
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS - Université de Provence - Université de la Méditerranée

On message deliverability and

non-uniform receptivity

Roberto M. Amadio, Gérard Boudol, Cédric Lhoussaine

Rapport/Report 05-2002

31 Mai, 2002

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1

On message deliverability and non-uniform receptivity

Roberto M. Amadio (1), Gérard Boudol (2),
Cédric Lhoussaine (3)

Laboratoire d’Informatique Fondamentale

UMR 6166
CNRS - Université de Provence - Université de la Méditerranée

(1) Université de Provence, (2) INRIA-Sophia, (3) University of Sussex

amadio@cmi.univ-mrs.fr

Abstract/Résumé

The message deliverability property requires that every emitted message has a chance of being received.
In the context of the asynchronous π-calculus, we introduce a discipline of non-uniform receptivity that en-
tails this property. Adopting this discipline requires a style of programming where resources are persistent.
We give a general method to transform (in a fully abstract way) a process so that it complies with the discipline.

La propriété de livrabilité des messages demande qu’un message émis ait une chance d’être reçu. Dans
le contexte du π-calcul asynchrone, nous introduisons une discipline de receptivité non-uniforme qui implique
cette propriété. Adopter cette discipline demande un style de programmation où les ressources sont persist-
antes. Nous donnons une methode génerale pour transformer (d’une façon pleinement abstraite) un processus
pour qu’il adhère à cette discipline.

Relecteurs/Reviewers: Silvano Dal Zilio, Denis Lugiez.

Notes: The first author is partly supported by IST Profundis. Some of the results presented here were an-
nounced in a preliminary form in a paper by the same authors appeared in the proceedings of the FST&TCS’99
Conference, Lecture Notes in Comp. Sci. 1738.

2

1 Introduction

A process of, say, the asynchronous π-calculus (roughly the π-calculus without output prefix) has the message
deliverability property if every message emitted in the course of the computation has the possibility of being
received later on. This is clearly a desirable property and in computation models that rely so heavily on
message exchange it appears to be a fundamental one. One might consider that a programming error occurs
whenever a process sends a message to a non-existing or unreachable destination. Note that this problem is
particularly acute in the asynchronous π-calculus since in this case there is no direct way to check whether a
message has been delivered.

Not surprisingly message deliverability is an undecidable property. It is possible to recursively reduce
control reachability to message deliverability and the former problem is known to be undecidable even under
rather restrictive conditions. For instance, it is undecidable for the asynchronous π-calculus with finite control
[5].

From a technical point of view, message deliverability can be regarded as a variant of the standard liveness
property in Petri Nets requiring that for any transition t and for any reachable configuration m a configuration
can be reached from m where t is enabled. Indeed, in the absence of name generation, the asynchronous
π-calculus can be reduced to Petri Nets and the decidability proof of the message deliverability property is
just a variant of the one for the liveness property.

A natural question is whether we can impose a discipline of programming that guarantees message deliv-
erability while retaining sufficient expressive power. A comparison with traditional type systems may clarify
our goals here. There, a desirable property may be that an atom is never applied to an argument. Again this
property is undecidable in general but disciplines of programming that ensure this property while retaining
sufficient expressive power have been proposed.

Some disciplines may be more interesting than others. For instance, one way to avoid the typing error
above is to turn every atom into a function, and one way to ensure message deliverability is to introduce a
fake receiver for every channel.

Clearly this discipline is not very satisfying: first it requires no discipline at all, and second it does not
preserve the uniqueness of the receiver which is an important property in the distributed framework we aim
at [3]. The discipline we advocate here is formalised as a fragment of the π-calculus that we call receptive (or
πr

1-calculus for short). In this calculus, one is forced to program with persistent resources which may always
react in some way to requests. For instance, the programmer of a service is compelled to code some reaction
in any state of this service.

Showing that no expressive power is lost is then a more delicate matter. The kind of receptivity we
are looking for must go beyond the ‘uniform’ and the ‘linear’ ones [14].1 Instead the receptivity discipline
that we consider is non-uniform and can be regarded as a refinement of the π1-calculus2 [1] and a typing
discipline proposed by Boudol [6] to control the use of resources. We show that the discipline entails message
deliverability and we consider its impact on the programming style and the notion of asynchronous bisimulation.
In particular, we give a fully abstract encoding of the π1-calculus into the πr

1-calculus. When combined with
previous results on the representation of the join-calculus in the π1-calculus [2] and on the encoding of the
asynchronous π-calculus in the join-calculus [7], our encoding provides a general method to transform a process
of the asynchronous π-calculus so that it complies with the receptive discipline.

There is an apparent paradox in these results: on one hand we have a discipline that forces the receptivity
of every channel and on the other hand we have a way of reproducing every behaviour (including those that
lose messages) while respecting the receptive discipline! The point here is that the receptive discipline forces
a style of programming where resources (channels) do not disappear or become inaccessible. However, it
cannot rule out certain behaviours where messages are formally received but are processed in a way which is
not necessarily interesting for the problem under consideration, e.g., messages are thrown away, resent. . . For
instance, our encoding will not make a process that deadlocks into one that succesfully performs its task (there
is no miracle); all it does is to transform the process into a receptive one and the deadlock into a loop where
a message is received and resent for ever. We will elaborate further this point in remark 12 once the technical
definitions are in place.

1In the terminology of Sangiorgi, a uniformly receptive channel a reacts to a message by activating always
the same continuation while a linearly receptive channel reacts exactly once.

2An asynchronous π-calculus with the property that every channel has a unique receiver; hence 1 for one
receiver.

3

P, Q, R . . . ::= processes
0 inaction

| a(b1, . . . , bn) message in channel a
| a(b1, . . . , bn).P input on channel a
| (P | Q) parallel composition
| [a = b]P, Q conditional branching
| (νa) P name generation
| (rec A(a1, . . . , an).P)(b1, . . . , bn) recursive parametric process
| A(a1, . . . , an) recursive parametric call

(out)
a~b

a~b
→ 0

(in)
a(~b).P

a~c
→ [~c/~b]P

(ext)
P

(ν~c) b~b
→ P ′ a 6= b, a ∈ {~b}\{~c}

(νa) P
(νa,~c) b~b
→ P ′

(ν)
P

α
→ P ′ a /∈ n(α)

(νa) P
α
→ (νa) P ′

(cm) P
(ν~c) a~b
→ P ′ Q

a~b
→ Q′ {~c} ∩ fn(Q) = ∅

P | Q
τ
→ (ν~c) (P ′ | Q′)

(cp)
P

α
→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q
α
→ P ′ | Q

(mt)
P

α
→ P ′

[a = a]P, Q
α
→ P ′

(mf)
Q

α
→ Q′ a 6= b

[a = b]P, Q
α
→ Q′

(rec)
[rec A(~b).P/A,~c/~b]P

α
→ P ′

(rec A(~b).P)(~c)
α
→ P ′

(id)
P = P ′ P ′ α

→ Q′ Q′ = Q

P
α
→ Q

Figure 1: Asynchronous π-calculus and its labelled transition system

2 Message deliverability

We fix our notation for the asynchronous polyadic π-calculus. Sorts are defined by the following grammar:

s ::= val || Ch(s1, . . . , sn) (1)

We assume a set N of names, ranged over by a, b, c, . . . and suppose that (i) every name a comes with a fixed
sort st(a) = s and that (ii) for every sort there are denumerable many names of that sort. We also assume
a denumerable set of parametric process identifiers A, B, . . . and suppose that every identifier A comes with
a fixed sort st(A) = Ch(s1, . . . , sn) and an input arity ia(A) = k so that n is the number of parameters and
k ≤ n. The input arity will only play a role later in the context of the π1-calculus. In substitutions, a name
(an identifier) can only be replaced by a name (an identifier) with the same sort (same sort and input arity).

