + ri − α and |Sj | = k − rj + α.

(Proof of Claim 1) ♦

From Claim 1, we can establish the next result which definitely allows us to
conclude the correctness of Algorithm A.

Claim 2 Let Si and Sj be two stables of G such that |Si| = k + ri and |Sj | =
k − rj with ri, rj ∈ N∗. There is an exchange of vertices of the stables Si and
Sj redefining these such that:
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• if ri = rj then |Si| = k and |Sj | = k,

• if ri > rj then |Si| = k + ri − rj and |Sj | = k,

• if ri < rj then |Si| = k and |Sj | = k − rj + ri.

Proof of Claim 2. By successive applications of Claim 1 while there exist
Si and Sj such that |Si| > k or |Sj | < k, we obtain the desired result.

(Proof of Claim 2) ♦

♦

Corollary 1 A proper interval graph G admits an uniform q-coloring for q ∈
{χ(G), . . . , n}.

Proof. Let S1, . . . , Sq be a partition of G into q stables. By applying
Lemma 1 to S1, . . . , Sq with k = bn

q
c and then k = dn

q
e, we will effectively have

an uniform q-coloring of S1, . . . , Sq.

♦

Now we approach the second part of the demonstration. The reader will
notice that the next lemma is stated for all interval graphs.

Lemma 2 Let G = (V, E) be an interval graph with n vertices and k ∈ N. Let
S1, . . . , Sχ(G) be a minimum partition of G into stables.

• If for all i = 1, . . . , χ(G), |Si| ≤ k then χ(G, k) = χ(G),

• If for all i = 1, . . . , χ(G), |Si| ≥ k then χ(G, k) = dn
k
e.

Proof. The first point is immediate. The proof of the second assertion is
algorithmic, notably it is based on the next claim.

Claim 3 Let S1, . . . , St be t stables of G such that:

• t ∈ {1, . . . , k},

• for i ∈ {1, . . . , t}, |Si| = k + ri, ri ∈ {1, . . . , k − 1},

• r =
∑t

i=1 ri and r ∈ {1, . . . , k}.

Then there exists a stable S ′ = {I ′1, . . . , I ′r} of size r such that for i ∈ {1, . . . , t},
ri intervals of S′ belong to Si (c). In other words, there exists a partition of the
set of intervals of the t stables S1, . . . , St into t stables of size k and one stable
of size r.

Proof of Claim 3. We propose an algorithm for the construction of S ′.
First, let us consider that the intervals of each stable are ordered according to
the relation ≺. We will call the rank of an interval in a stable its number in
this order. The principle of the algorithm is the following: we select at stage j,
j ∈ {0, . . . , r− 1}, the interval I ′

r−j (of rank r− j in S′) which has the biggest
left endpoint among intervals of rank k + ri − j of stables Si, i ∈ {1, . . . , t},
in which we have not already selected ri intervals. The complete algorithm is
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detailled below (see Fig. 3 for an example of its execution).

Algorithm B

Input: a set of stables S1, . . . , St satisfying the conditions of Claim 3 such that:
S1 = {I1,1, . . . , I1,k+r1

} with I1,1 ≺ · · · ≺ I1,k+r1
,

...
St = {It,1, . . . , It,k+rt} with It,1 ≺ · · · ≺ It,k+rt ;
Output: a stable S′ = {I ′

1, . . . , I
′

r} satisfying the condition (c);

begin;

S′ ← ∅, j ← 0;

for each i ∈ {1, . . . , t} do

let qi ← 0 be the number of intervals selected in the stable Si;

while |S′| < r do

F ← ∅;

for each i ∈ {1, . . . , t} do

if qi < ri do

F ← F ∪ {Ii,k+ri−j};

select in F the interval I ′

r−j such that ∀I ∈ F , left(I) ≤ left(I ′

r−j);

let s be the index of the stable which I ′

r−j belongs to;

qs ← qs + 1, S′ ← S′ ∪ {I ′

r−j}, j ← j + 1;

return S′;

end;

I ′
2

I1,1 I1,2 I1,3 I1,4

I2,4

I ′
1

I3,2 I3,3

I2,1 I2,2

I ′
3

I3,4I3,1

S1

S2

S3

F = {I3,2}
s = 3

F = {I1,3, I3,3}
s = 1

F = {I1,4, I2,4, I3,4}
s = 2

I2,3

stage 0stage 2 stage 1

Fig. 3. An example of the execution of Algorithm B: from

3 stables of size 4, we extract the stable {I ′

1, I′2, I′3} of size 3

which owns an interval in each of the initial stables S1, S2, S3.

