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Unité Mixte de Recherche 6166
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Abstract/Résumé

In this paper we consider the problem of determining a maximum matching in a set of intervals

(two intervals can be matched if they are disjoint). We propose an incremental algorithm to

compute such a maximum disjoint matching. We show that this algorithm runs in O(n) time

if the list of sorted endpoints of the set of intervals is given in input. This result is applied

to solve efficiently particular cases of two scheduling problems: working schedules planning

and mutual exclusion scheduling for interval graphs. Keywords: matchings, interval graphs,

linear-time algorithms, scheduling.

Dans ce papier, nous considérons le problème de la détermination du couplage maximum

dans un ensemble d’intervalles (deux intervalles pouvent être couplés s’ils sont disjoints).

Nous proposons un algorithme incrémental pour calculer un tel couplage. Nous montrons

que cet algoritme s’exécute en O(n) si la liste des extrémités triées de l’ensemble des in-

tervalles est donnée en entrée. Ce résultat est appliqué à la résolution de cas particuliers

de deux problèmes d’ordonnancement: la planification d’horaires de travail et un problème

d’ordonnancement avec exclusion mutuelle pour les graphes d’intervalles. Mots-clés: cou-

plages, graphes d’intervalles, algorithmes linéaires, ordonnancement.

Relecteurs/Reviewers: Michel Van Canegehem, Victor Chepoi.



1 Introduction

The problem of determining a maximum matching of a graph is a basic prob-
lem in algorithmic graph theory. It occurs in numerous problems of operations
research and holds an important place in many practical applications. Let G
be an undirected graph with n vertices and m edges. A matching M in G is a
subset of pairwise nonincident edges [9]. Let ν(G) denote the size of a maximum
cardinality matching in G. The first polynomial algorithm to determine a max-
imum matching in a graph was given by Edmonds [5]. The fastest algorithm is
due to Micali and Vazirani [12]. Its complexity is O(

√
nm), but it is complex

and not considered practical.
On the other side, intervals are used to modelize many problems appearing in
diverse areas like scheduling, genetics, psychology, sociology, archæology and
others (see [9] and [13] for more details). Such models appear notably in graph-
theoretical terms through interval graphs or interval orders. G = (V, E) is an
interval graph iff to each vertex v ∈ V can be associated a closed (resp. open)
interval Iv of the real line, such that a pair of distinct vertices u and v are
adjacent in G if and only if Iu ∩ Iv 6= ∅. An interval representation of G will
be noted {Iv}v∈V , with lv, rv ∈ R the left and right endpoints of Iv . The edges

of the complement G = (V, F ) (called co-interval graph) can be transitively

oriented with (u, v) ∈ ~F iff ru < lv. This orientation ~F of the edges induces

a partial order P = (V, ~F ) called interval order. We will write Iu ≺ Iv iff ru < lv.

In this paper, we consider the problem of determining a maximum matching
in a set of intervals such that two intervals can be matched if they are disjoint.
Here is the definition of a maximum disjoint matching in a set of intervals.

Definition 1 Let I = {I1, . . . , In} be a set of intervals with Ii = [li, ri], li, ri ∈
R and li < ri. A disjoint matching in I is a set M of pairs of intervals of I
such that:

• for all u, v ∈ {1, . . . , n}, {Iu, Iv} ∈ M =⇒ Iu ∩ Iv = ∅,

• for all u, v ∈ {1, . . . , n}, {Iu, Iv} ∈ M =⇒ for all w ∈ {1, . . . , n},
{Iu, Iw} /∈ M or {Iv, Iw} /∈ M.

M is a maximum disjoint matching if its cardinality is maximum.
ν(I) denotes the size of a maximum disjoint matching in I.

In graph-theoretic terms, this is the problem of finding a maximum matching
in a co-interval graph.

In a recent paper [1], M.G. Andrews et al. gave an O(n log n)-time complex
recursive algorithm to compute a maximum matching in a co-interval graph
given by the list of the endpoints of the intervals. They claimed that this
one can run in linear time if the endpoints of the intervals are sorted. At our
acquaintance, only one O(n log n)-time algorithm based on plane sweeping was
given previously by M.G. Andrews and D.T. Lee for this problem [2]. Here
we propose a much simpler incremental algorithm which can be implemented in
O(n) time if we have in input the list of sorted endpoints of the n intervals. This
result will be applied to solve efficiently three problems: maximum matching in
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co-interval graphs, working schedules planning and mutual exclusion scheduling
for interval graphs with special instances.