Processes, with the usual labelled transitions system, are given in figure 1 where = stands for α-renaming.
The symmetric rules for (cm) and (cp) are omitted. Conventionally, we set n(α) = fn(α) ∪ bn(α) where

fn(τ) = ∅, fn(a~b) = {a} ∪ {~b}, fn((ν~c) a~b) = {a,~b}\{~c}, and bn(τ) = bn(a~b) = ∅, bn((ν{~c}) a~b) = {~c}.
Moreover, fn(P) (bn(P)) stands for the names occurring free (bound) in P .

In a process we assume that: (i) the formal parameters in a(~b).P or (rec A(~a).P) are all distinct. (ii) in
(rec A(~a).P), fn(P) ⊆ {~a}, (iii) all process identifiers are bound by a recursive definition, and (iv) recursion is

guarded, that is in (rec A(~a).P)(~b) all recursive calls to A in P occur under an input guard.
We denote with SP the result of the application of a substitution S acting on names to a process P .
Henceforth we will only consider well-sorted processes. This is the least class of processes such that 0 is

well sorted and if P, Q are well sorted then:

• a(b1, . . . , bn) and a(b1, . . . , bn).P are well sorted if st(a) = Ch(s1, . . . , sn) and st(bi) = si for i = 1, . . . , n.

• P | Q and (νa)P are well sorted.

4

• [a = b]P, Q is well sorted if st(a) = st(b) = val (so we only allow testing values for equality).

• (rec A(a1, . . . , an).P)(b1, . . . , bn) is well sorted if st(A) = Ch(s1, . . . , sn) and st(ai) = st(bi) = si for
i = 1, . . . , n.

• A(b1, . . . , bn) is well sorted if st(A) = Ch(s1, . . . , sn) and st(bi) = si for i = 1, . . . , n.

2.1 Asynchronous bisimulation

We recall the notion of asynchronous bisimulation and some related proof techniques.

Definition 1 (bisimulation) A relation R on well-formed processes is a bisimulation if it is symmetric, and
if P RQ implies:

(1) if P
τ
→ P ′ then Q

τ
→ Q′ for some Q′ such that P ′ RQ′,

(2) if P
(ν~c) a~b
→ P ′ and {~c} ∩ fn(Q) = ∅, then Q

(ν~c) a~b
→ Q′ for some Q′ such that P ′ RQ′,

(3) if P
a~b
→ P ′ then there exists Q′ such that either Q

a~b
→ Q′ and P ′ RQ′, or Q

τ
→ Q′ and P ′ R (Q′ | a(~b)).

We denote with ∼ the largest bisimulation. The notion of weak bisimulation is obtained by replacing
everywhere transitions

α
→ with weak transitions

α
⇒ defined as usual, that is

α
⇒= (

τ
→)∗

α
→ (

τ
→)∗ if α 6= τ , and

τ
⇒= (

τ
→)∗. We denote with ≈ the largest weak bisimulation, and by F the related monotonic operator on

binary relations which has ≈ as largest fixed point. We recall the following basic properties of (asynchronous)
bisimulation. The proof given in [4] requires some substantial case analysis for the input transition.

Proposition 2 (1) The relation ≈ is an equivalence relation.

(2) If P ≈ Q then (P | a(~b)) ≈ (Q | a(~b)).

We have the standard fact that we get the same relation ≈ if in the definition of weak bisimulation we
require that a strong transition is matched by a weak one. We also need a few notions of bisimulation up to
techniques. To this end, we define the partial order ≤F on relations as

R1 ≤F R2 iff R1 ⊆ R2 and R1 ⊆ F(R2) .

Let H be an operator on binary relations that is monotonic with respect to ≤F – we also say that H preserves
≤F in this case3. Then we say that R is a weak bisimulation up to H if R ⊆ F(H(R)). The following result
is proved in [15].

Proposition 3 (1) The family of operators preserving ≤F is closed under composition and union.

(2) If an operator H on binary relations preserves ≤F and R is a weak bisimulation up to H then R ⊆ ≈.

The proof of (1) is immediate and the proof of (2) amounts to build a weak bisimulation, starting from R
and iterating the operator λS.(S ∪ H(S)).

2.2 Message deliverability property

First we need to fix some technical notions. An evaluation context E is defined by

E ::= [] || E | P || P | E || (νa)E (2)

We introduce the following abbreviations:

Ta = (rec A(a).a(~b).A(a))(a), Ida = (rec A(a).a(~b).(a~b | A(a)))(a),

a(~b) : P = a(~b).(P | Ta) .

The terminated process Ta repeatedly receives and throws away messages on channel a, the identity process
Ida repeatedly receives and sends back messages on channel a, the input once prefix operator ‘:’ receives once
a message on a channel, say a, and then spawns a process Ta in parallel with the continuation.

3In [15], an operator that preserves ≤F is called ‘respectful’.

5

It is convenient to consider processes up to a structural equivalence ∼= defined as the least equivalence
relation such that:

(1) P | Q ∼= Q | P (2) (P | Q) | R ∼= P | (Q | R)
(3) P | 0 ∼= P (4) (νa)P | Q ∼= (νa) (P | Q) if a /∈ fn(Q)

(5) (νa) (νb)P ∼= (νb) (νa)P (6) (rec A(~b).P)(~c) ∼= [rec A(~b).P/A,~c/~b]P
(7) [a = a]P, Q ∼= P (8) [a = b]P, Q ∼= Q if a 6= b
(9) (νa)P ∼= P if a /∈ fn(P), st(a) = val (10) (νa)Ta

∼= 0
(11) E[P] ∼= E[Q] if P ∼= Q .

Equations (1–5) are standard. Equations (6–8) are about unfolding and branching; they are employed to get
rid of internal deterministic transitions and to obtain a nice canonical form (lemma 4(2)). Of course equation
(8) is not compatible with arbitrary contexts and we just require closure under evaluation contexts (rule (11)).
Equations (9–10) are non-standard; they garbage collect some dead names and processes and are employed in
the proofs of section 4.2. As stated below structurally equivalent processes are strongly bisimilar.

Lemma 4 (1) If P ∼= Q then P ∼ Q.

(2) Any process P is structurally equivalent to a process of the shape

(ν~c) (Πi∈Iai(~ai) | Πj∈Jbj(~bj).Pj) (3)

where {~c}, I, and J can be empty, Π stands for the parallel composition of a family of processes, and we
conventionally take the parallel composition of an empty family to be 0.

Thus we arrive at the definition of the message deliverability property.

Definition 5 (1) We write P ↓ a if P offers a visible input on a, i.e., P
a~b
→ P ′ for some ~b, P ′.

(2) We say that a process P has the message deliverability property, if whenever P
τ
⇒ Q with Q ∼= (ν~a) (a~b | P ′)

then P ′ τ
⇒ P ′′ and P ′′ ↓ a.

In principle, we can always transform a process into a bisimilar one having the message deliverability
property. The method is to introduce for every channel a an identity process Ida.

Proposition 6 Given a process P , we can effectively build a process P ′ which has the message deliverability
property and is equivalent to P up to weak asynchronous bisimulation.

Proof hint. Let fch(P) = {a | a ∈ fn(P) and st(a) = Ch(~s)}. Define P ′ = I(P) | Πa∈fch(P)Ida, where I is a
function that commutes with every process constructor but the channel generator where it is defined by:

I((νa)P) = (νa) (I(P) | Ida) if st(a) = Ch(~s) .