Now let us prove the correctness of Algorithm B. The major point of the va-
lidity relies on the fact that the interval I ′

r−j selected at stage j cannot intersect
I ′r−j−1 selected at stage j + 1, i.e. Algorithm B finds a valid stable S ′. Indeed,
without loss of generality, let us consider that I ′

r−j ∈ Su and I ′r−j−1 ∈ Sv with
u, v ∈ {1, . . . , t}, i.e. I ′

r−j ≡ Iu,k+ru−j and I ′r−j−1 ≡ Iv,k+rv−j−1. Supposing
that I ′r−j−1 ∩ I ′r−j 6= ∅, we would have left(Iu,k+ru−j) ≤ right(Iv,r+rv−j−1)
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and so left(Iu,k+ru−j) < left(Iv,k+rv−j). Now Iv,k+rv−j−1 ∈ F at stage j + 1
implies that Iv,k+rv−j ∈ F at stage j. Consequently, Iu,k+ru−j ≡ I ′r−j would
not be the interval which has the biggest left endpoint among intervals of F at
stage j: a contradiction. Now, by the algorithm and the fact that r ≤ k, we
deduce that this stable S′ satisfies the condition (c).

(Proof of Claim 3) ♦

Therefore, we can prove Lemma 2 as follows. We apply Claim 3 with r = k to
extract stables of exact size k while there exist in the partition at least k stables
of size greater than k. When it remains less than k stables in the partition,
while the sum of their ri values is larger than k, we still apply Claim 3 with
r = k to extract stables of size k. Finally, when r ≤ k, Claim 3 allows us to
conclude.

♦

Corollary 2 Let G be an interval graph with n vertices and m edges. Let
S1, . . . , Sq be a partition of G into stables with q ∈ {χ(G), . . . , n}. If for all
i = 1, . . . , q, |Si| ≥ k then the MES problem for G is solvable in linear time.

Proof. As we did it to prove Lemma 2, we can clearly use Claim 3 and
Algorithm B to design a linear-time algorithm to solve the MES problem in this
case. Indeed, the time complexity of Algorithm B is linear in the number of con-
sidered intervals if these are ordered according to the increasing left endpoints.
Such an ordered interval representation of G can be computed in O(n+m) time
(G given by adjacency lists in input) [5]. On the other hand, if we have an
interval representation of G (i.e. G given by the list of endpoints of intervals in
input), a simple sorting suffices to obtain this order on the set of intervals.

♦

Theorem 1 Let G be a proper interval graph with n vertices and k ∈ N,

χ(G, k) = max(χ(G), dn
k
e).

Proof. By Lemma 1 with q = χ(G) and Lemma 2.

♦

Here is the third and last stage of the demonstration. As previously, we will
denote by Ii,j an interval of rank j in a stable Si.

Lemma 3 Let G = (V, E) be a proper interval graph with n vertices and
q ∈ {χ(G), . . . , n}. Let < be a linear order on V such that for all Ii, Ij ∈ V ,
Ii < Ij iff left(Ii) < left(Ij) or (left(Ii) = left(Ij) and right(Ii) ≤ right(Ij)).
Let p = n mod q and t = bn

q
c. Then there exists a partition S1, . . . , Sq of G

into q stables such that:

(i) ∀i ∈ {1, . . . , p}, |Si| = t + 1,

(ii) ∀i ∈ {p + 1, . . . , q}, |Si| = t,

(iii) ∀i ∈ {1, . . . , q − 1}, ∀j ∈ {1, . . . , t}, Ii,j < Ii+1,j and Iq,j < I1,j+1,
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(iv) ∀i ∈ {1, . . . , p− 1}, Ii,t+1 < Ii+1,t+1.

Proof. The points (i) and (ii) are obtained by the application of Corollary
1. Now, let us suppose that we have S1, . . . , Sq satisfying the points (i) and (ii),
we can obtain the points (iii) and (iv) from the following claim.

Claim 4 Let Si = {Ii,1, . . . , Ii,t+1} and Sj = {Ij,1, . . . , Ij,t+1} be two stables of
G with i, j ∈ {1, . . . , p}. There is an exchange of vertices of the stables Si and
Sj redefining these such that Ii,1 < Ij,1 < · · · < Ii,t+1 < Ij,t+1.