2 Preliminaries

Here are some definitions which we will use to describe clearly our matching
algorithm. These ones are derived from the graph theory terminology [9].

Definition 2 Let I = {I1, . . . , In} be a set of intervals with Ii = [li, ri].
A clique of I is a set C ⊆ I such that Iu ∩ Iv 6= ∅ for all Iu, Iv ∈ C. The
cardinality of the largest clique of I is denoted by ω(I). A stable of I is a set
S ⊆ I such that Iu ∩ Iv = ∅ for all Iu, Iv ∈ S. A q-coloring or a partition of
size q of I into stables is a partition S = {S1, . . . , Sq} of I such that each Si

is a stable. The chromatic number χ(I) of I is the size of a partition of I into
the least number of stables.

Intervals own numerous properties which can be found in [9]. Here is propo-
sition which our algorithm is based on.

Proposition 1 (Berge, 1960 [9]) For a set of intervals I, ω(I) = χ(I).

Moreover, computing a maximum clique or a minimum coloring of I can be
done in linear time [9, 10].

Next, we must define some orders on intervals that we use extensively in the
next sections.

Definition 3 Let I = {I1, . . . , In} be a set of intervals with Ii = [li, ri].
We denote by < the order on I such that Iu < Iv iff lu < lv or (lu = lv and
ru ≤ rv) and by > the order on I such that Iu > Iv iff ru > rv or (ru = rv and
lu ≥ lv).

At last, another crucial notion which will appear in analysis of our algorithm
is the convexity of bipartite graphs.

Definition 4 A bipartite graph G = (X, Y, E) is Y -convex iff there is an or-
dering C on Y such that if (i, x) ∈ E and (i, z) ∈ E with i ∈ X and x, z ∈ Y ,
x C z implies that (i, y) ∈ E for x C y C z.

We can note that a convex bipartite graph G can be given by specifying the
ordering C and for every i ∈ X , two values ai and bi, respectively the smallest
and largest elements in the interval of the (ordered) vertices of Y connected to
i. A maximum matching in a convex bipartite graph can be computed in linear
time [8, 7, 14].

3 The matching algorithm

Before describing the algorithm in details, we outline the main ideas behind the
algorithm and its correctness. The matching algorithm is notably based on the
following result.
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Theorem 1 Let I = {I1, . . . , In} be a set of intervals with Ii = [li, ri]. Let
S = {S1, . . . , Sχ(I)} be a partition of I into the minimum number of stables
such that the number s(I) of stables consisting of only one interval is as small

as possible. Then the size of the maximum matching in I is ν(I) = bn−s(I)
2 c.

Proof. The proof of this assertion is essentially algorithmic. It is based on
two lemmas.

Lemma 1 If |Si| ≥ 2 for all i = 1, . . . , χ(G) then I admits a perfect disjoint
matching (i.e. a disjoint matching of size ν(I) = bn

2 c).

Proof of Lemma 1. First, we are going to show that from two stables
Si and Sj of odd size 2t + 1 ≥ 3, it is possible to extract one pair of intervals
{Iu, Iv} such that Iu ∈ Si and Iv ∈ Sj and to redefine two new stables of even
size. Let Ia, Ib ∈ Si and Ic, Id ∈ Sj be such that (i) Ia ≺ Ib and (ii) Ic ≺ Id. If
Ia ∩ Id = ∅ then {Ia, Id} induces the wished pair of intervals. Otherwise, if (iii)
Ia ∩ Id 6= ∅, then Ib ∩ Ic = ∅ and {Ib, Ic} is the desired pair of intervals (see Fig.
1). Indeed, (iii) implies that ld ≤ ra. Now, by (i) and (ii), we have ra < lb and
rc < ld, and so rc < lb, thus establishing our assertion.

Ia Ib

IdIc

Ia ∩ Id 6= ∅

Fig. 1. The case where Ia ∩ Id 6= ∅ in the proof of Lemma 1.

At last, from stables of even size 2t ≥ 2, we can trivially extract t pairs of
intervals, which allows us to conclude the proof of the lemma.

(Proof of Lemma 1) ♦

Lemma 2 If Si = {Iu}, i.e. |Si| = 1, then Iu belongs to any maximum clique
of I.