Then show that (1) P ′ has the message deliverability property and (2) P ≈ P ′. �

As mentioned in the introduction, this transformation is not very satisfying; in particular it introduces
the identity process also when it is not needed. We anticipate that this transformation is ruled out in π1 (and
πr

1) by the requirement that the receiver is unique.
Next we pause to consider: (i) the decidability of the message deliverability property and (ii) its connection

with the classical liveness property for Petri Nets mentioned in the introduction.
Concerning (i), we recall that the control reachability problem amounts to dermine, given a process P ,

whether P can reach a specific point of the control determined by, say, a special constant A, i.e., whether
P

τ
⇒ P ′ and P ′ ∼= (ν~a) (A | P ′′) for some ~a, P ′′. It has been shown in [5] that the halting problem for 2-counter

machines can be recursively reduced to the control reachability problem for two fragments of the asynchronous
π-calculus that combine ‘name generation’ with either ‘name mobility’ or ‘unbounded’ control. Roughly, ‘name
generation’ is the possibility of generating fresh names (values or channels), name mobility is the possibility
of transmitting names, and unbounded control is the possibility of dynamically adding new threads of control.
The following proposition 7(1) gives a recursive reduction of the control reachability problem to the message
deliverability problem and therefore it proves the undecidability of the latter.

Concerning (ii), we rely on a well-known encoding of the asynchronous π-calculus without name generation
into Petri Nets that basically goes back to early work [8] on the translation of ccs to Petri Nets. In the encoding,

6

(νval)
I ` P st(a) = val a /∈ I

I ` (νa)P
(νCh)

I ∪ {a} ` P st(a) = Ch(~s) a /∈ I

I ` (νa)P

(out)
∅ ` a~b

(in)
{a} ∪ I ` P {~b} ∩ I = ∅

{a} ∪ I ` a(~b).P

(|)
Ij ` Pj j = 1, 2 I1 ∩ I2 = ∅

I1 ∪ I2 ` P1 | P2

(=)
I ` Pi, i = 1, 2

I ` [a = b]P1, P2

(0)
∅ ` 0

(rec 1)
]{b1, . . . , bk} = ia(A)

{b1, . . . , bk} ` A(b1, . . . , bn)

(rec 2)
{a1, . . . , ak} ` P]{b1, . . . , bk} = ia(A)

{b1, . . . , bk} ` (rec A(a1, . . . , an).P)(b1, . . . , bn)

Figure 2: Interface

messages and control points are represented by tokens in certain (distinct) places. The message deliverability
property then requires that the tokens representing messages have a chance of being consumed, i.e., that a
certain transition t can be fired. This property recalls the liveness property and indeed the decidability proof
for the latter (see, e.g., [13]) can be easily adapted to the former (proposition 7(2)).

Proposition 7 (1) The control reachability problem is recursively reducible to the message deliverability
problem.

(2) In the absence of name generation, the message deliverability problem is recursively reducible to the
reachability problem for Petri Nets.

Proof. (1) Suppose we want to decide whether the process P reaches a control point A. We transform
P into P ′ as in the proof of proposition 6. Then P ′ has the message deliverability property and clearly P
reaches A iff P ′ reaches A. Now turn the control point A into a fresh channel and consider the process
P ′′ = A |!((ν~a) [A.0/A]P ′) where ! is the usual replication operator and {~a} are the names free in [A.0/A]P ′

but A. Then P ′′ satisfies the message deliverability property iff P ′ reaches A iff P reaches A.

(2) See appendix A. �

3 Non-uniform receptivity

An interface I is a set of names of channel sort. We introduce in figure 2 a formal system to determine when
a well-sorted process has interface I (written I ` P). Intuitively, if I ` P then P may perform inputs on the
channels in the interface I. Here the input arity of a process identifier plays a role: it declares the parameters
on which an input can be performed. In particular, the first ia(A) parameters of an identifier A must be of
channel sort.

It is easy to check that a process P has at most one interface I. Moreover if I ` P then there is at most
one thread that can perform an input on a given channel (unique receiver property). We note that to achieve
this property the system requires: (i) not to receive on received channels (cf. work on the local π-calculus and
channels with output capability, see, e.g., [11]), (ii) disjoint interfaces of parallel processes (condition I1∩I2 = ∅
in rule (|)), and (iii) injective instanciation of the first ia(A) parameters of an identifier A.

We write I `r P (r for receptive) if I ` P and moreover: (1) if A occurs in P then ia(A) = 1, and (2)
in all applications of the input rule (in), the interface I is empty. Intuitively, if I `r P and a ∈ I then P is

always ready to perform an input on a. For instance, {a} `r Ta, {a} `r Ida, and {a} `r a(~b) : P if ∅ `r P .
On the other hand, if we set P = (rec A(a, b).a.b.A(a, b))(a, b) then {a, b} ` P but {a, b} 6`r P .

Both notions of interface are preserved by labelled transitions.

7

Proposition 8 (subject reduction) Suppose I ` P and P
α
→ P ′. Then:

(1) α ≡ τ or α ≡ a~b implies I ` P ′.

(2) α ≡ (ν~c) a~b and ~c′ names in ~c of channel sort implies I ∪ {~c′} ` P ′.

The same holds if we replace everywhere ` by `r.

Proof hint. The proof is a variant of the one presented in [2]. First show that if I ` P then, for any
substitution S injective on I, S(I ` P). Then proceed by induction on the derivation of P

α
→ P ′. The only

difficulty arises with the unfolding of the recursion (rec A(~a).P)(~c). In this case one shows that if ia(A) = k,
{a1, . . . , ak} ` P , and]{c1, . . . , ck} = k then {c1, . . . , ck} ` [rec A(~a).P/A,~c/~a]P . �

We define π1 and πr
1 as follows: the π1-calculus is composed of the processes P such that I ` P and the

πr
1-calculus of the processes P such that I `r P . It is intended that in both π1 and πr

1 the notion of structural
equivalence introduced in section 2.2 relates only processes with the same interface. The receptive system `r

has the following additional (and announced) property.

Proposition 9 (receptivity) Suppose I `r P . Then:

(1) P ↓ a iff a ∈ I.

(2) If P ↓ a and P
τ
→ P ′ then P ′ ↓ a.

Proof. (1) (⇒) We proceed by induction on the inference of P ↓ a. (⇐) By induction on the inference of
I `r P .

(2) By (1) and the subject reduction proposition 8(1). �

We note that if I `r (νc)P and c is of channel sort then I ∪{c} `r P and therefore P includes a persistent
receiver for c. From this, we derive message deliverability under suitable conditions.

Corollary 10 (message deliverability) If I `r P and all free channels in P are in I then P has the
message deliverability property.

Proof. Suppose I `r P and P
τ
⇒ P ′ ∼= (ν~a) (a~b | P ′′). Then I `r P ′ by proposition 9(2). Let {~a′} be the set

of channels in {~a}. By definition of `r we know that a ∈ I ∪ {~a′} and that I ∪ {~a′} `r a~b | P ′′. By definition
of `r it follows that I ∪ {~a′} `r P ′′ and by proposition 9(1, ⇐) we conclude that P ′′ ↓ a. �

Remark 11 (1) Note that in πr
1 we have a strong form of message deliverability: if we reach a process

(ν~a) (a~b | P ′′) then P ′′ can offer immediately (essentially up to unfolding and branching) an input on channel
a.

(2) Both calculi can be enriched with a notion of linear channel in the sense of [9]. The distinctive property
of a linear channel is that it is used exactly once in the course of the computation. A typical example being the
‘return’ channel r of a ‘remote procedure call’ (νr) (a(r, v) | r(u) : P) (an instance of this schema is found in
the encoding described in section 4.1). The extension is not too difficult to write down but it introduces some
notation and case analysis that seems better to avoid to convey the essence of our contribution.

Next we turn to the notion of bisimulation. The asynchronous variant recalled in definition 1 is amended
as follows for both π1 and πr

1 :

(1) we observe an output transition P
(ν~c) a~b
→ P ′ only if the channel a is not in the interface of P .

(2) if R is a bisimulation and P RQ then P and Q have the same interface.