Proof of Claim 4. If Ij,1 < Ii,1 then we can redefine Si and Sj as follows:
Si ← {Ij,1, . . . , Ij,t+1} and Sj ← {Ii,1, . . . , Ii,t+1}. Now let us suppose the claim
true up to the rank r ∈ {1, . . . , t}, i.e. Si and Sj are such that Ii,1 < Ij,1 < · · · <
Ii,r < Ij,r < Ij,r+1 < Ii,r+1. The intervals are proper, so Ii,r ∩ Ij,r+1 = ∅ and
Ij,r∩Ii,r+1 = ∅ (see Fig. 4). Consequently, we can redefine Si and Sj as follows:
Si ← {Ii,1, . . . , Ii,r, Ij,r+1, . . . , Ij,t+1} and Sj ← {Ij,1, . . . , Ij,r, Ii,r+1, . . . , Ii,t+1}
and the claim is now true at the rank r + 1 too. By repeating this recurrent
constructive process up to the rank t, we can prove the claim.

Ii,r

Ij,r Ij,r+1

Ii,r+1

Si

Sj

Fig. 4. An example of a redefinition of two stables Si and Sj in

the proof of Claim 4: the new stables are the black and the white.

(Proof of Claim 4) ♦

It is easy to see that the claim is always true with Si = {Ii,1, . . . , Ii,t+1} and
Sj = {Ij,1, . . . , Ij,t}. Thus, we can apply Claim 4 to order successively according
to < the intervals of rank 1 in the partition, next of rank 2, and so on, until the
rank t + 1.

♦

Now we conclude this section by giving the main result of the paper.

Theorem 2 The mutual exclusion scheduling problem is solvable in linear time
for proper interval graphs.

Proof. Let G = (V, E) be a proper interval graph with n vertices and m
edges and k ∈ N. Thanks to the previous results, we can now define an efficient
algorithm to solve the MES problem for G. First, we can calculate χ(G, k), i.e.
the minimum partition of G into stables of size at most k, by computing χ(G)
and using Theorem 1. Then, according to the order < defined in Lemma 3, we
can construct greedily the χ(G, k) stables satisfying the four points of Lemma
3. The complete algorithm is detailled below (see Fig. 5 for an example of its
execution).
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Algorithm C

Input: G = (V, E) a proper interval graph with n vertices and k ∈ N;
Output: a minimum partition of G into stables of size at most k;

begin;

order V = {I1, . . . , In} according to the order <;

compute χ(G) and χ(G, k)← max(χ(G), dn
k
e);

let S1, . . . , Sχ(G,k) be a set of stables;

S1 ← ∅, . . . , Sχ(G,k) ← ∅ and j ← 1;

for i from 1 to n do

Sj ← Sj ∪ {Ii}, j ← j + 1;

if j > χ(G, k) do j ← 1;

return S1, . . . , Sχ(G,k);

end;

The correctness of Algorithm C follows from the previous discussion. To
conclude, let us analyse its time complexity. Ordering V according to the linear
order < can be done in O(n + m) time [5] or in O(n log n) time if we have an
interval representation of G. Now, having this order on V , computing χ(G),
and so χ(G, k), can be done in O(n) time [7]. Finally, the greedy construction
of the χ(G, k) stables is done in O(n) time. Consequently, Algorithm C can run
in O(n + m) time (G given by adjacency lists in input) or in O(n log n) time if
we have an interval representation of G (i.e. G given by the list of endpoints of
intervals in input). We can notice that in this last case, if the list of endpoints
is already sorted then Algorithm C runs in O(n) time.

♦

1

3

7

8

9

10

2

4

5 6

Fig. 5. An example of the execution of Algorithm C with k = 3: above is a set

of 10 intervals inducing a proper interval graph G with χ(G) = 3 and below is

the partition of size χ(G, 3) = max(3, d 10
3
e) = 4 made by the algorithm.

2

1

3

4

5 9

7

10

8

6

Remark. Theorem 2 simplifies and generalizes a recent result of M.G.
Andrews et al. about finding a maximum matching among disjoint proper
intervals which is equivalent to the MES problem for proper interval graphs
with k = 2 (see [1] pages 284-287). They showed that this problem can be
solved in linear time by using a “red-blue matching algorithm” [11] (given the
set of endpoints of the intervals sorted).
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Corollary 3 The problem of finding an uniform coloring is solvable in linear
time for proper interval graphs.

Proof. Let G be a proper interval graph with n vertices. By assuming
k = d n

χ(G)e or directly χ(G, k) = χ(G) in Algorithm C, we find an uniform

coloring of G in linear time.

♦

We conclude this paper with the complexity of the working schedules plan-
ning problem mentionned in the introduction.

Corollary 4 The WSP problem is solvable in linear time if the intersection
graph of tasks is K1,3-free.

We can note that this condition can be tested in O(n log n + m) time by
constructing the intersection graph of tasks and using the recognition algorithm
of unit interval graphs of [5].
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