The first condition comes naturally from the fact that we require the unicity of the receiver: if the receiver is
defined in the observed process then it cannot be defined in the observer! The second condition is a corollary
of the first one: if I ` P and I ′ ` Q and a ∈ I\I ′ then in P | a~b we cannot observe the output a~b while in

Q | a~b we can. Thus, if our bisimulation has to be preserved by parallel composition then it cannot relate
processes with different interfaces.

A consequence of (1) is that Ida ≈ Ta (a bisimulation is easily built). A consequence of (2) is that Ida 6≈ 0
since these two processes do not have the same interface. Because of condition (1), on processes with the same

8

interface the amended notion of bisimulation provides a coarser notion of equivalence. This is instrumental to
show, e.g., that the joined input of the join-calculus can be defined in the π1-calculus up to weak asynchronous
bisimulation [2].

On the other hand, it has been shown in [7] that there is a fully abstract encoding of the asynchronous
π-calculus in the join-calculus. These two results provide evidence for the expressivity of the π1-calculus.

What about the expressivity of the πr
1 -calculus? We consider two examples that illustrate the style

of ‘programming’ that one must adopt to conform to the receptive discipline. We denote by a(~v, , ~v′) the
term (νb) (a(~v, b, ~v′) | Tb) if b is a channel and (νb)a(~v, b, ~v′) if b is a value. We write a recursive process
(rec A(~a).P)(~a) that does not introduce new parameters simply as rec A(~a).P . Finally, we define a replicated
input given by a∗(~u).P = rec A(a).a(~u).(P | A(a)).

Buffers A typical non-receptive agent is the ‘one-slot buffer’ that repeatedly waits for some data on a given
channel and then sends it on another channel. In the synchronous π-calculus, this process may be written:

(
rec B(a, b).a(c).b(c).B(a, b)

)
(a, b)

Clearly, this cannot be written so easily in πr
1 . In πr

1 we program the one-slot buffer as follows: first it inputs
on a a message that is supposed to convey a datum to store in the buffer (if this is not the case the message is
ignored, i.e, it is resent), and then on the same channel it receives a request for extracting the contents of the
buffer, which is delivered on a private return channel (again, if this protocol is violated this second message
is ignored, though obviously something more elaborate could be done in a more synchronous version of the
buffer).

Buff 1(a) = rec B(a).a(k1, x, y).[k1 6= put](a(k1, x, y) | B(a)),
rec B1(a, x).a(k2, z, y).[k2 6= get](a(k2, z, y) | B1(a, x)),

y(x) | B(a)

It is easily checked that (i) Buff 1(a) is well-sorted assuming, e.g., that the content of the buffer is of value type,
and (ii) that {a} `r Buff 1(a). The requests for reading and writing the buffer are respectively (νc) (a(get, , c) |
c(x):P) and a(put, b,). As one can see, the buffer is now a kind of ‘agent’, that is a process which is invoked
by its name a and reacts according to some internal protocol. To build a ‘two-slots buffer’ from this one,
we may proceed as usual, putting together two one-slot buffers with a private communication between them.
However, to write this we need to refine our previous program, because we need to explicitly indicate the keys
used, defining Buff 1(a, put, get) – in the obvious way. This is left as an exercise for the reader.

Mutual exclusion Synchronization can be ‘programmed’ in the π-calculus, a typical example being
mutual exclusion between tasks enforced by the use of a lock, as follows:

(νl) (l | task
∗

1(~a1).l().(· · · l) | . . . |task∗

n(~an).l().(· · · l)) .

This violates both receptivity and the unique receiver property. In the receptive style, the lock is represented
by a process that receives on a unique channel l messages carrying a value lock or unlock and a return channel
r:

Lock(l) = rec A(l).l(k, r).[k 6= lock](l(k, r) | A(a)),

r | rec A′(l).l(k′, s).[k′ 6= unlock](l(k′, s) | A′(l)),
A(l)

and a task is now written task∗
i (~ai).(νr)

(
l(lock, r) | r():(· · · l(unlock,))

)
. Again, the lock is a persistent

agent that has an identity l, and reacts according to its own protocol, governed by the keys it receives.

Remark 12 (on busy waiting) As the reader might have already noticed, in both examples we enforce re-
ceptivity by introducing a form of busy waiting, i.e., received messages with the ‘wrong’ pattern are immediately
resent. This trade-off between receptivity and busy waiting seems hard to avoid and it will be found again in the
general encoding of π1 into πr

1 (see the implementation of the channel manager in section 4.3). This should not
come as a surprise; we cannot expect our encoding to be so clever as to make a process that loses messages into
a ‘correct’ one that does not. Indeed, in a more intentional sense, the encoded process can still lose messages
by busy waiting. All the encoding shows is that, in a sense, every behaviour of π1 can be programmed in πr

1 . It
is not quite our intention to advocate programming with busy waiting as a good programming style, but we note

9

that in practice there might be more clever ways of handling unwanted messages. For instance, in the example
of the buffer one could send back a message of the kind ‘sorry buffer full (or empty); try later’. Of course, this
kind of transformations require some understanding of the problem at hand and they can only be encouraged
by the receptive discipline.

4 From π1 to π
r
1

We show that there is a fully abstract encoding of π1 into πr
1 . One basic problem is that in general the channels

on which a thread of the π1-calculs will perform an input cannot be statically determined. Thus the encoding
methods employed in the previous two examples do not apply directly.

4.1 Encoding

We use the notation [C]P, Q when C is a boolean combination of name equalities a = b and inequalities a 6= b.
This notation is compiled in the obvious way:

[¬C]P, Q = [C]Q, P [C ∨ C′]P, Q = [C]P, ([C′]P, Q) [C ∧ C′]P, Q = [C]([C′]P, Q),Q

We use a default channel notation ‘ ’ in other contexts besides output:

(i) in an input, a(~b, , ~b′).P denotes a(~b, c, ~b′).P where c /∈ fn(P),

(ii) in a recursive call A(,~b) stands for (νa)A(a,~b).

(iii) in a recursive definition, (rec A(,~b).P) denotes (rec A(a,~b).(Ta | P)).

In the proofs we also use the notation P
(ν~c) a~b, ,~b′

→ P ′, which stands for P
(ν~c,c) a~b,c,~b′

→ P ′ where c /∈ fn(P) and
st(c) = val .

Now the idea of the encoding is rather simple: we turn any message on a channel a into a request to a
channel manager CM (a) for a, sending the arguments of the message together with a key out. Symmetrically,
we turn any input on a into a request to CM (a), sending a key in and a private return channel to actually
receive something. The channel manager will filter the messages according to the keys, and act as appropriate.

Let us pause to note that the use of a channel manager is not new. For instance, it is similar to what is
done in implementing communication for a language like the π-calculus except that one would exploit elaborate
data structures like ‘pools’ or queues to manage the input and output requests in a more realistic way. On
a technical level, a notion of channel manager occurs in the encoding of the asynchronous π-calculus in the
join-calculus [7]. That channel manager has a simpler definition since it does not have to be receptive.

Going back to our encoding, we note that there is an attack which compromises abstraction: the environ-
ment can send a request for input to the channel manager. This requires an additional twist: we authenticate
the requests for input by introducing a restricted key ina for every channel manager which is known only by
the process that can actually input on that channel.

Formally, for every name a we assume a fresh name ina (that is not in the names of the translated
processes). The name ina has sort val and it is used as the key of the channel a. We translate a term P of
the π1-calculus with interface I, where I = {a1, . . . , an}, into the following process

〈|I, P |〉 = (νina1
) · · · (νinan

) (CM (a1, ina1
) | · · · | CM (an, inan

) | [[P]])

where [[P]] is defined below, which turns out to be also a well-formed process of the πr
1 -calculus with interface

∅. Sorts are translated as follows:

[[val]] = val

[[Ch(s1, . . . , sn)]] = Ch(val , [[s1]], . . . , [[sn]], Ch([[s1]] . . . , [[sn]]), val , val)

where the first argument is the input/output key of the channel, then come the arguments of the message to
be delivered, followed by the type of the return channel to which they are actually sent, and then we have two
keys for internal choice. The following transition rules describe the behaviour of the channel manager where
we assume j1 6= ina:

(CM τ) (CM (a, ina) | a(j1,~b1, r1, c1, c
′
1) | a(ina,~b2, r2, c2, c

′
2))

τ
→ (CM (a, ina) | r2(~b1))

(CM in) (CM (a, ina) | a(ina,~b2, r2, c2, c
′
2))

a(j1,~b1,r1,c1,c′

1
)

→ (CM (a, ina) | r2(~b1))

10

By this specification, the channel manager matches a request for input with a request for output (the latter can
be provided by the environment). A reduction such as (CM τ) could be directly implemented in a join-calculus
enriched with a filter condition on the received messages. However, to simplify the proofs we will in a first
step reason with the axiomatic specification above. That is, we extend the πr

1 with a new constant CM (a, ina)
(with two free parameters), which behaves as prescribed and is such that {a} `r CM (a, ina). Then we will see
how to implement the channel manager in the πr

1-calculus, up to weak bisimulation. In order to be able to use
the specification of CM , we must add a transition rule that allows structural manipulations to be performed:

P
α
→ P ′ and Q ∼= P ⇒ Q

α
→ P ′

In the πr
1 this is harmless since ∼= is a strong bisimulation. The encoding [[P]] of processes is as follows:

[[0]] = 0

[[a~b]] = a(,~b, , ,)

[[a(~b).P]] = (νr) (a(ina, , r, ,) | r(~b):[[P]])

[[P | Q]] = ([[P]] | [[Q]])

[[[a = b]P, Q]] = [a = b][[P]], [[Q]]

[[(νa) P]] = (νa) (νina) (CM (a, ina) | [[P]]) if st(a) = Ch(~s)

[[(νa) P]] = (νa) [[P]] if st(a) = val

Regarding the encoding of recursion, we assume given an injection that maps identifiers A with arity ia(A) = k
of π1 into identifiers of πr

1 with arity 1. For simplicity, we keep the same name and map A to A. Moreover,
assume st(A) = Ch(s1, . . . , sn) and suppose that:

~b ≡ b1, . . . , bn ≡ a1, . . . , ak, ck+1, . . . , cn ≡ ~a,~c .

and similarly for ~b′. Then we define:

[[A(~b)]] = A(,~a, ~ina, ~c)

[[(rec A(~b).P)(~b′)]] = (rec A(,~a, ~ina, ~c).[[P]])(,~a′, ~ina′ , ~c′)

Remark 13 We note that the only receivers in the encoding are the channel managers and the ‘input once’
return channels r. It is clear from the specification of the channel manager and later from its implementation,
that at most one message is emitted on r. Thus r can be regarded as a weakly linear (or affine) channel.4

Moreover, an encoded process is composed of a set of servers (the channel managers) and a bunch of processes
that keep performing remote procedure calls on the servers and possibly create new ones.

As expected, the encoding preserves the interfaces.

Proposition 14 If I ` P in the π1-calculus then ∅ `r [[P]] and I `r 〈|I, P |〉.

Proof. By induction on the definition of I ` P . �

4.2 Definition of the bisimulation relation

Now we embark on the proof that our encoding is fully abstract with respect to weak bisimulation. Our proof
relies on the bisimulation up to technique (cf. proposition 3). As pointed out in the following remark 17, the
application of the theory in the asynchronous case requires some caution. Complete proofs for this case can
be found in the third author forthcoming PhD thesis [10].

We introduce a notion of deterministic reduction >d which will be used to handle communications on
return channels which are used at most once (see also remark 11(2)). Namely, P >d P ′ if

P ∼= E[(νr) (r(~b) | r(~c):Q)]
τ
→ E[(0 | ([~b/~c]Q | Tr))] ∼= P ′ ∼= E[[~b/~c]Q]

where r /∈ fn(Q) and E is an evaluation context (cf. section 2.2). We also write ≥d and <d, ≤d with obvious
meanings. It is easily verified that >d commutes, modulo ∼=, with any transition:

4We expect that one can complicate the encoding to make the return channel r linear.

11

Lemma 15 If P
α
→ P ′ and P >d P ′′ then either P ′ ∼= P ′′ or for some Q, P ′ >d Q and P ′′ α

→ Q.

Let ≡aci be the congruence on processes induced by the axioms for associativity and commutativity of
parallel composition and P | 0 ≡aci P . We define the following operators on relations:

E(R) = {(P, Q) | P ≡aci (P ′ | M), Q ≡aci (Q′ | M), (P, Q) ∈ R and M = Πi∈Iai(~bi)}

H1(R) = ∼ ◦E(R)◦ ∼

H2(R) = ≥d ◦R◦ ≤d

H3(R) = {((P | Tr), (Q | Tr)) | (P, Q) ∈ R}

Lemma 16 (1) The identity and the constant operators mapping a relation R to ∼, ≤d, ≥d, respectively,
preserve ≤F .

(2) The operators E and Hi (i = 1, 2, 3) preserve ≤F .

Proof. (1) the identity obviously preserves ≤F . For λR. ∼ we observe that a strong bisimulation is a weak
bisimulation. For λR. ≤d and λR. ≥d we note that ≤d is a weak bisimulation.

(2) We note that all four operators are monotonic thus we just need to check that R1 ≤F R2 implies
H(R1) ⊆ F(H(R2)). �

Remark 17 Unlike the synchronous case, the operator H ′
1(S) =∼ ◦S◦ ∼ does not respect ≤F . For instance,

consider, in a language extended with sum, a.a + τ ∼ τ S τ with S = {(τ, τ), (0,0)}. By computing first E(S),
we enforce closure under parallel composition with a message.

We note the following property.

Lemma 18 Suppose I ` P and let S be an injective substitution on I. Then S[[P]] = [[SP]] and S〈|I, P |〉 =
〈|SI, SP |〉.

Then we can show that the encoding 〈|I, P |〉 ‘simulates’ P as follows:

Lemma 19 Suppose I ` P . Then

(1) if P
a~b
→ P ′ then 〈|I, P |〉

a(j,~b,r,c,c′)
→ Q >d 〈|I, P ′|〉,

(2) if P
(ν ~w) a~b
→ P ′, I ′ ` P ′ and a /∈ I then 〈|I, P |〉

(ν ~w,r) a(,~b,r, ,)
→ (〈|I ′, P ′|〉 | Tr) ,

(3) if P
τ
→ P ′ then 〈|I, P |〉

τ
→ Q >d 〈|I, P ′|〉.

Proof hint. We rely on the lemma 18, and we proceed by induction on the definition of the labelled transition
relation. �

In the output case (2), we note the introduction of the Tr process acting on a fresh channel. We will show
that we can factor out this spurious process. In particular, we observe the following property.

Lemma 20 Suppose r /∈ fn(P | Q). Then P ≈ Q iff (P | Tr) ≈ (Q | Tr).

Proof. (⇒) ≈ is preserved by parallel composition.

(⇐) We show that the relation {(P, Q) | (P | Tr) ≈ (Q | Tr) and r /∈ fn(P | Q)} is a weak bisimulation up to
injective substitution. �

Since the key ina is kept restricted, a message a(j,~b, r, c, c′) received by a process 〈|I, P |〉 is always in-
terpreted as an output request and therefore the fields j, r, c, c′ are irrelevant. We formalize this remark as
follows.

Lemma 21 Let I ` P and a ∈ I. Then for any j distinct from ina, for any r, c, c′

〈|I, (P | a(~b))|〉 ∼ (〈|I, P |〉 | a(j,~b, r, c, c′))

12

Proof. Let M = Πi∈Iai(ji,~bi, ri, ci, c
′
i). We observe that

(CM (a, ina) | a(,~b, , ,) | M) ∼ (CM (a, ina) | a(j,~b, r, c, c′) | M)

provided that j 6= ina. Then we use the fact that bisimulation is preserved by evaluation contexts. �

Regarding the transitions of the encoding 〈|I, P |〉, we have the following properties.

Lemma 22 Suppose I ` P . Then:

(1) if 〈|I, P |〉
τ
→ Q then P

τ
→ P ′ and Q >d 〈|I, P ′|〉,

(2) if 〈|I, P |〉 performs an output transition on a channel a /∈ I then 〈|I, P |〉
(ν ~w,r) a(,~b,r, ,)

→ (Q | Tr) and

P
(ν ~w) a~b
→ P ′ for some I ′ and P ′ such that I ′ ` P ′ and Q ∼= 〈|I ′, P ′|〉,

(3) if 〈|I, P |〉
a(j,~b,r,c,c′)

→ Q′ then P
a~b
→ P ′ for some P ′ such that Q′ >d 〈|I, P ′|〉.

Proof hint. (1) the only receivers ready to execute in 〈|I, P |〉 are the channel managers. Thus a τ transition
corresponds to an application of the rule (CM τ) synchronising an input and an output request.

(2) the only output actions arising from 〈|I, P |〉 with subject a 6∈ I are those produced by the encoding [[a(~b)]]
of a message.

(3) this input transition corresponds to the execution of the rule (CM in). �

Now we can prove the main result of this section, showing that our encoding into the calculus with
constants CM (a, ina) is fully abstract with respect to weak bisimilarity.

Theorem 23 Suppose I ` P1 and I ` P2 in the π1-calculus. Then

P1 ≈ P2 iff 〈|I, P1|〉 ≈ 〈|I, P2|〉

Proof. (⇒) We define
S = {(〈|I, P1|〉, 〈|I, P2|〉) | P1 ≈ P2}

We show in appendix B that S is a bisimulation up to H3 ◦H2 ◦H1. It follows from proposition 3 that S ⊆ ≈.
Thus:

P1 ≈ P2 ⇒ 〈|I, P1|〉 S 〈|I, P2|〉 ⇒ 〈|I, P1|〉 ≈ 〈|I, P2|〉 .

(⇐) We define
S = {(P1, P2) | I ` P1, I ` P2 and 〈|I, P1|〉 ≈ 〈|I, P2|〉}

We show in appendix B that S is a bisimulation. Thus

〈|I, P1|〉 ≈ 〈|I, P2|〉 ⇒ P1 S P2 ⇒ P1 ≈ P2 . �

4.3 Implementation of the channel manager

To conclude the proof of our result, it remains to show that the channel manager CM (a, ina) can be implemen-
ted adequately in πr

1 . In figure 3 we show such an implementation. To denote concisely the various points of
the control, it is convenient to describe it as a system of recursive equations where mk, for k = 1, . . . , 5, stands
for the vector jk,~bk, rk, ck, c′k which is assumed not to contain ina. It is immediate to compile this system of
recursive equations in our notation (rec A(~b).P), that is, CM 1 really denotes the parametric recursive process

(rec A1(a, ina).a(m1). a(m2).if · · ·
︸ ︷︷ ︸

CM2(a,m1)

)

and similarly for CM i(a, m1, m2, c) (which are subterms of CM 1). One immediately verifies that {a} `r

CM 1(a, ina), as expected.
Let us comment on this implementation. The channel manager first performs two inputs on a. The

first input must be an output request and the second an input request (otherwise the process CM 1 loops
back). Then the channel manager proceeds to make an internal choice. To this end, it generates two messages
a(, , , c, c) and a(, , , c, c′), of which one may be received by CM 3, and then either by CM 4 or CM 5. If

13

CM 1(a, ina) = a(m1).CM 2(a, m1)

CM 2(a, m1) = a(m2).[j1 = ina ∨ j2 6= ina](CM 1(a, ina) | a(m1) | a(m2)),

(νc) (a(, , , c, c) | (νc′) a(, , , c, c′) | CM 3(a, m1, m2, c))

CM 3(a, m1, m2, c) = a(m3).[c3 6= c](CM 3(a, m1, m2, c) | a(m3)),

[c′

3 = c]CM 4(a, m1, m2, c),

CM 5(a, m1, m2, c)

CM 4(a, m1, m2, c) = a(m4).[c4 6= c](CM 4(a, m1, m2, c) | a(m4)),

(CM 1(a, ina) | a(m1) | a(m2))

CM 5(a, m1, m2, c) = a(m5).[c5 6= c](CM 5(a, m1, m2, c) | a(m5)),

(CM 1(a, ina) | r2(~b1)) .

Figure 3: Implementation of the channel manager

the message received in CM 3 is a(, , , c, c) the channel manager goes to state CM 4 and then loops back,
otherwise it goes to state CM 5 and it enables a communication.

Let [CM 1/CM] denote the operation of replacing the abstract channel manager CM by the implementation
CM 1 described above (if CM were regarded as an identifier, this would just be the substitution [CM 1/CM]).
Then for instance [CM 1/CM][[P]] and [CM 1/CM]〈|I, P |〉 are now terms of the πr

1 . For the following proposition,
we still consider terms of the calculus enriched with the constants CM (a, ina). The proof given in appendix
C is a long but straightforward case analysis.

Proposition 24 (1) Let M ∼= Πi∈Iai(ji,~bi, ri, ci, c
′
i). Then

(CM (a, ina) | M) ≈ (CM 1(a, ina) | M) .

(2) If I ` P then 〈|I, P |〉 ≈ [CM 1/CM]〈|I, P |〉.

This concludes our argument. We have provided an encoding of π1 into πr
1 which is fully abstract with

respect to weak asynchronous bisimulation (with unique receiver). This notion of equivalence is relatively
simple and well studied [4] but of course other equivalences could be considered such as barbed congruence.
We also note that the encoding considered is not uniform in the sense of Palamidessi [12] and in particular
it does not preserve ‘distribution’ because (i) it introduces a centralised coordinator (the channel managers)
and (ii) it does introduce divergent behaviours because of the busy waiting phenomenon. Whether a uniform
encoding exists remains to be seen.

References

[1] R. Amadio. An asynchronous model of locality, failure, and process mobility. In Proc. Coordina-

tion 97, Springer Lect. Notes in Comp. Sci. 1282, 1997. Extended version appeared as RR-INRIA
3109.

[2] R. Amadio. On modeling mobility. Theoretical Computer Science, 240:147–176, 2000.

[3] R. Amadio, G. Boudol, and C. Lhoussaine. The distributed receptive π-calculus. Technical report,
INRIA Research Report 4080, November 2000.

[4] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus.
Theoretical Computer Science, 195:291–324, 1998.

[5] R. Amadio and C. Meyssonnier. On the decidability of fragments of the asynchronous π-calculus.
In Proc. EXPRESS01, Electronic Notes in Theoretical Computer Science, volume 52.1, 2001. Also
appeared as RR-INRIA 4241.

14

[6] G. Boudol. Typing the use of resources in a concurrent calculus. Proc. ASIAN 97, Springer Lect.

Notes in Comp. Sci. 1345, 1997.

[7] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. Proc. ACM Principles

of Prog. Lang., 1996.

[8] U. Golz and A. Mycroft. On the relationship of CCS and Petri Nets. Proc. ICALP84, Springer

Lect. Notes in Comp. Sci. 172:196–208, 1984.

[9] N. Kobayashi, B. Pierce, and D. Turner. Linearity in the π-calculus. Proc. ACM Principles of

Prog. Lang., 1996. Expanded version in ACM TOPLAS 21-5 (1999).

[10] C. Lhoussaine. Types, réceptivité et mobilité. PhD thesis, U. Aix-Marseille I, 2002 (Forthcoming).

[11] M. Merro and D. Sangiorgi. On asynchrony in name passing calculi. Proc. ICALP98, Springer

Lect. Notes in Comp. Sci. 1443, 1998.

[12] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous π-
calculus. Proc. ACM Principles of Prog. Lang., 1997.

[13] C. Reutenauer. Aspects mathématiques des réseaux de Petri. Masson Editeur, 1988. Also available
in english: The mathematics of Petri Nets, Prentice-Hall.

[14] D. Sangiorgi. The name discipline of uniform receptiveness. In Proc. ICALP 97. Springer Lect.
Notes in Comp. Sci. 1256, 1997.

[15] D. Sangiorgi. On the bisimulation proof method. Journal of Math. Structures in Comp. Sci.,
8:447–479, 1998.

A Proof of proposition 7(2)

In the absence of name generation, the internal transitions operate over a finite set of names. Consequently,
we can build a Petri Net that mimicks exactly the internal transitions of a given process P . Then checking the
message deliverability property amounts to check in a finite number of cases variants of the liveness property.

We consider a typical situation. Suppose given a system of parameterless equations of the shape

A = a.(Πi∈iai | Πj∈jAj) (4)

and an initial configuration P = Πi∈Io
ai | Πj∈Jo

Aj . The operational semantics is the expected one: an internal
transition is possible when a configuration contains a message a and an identifier A defined by A = a . . .

Now we build a Petri Net that simulates exactly this system. We follow a rather standard notation: t, . . .
stand for transitions, p, . . . for places, m, . . . for markings (i.e. vectors of natural numbers), → for the reduction
relation on markings, and Pre(p, t) for the number of directed edges from place p to transition t.

• Let N be the set of channel names a, b, . . . and I the set of process identifiers A, B, . . . in the system
(there are finitely many). We take the set of places as the (disjoint) union of N and I. The intended
interpretation is that a token at place a corresponds to a message a and a token at place A means that
the control of a thread is at A. Following this interpretation we determine an initial marking mo.

• To every equation of the shape (4) in the system we associate a transition t which is connected to places
as follows: an edge from A to t, an edge from a to t, an edge from t to ai for i ∈ I, and an edge from t
to Aj for j ∈ J .

It is easy to generalise this construction to parametric systems of the shape A(~a) = a(~b).(Πi∈iai~ai |
Πj∈jAj(~aj)). In particular, one replaces the input by an external sum; details can be found, e.g., in [5].

Let us now turn to the message deliverability property at the level of Petri Nets. Fix a place a ∈ N (here
a token corresponds to a message).

• Let T = {t | Pre(a, t) > 0} be the set of transitions that can consume a token (message) in place a.

• Let FireT be the set of markings that can reach a marking where at least one transition t ∈ T is enabled
(i.e., ready to fire).

15

• Let M a = {m | ma > 0} where ma is the ath component of m. This is the set of marking having at least
one token (message) at place a.

Message deliverability with respect to place a translates into the following condition: whenever m0
∗
→ m ∈ M a

then m ∈ FireT .5 This is equivalent to say that:

Reach(m0) ∩ (M a ∩ (FireT)c) = ∅ (5)

where Reach(m0) = {m | m0
∗
→ m} is the set of markings reachable form m0 and c is the set-theoretic

complement.
We can then apply standard results in Petri Net theory (we refer in particular to [13, chapter 6]. First,

it is easily checked that both FireT and M a are ideals, i.e., upper closed sets with respect to the pointwise
order on markings. Every ideal is semi-linear and since semi-linear sets are closed under intersection and
complementation, it follows that M a ∩ (FireT)c is a semi-linear set. In particular, it is the set of markings
reachable from an initial marking of a Petri Net that can be effectively constructed. To conclude, apply the
fact that the emptyness of the intersection of the markings reachable from two Petri Nets is decidable by
reduction to the reachability problem for Petri Nets. �

B Proof of theorem 23

(⇒) We define
S = {(〈|I, P1|〉, 〈|I, P2|〉) | P1 ≈ P2}

We show that S is a bisimulation up to H3 ◦ H2 ◦ H1. We will only consider one half of the bisimulation
condition, the other half follows by a symmetric argument, noting that the operators Hi preserve symmetry.

(τ) Suppose 〈|I, P1|〉
τ
→ Q1. Then:

P1
τ
→ P ′

1 and Q1 >d 〈|I, P ′
1|〉 by lemma 22(1),

P2
τ
⇒ P ′

2 and P ′
1 ≈ P ′

2 since P1 ≈ P2,

〈|I, P2|〉
τ
⇒ 〈|I, P ′

2|〉 by lemma 19(1).

Thus Q1 ≥d 〈|I, P ′
1|〉 S 〈|I, P ′

2|〉, as P ′
1 ≈ P ′

2.

(out) Suppose 〈|I, P1|〉
(ν ~w,r) a(,~b,r, ,)

→ (〈|I ′, P ′
1|〉 | Tr), according to lemma 22(2). Then:

P1
(ν ~w) a~b
→ P ′

1 and

P2
(ν ~w) a~b
⇒ P ′

2 and P ′
1 ≈ P ′

2 since P1 ≈ P2,

〈|I, P2|〉
(ν ~w,r) a(,~b,r, ,)

⇒ (〈|I ′, P ′
2|〉 | Tr) by lemma 19.

Thus (〈|I ′, P ′
1|〉 | Tr) H3(S) (〈|I ′, P ′

2|〉 | Tr).

(in) Suppose 〈|I, P1|〉
a(j,~b,r,c,c′)

→ Q1. Then

P1
a~b
→ P ′

1 and Q1 >d 〈|I, P ′
1|〉 by lemma 22(3). Then either

P2
a~b
⇒ P ′

2 and P ′
1 ≈ P ′

2 since P1 ≈ P2, hence

〈|I, P2|〉
a(j,~b,r,c,c′)

⇒ 〈|I, P ′
2|〉 by lemma 19, or

P2
τ
⇒ P ′

2 and P ′
1 ≈ (P ′

2 | a(~b)) by P1 ≈ P2,

〈|I, P2|〉
τ
⇒ 〈|I, P ′

2|〉 by lemma 19(1).

By lemma 21, 〈|I, P ′
2 | a(~b)|〉 ∼ (〈|I, P ′

2|〉 | a(j,~b, r, c, c′)). Thus:

Q1 >d 〈|I, P ′

1|〉 S 〈|I, P ′

2 | a(~b)|〉 ∼ (〈|I, P ′

2|〉 | a(j,~b, r, c, c′))

5In our particular case, this implies that we can reach a marking containing a token in a place A such that
the identifer A is defined by the equation A = a . . .

16

(⇐) We define
S = {(P1, P2) | I ` P1, I ` P2 and 〈|I, P1|〉 ≈ 〈|I, P2|〉}

We show that S is a bisimulation.
(τ) Suppose P1

τ
→ P ′

1. Then

〈|I, P1|〉
τ
→>d 〈|I, P ′

1|〉 by lemma 19(1),

〈|I, P2|〉
τ
⇒ Q2 and Q2 ≈ 〈|I, P ′

1|〉 since 〈|I, P1|〉 ≈ 〈|I, P2|〉

P2
τ
→ P ′

2 and Q2(>d)
∗〈|I, P ′

2|〉 by lemmas 22(1) and 15.

Thus 〈|I, P ′
1|〉 ≈ Q2 ≥d 〈|I, P ′

2|〉 which implies P ′
1 S P ′

2.

(out) Suppose P1
(ν ~w) a~b
→ P ′

1 with a /∈ I. Then:

〈|I, P1|〉
(ν ~w,r) a(,~b,r, ,)

→ (〈|I ′, P ′
1|〉 | Tr) by lemma 19(2),

〈|I, P2|〉
(ν ~w,r) a(,~b,r, ,)

⇒ Q2 and (〈|I ′, P ′
1|〉 | Tr) ≈ Q2

P2
(ν ~w) a~b
→ P ′

2 and Q2(>d)
∗(〈|I ′, P ′

2|〉 | Tr) by lemmas 22, 15,

and diagram chasing.

Thus (〈|I ′, P ′
1|〉 | Tr) ≈ Q2(>d)

∗(〈|I ′, P ′
2|〉 | Tr). By lemma 20, 〈|I ′, P ′

1|〉 ≈ 〈|I ′, P ′
2|〉, and therefore P ′

1 S P ′
2.

(in) Suppose P1
a~b
→ P ′

1. Then 〈|I, P1|〉
a(j,~b,r,c,c′)

→ Q1 >d 〈|I, P ′
1|〉 by lemma 19(1). There are two cases: if

〈|I, P2|〉
a(j,~b,r,c,c′)

⇒ Q2 and Q1 ≈ Q2 by 〈|I, P1|〉 ≈ 〈|I, P2|〉, then

P2
a~b
⇒ P ′

2 and Q2(>d)
∗〈|I, P ′

2|〉 by lemmas 22 and 15.

Thus from 〈|I, P ′
1|〉 ≈ Q1 ≈ Q2 ≈ 〈|I, P ′

2|〉, it follows P ′
1 S P ′

2. In the other case, if

〈|I, P2|〉
τ
⇒ Q2 and Q1 ≈ (Q2 | a(j,~b, r, c, c′)) by 〈|I, P1|〉 ≈ 〈|I, P2|〉, then

P2
τ
⇒ P ′

2 and Q2(>d)
∗〈|I, P ′

2|〉 by lemmas 22 and 15.

By lemma 21, 〈|I, P ′
2 | a~b|〉 ≈ (〈|I, P ′

2|〉 | a(j,~b, r, c, c′)). Thus from

〈|I, P ′

1|〉 ≈ Q1 ≈ (Q2 | a(j,~b, r, c, c′)) ≈ (〈|I, P ′

2|〉 | a(j,~b, r, c, c′)) ≈ 〈|I, P ′

2 | a(~b)|〉

it follows P ′
1 S (P ′

2 | a(~b)). �

C Proof of proposition 24

(1) In this proof we use, in addition to mi = jk,~bk, rk, ck, c′k as in the definition of CM i (except that now we
do not require that this vector does not contain ina), the following notations:

M ∼= Πi∈Ia(ji,~bi, ri, ci, c
′
i) R ∼= Πj∈Jrj(~bj)

N ∼= (M | R) mc0,c1 = a(, , , c0, c1)

Let R be the relation consisting of the following pairs:

((CM (a, ina) | N) , (CM 1(a, ina) | N)
)

(1)
((CM (a, ina) | a(m1) | N) , (CM 2(a, m1) | N)) (2)

((CM (a, ina) | a(m1) | a(m2) | N) , ((νc, c′) (CM 3(a, m1, m2) | mc,c | mc,c′) | N)) (∗) (3)
((CM (a, ina) | a(m1) | a(m2) | N) , ((νc, c′) (CM 4(a, m1, m2) | mc,c′) | N)) (∗) (4)

((CM (a, ina) | r2
~b1 | N) , ((νc, c′) (CM 5(a, m1, m2) | mc,c) | N)) (5)

(∗) where j1 6= ina and j2 = ina. Then one checks that R is a weak bisimulation. Let (P, Q) ∈ R and P
α
→ P ′.

For each of the cases (1-5), we argue that we can find a matching transition Q
α′

⇒ Q′ and still fall in one of

17

the cases (1-5). In the following, we will describe schematically the matching transition by Q, omitting in
particular the parameters of the CM i’s. For instance,

CM 4
τ
→ CM 1

a
→ CM 2

τ
→ CM 3

means that Q performs an input action on a, with appropriate arguments, preceeded and followed by internal
synchronizations, and that following these transitions, the channel manager will move from state 4 to state 3
going through states 1 and 2. Whenever the sequence terminates in the state i, the reader should be able to
verify that we fall in the ith schema in the definition of the relation R.

• If α is an output transition then it is caused by a message in R (its subject cannot be a, since a is in the
interface of P). In all cases (1-5), the same message entails a matching transition by Q.

• Let us assume P ’s transition is obtained by means of rule CM τ . We examine the five possible cases.

(1) To fire the transition, M must contain a(j1,~b1, r1, c1, c
′
1) and a(ina,~b2, r2, c2, c

′
2) with j1 6= ina. Then Q

matches P ’s transition with
CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(2) M must contain at least a(j2,~b2, r2, c2, c
′
2). Q matches with

CM 2
τ
→ CM 3

τ
→ CM 4

τ
→ CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(3) Q matches with
CM 3

τ
→ CM 4

τ
→ CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(4) Q matches with
CM 4

τ
→ CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(5) Q matches with
CM 5

τ
→ CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

• Next let us assume P ’s transition is obtained by means of rule CM in .

(1) M must contain an input request a(ina,~b2, r2, c2, c
′
2) and j1 6= ina. Q matches with

CM 1
a
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(2) We distinguish two cases.

(2.1) The transition consumes a message a(ina, j,~b, r, c, c′) ∈ M . Q matches with

CM 2
τ
→ CM 3

τ
→ CM 4

τ
→ CM 1

a
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(2.2) The transition consumes the message a(m1) with j1 = ina. Q matches with

CM 2
a
→ CM 1

τ
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(3) Q matches with
CM 3

τ
→ CM 4

τ
→ CM 1

a
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(4) Q matches with
CM 4

τ
→ CM 1

a
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

(5) Q matches with

CM 5
τ
→ CM 1

a
→ CM 2

τ
→ CM 3

τ
→ CM 5

τ
→ CM 1

• In the other direction, suppose (P, Q) ∈ R and Q
α
→ Q′. We proceed by a case analysis, as above.

(1) If CM 1 goes to CM 2 by an input or a synchronization then CM does nothing, i.e., P
τ
⇒ P with 0 transitions,

and we fall in case (2).

(2) If CM 2 goes to CM 3 by an input or a synchronization then CM does nothing and we fall in case (3). On
the other hand, if CM 2 goes to CM 1 by an input or a synchronization then CM does nothing and we fall in
case (1).

(3) If CM 3 loops on itself by an input or a synchronization then CM does nothing and we stay in case (3).
On the other hand, if CM 3 goes to CM 4 by a synchronization then CM does nothing and we fall in case (4).

18

Finally, if CM 3 goes to CM 5 by a synchronization then CM performs the corresponding synchronization and
we fall in case (5).

(4) If CM 4 loops on itself by an input or a synchronization then CM does nothing and we stay in case (4).
On the other hand, if CM 4 goes to CM 1 by a synchronization then CM does nothing and we fall in case (1).

(5) If CM 5 loops on itself by an input or a synchronization then CM does nothing and we stay in case (5).
On the other hand, if CM 5 goes to CM 1 by a synchronization then CM does nothing and we fall in case (1).

(2) In the encoding, a channel manager CM (a, ina) can be in two positions:

(a) Under an input prefix, in a process of the shape:

(νa) (νina) (CM (a, ina) | [[P]])

We note that as long as CM (a, ina) (or CM 1(a, ina)) is under the input prefix it does not play a role in the
transitions and it is not affected by them because of the restrictions acting on its parameters.

(b) In a well-formed process that, up to structural equivalence, has the shape:

(νina) (CM (a, ina) | P) or (νina) (νa) (CM (a, ina) | P)

where P may contain the key ina only in messages a(ina,~b, r, c, c′). Now in this case, one can show, by a case
analysis similar to that in part (i), that the behaviour of CM (a, ina) placed in an evaluation context can be
bisimulated by a suitable state CM i(a, ina), i = 1, . . . , 5 placed in the same evaluation context. �

19