Proof of Lemma 2. Since ω(I) = χ(I) (Proposition 1), each stable Si has
an interval in each maximum clique of I. Thus, if Si = {Iu}, then Iu belongs
necessarily to all maximum clique of I.

(Proof of Lemma 2) ♦

By these two lemmas, we affirm that the problem of determining a maximum
matching in I is equivalent to the problem of finding a partition of I into the
minimum number of stables such that the number s(I) of stables having only
one interval is minimized. Indeed, if we have a minimum number s(I) of stables
of size one in S, then Lemma 2 imposes that s(I) intervals of I cannot belong to
a maximum matching in I and Lemma 1 allows us to compute a perfect disjoint
matching in the set of remaining n − s(I) intervals.

♦
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We showed, by Theorem 1, that our problem could be reduced to a problem
of minimization of the number of stables of size one in a partition S of I into the
minimum number of stables. According to Lemma 2, we can solve this problem
by computing a maximum matching between the intervals of a maximum clique
C of I and the intervals of the set I\C. Indeed, having this maximum matching,
denoted by Mb, we will use the next procedure to complete a maximum number
of stables of size one by one interval. Finally, after minimizing the number of
stables having one interval, we will produce a maximum dijoint matching in I
by using the algorithmic method described in the proof of Lemma 1.

Procedure Complete Stables;

Input: S = {S1, . . . , Sχ(I)} a minimum partition of I into stables;
Mb a maximum matching between the intervals of a maximum clique C of I
and the intervals of the set I \ C;
Output: S with a minimum number of stables of size 1;

begin;

while there is Si = {Iu}, i.e. |Si| = 1, andMb 6= ∅ do

if ∃Iv ∈ Sj such that {Iu, Iv} ∈ Mb do

Sj ← Sj \ {Iv};

Si ← Si ∪ {Iv};

Mb ←Mb \ {Iu, Iv};

end;

Lemma 3 The procedure Complete Stables minimizes the number of stables of
size one in S.

Proof. Suppose that there are Iu ∈ Si, |Si| = 1, and Iv ∈ Sj , |Sj | ≥ 3, such
that Iu ∩ Iv = ∅, this would imply that the matching Mb is not maximum, in
contradiction with the hypothesis done in input of the procedure.

♦

Now we can give a complete description of our matching algorithm.

Algorithm Matching Disjoint Intervals;

Input: I = {I1, . . . , In} with Ii = [li, ri];
Output: M a maximum disjoint matching in I;

begin;

Stage 1:

compute S = {S1, . . . , Sχ(I)} a minimum partition of I into stables;

if for all i = 1, . . . , χ(G), |Si| ≤ 2 do goto Stage 3;

if for all i = 1, . . . , χ(G), |Si| ≥ 2 do goto Stage 3;

Stage 2:

compute a maximum clique C of I;

let Gb = (X, Y, E) be the bipartite graph such that

X = C, Y = I \ C, E = {e = IiIj , Ii ∈ C, Ij ∈ I \ C | Ii ∩ Ij = ∅};

compute a maximum matching Mb in Gb;

Complete Stable(S,Mb);

Stage 3:
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for each Si ∈ S do

if |Si| = 1 do S ← S \ {Si};

compute a perfect matching M in S;

returnM;

end;

4 Complexity of the matching algorithm

We will analyse (according to the RAM model [4]) the time and space complex-
ities of the matching algorithm. We do this analysis stage by stage considering
that we have in input the list of endpoints of the n intervals and the orders <
and > on I (Definition 3), i.e. a list of intervals sorted according the left (resp.
the right) endpoints.

Stage 1 can be done in O(n) time. Indeed, a minimum coloring of a set of
intervals can be done in O(n) time if the orders < and > are given [10]. The
complexity of Stage 2 relies on the next lemma.

Lemma 4 ([1]) The bipartite graph Gb = (X, Y, E) is Y -convex.

Proof. Let C = {c1, . . . , cχ(I)} be a maximum clique of I. Let I \C = I+]
I− such that I+ = {I ∈ I \ C | ∃c ∈ C, c ≺ I} and I− = {I ∈ I \ C | ∃c ∈ C,
I ≺ c}. By ordering I+ according the increasing li and I− according the
increasing ri, we obtain an order on I such that ∀c ∈ C with c = [lc, rc], if ac is
the smallest index such that c∩Iac

= ∅ with Iac
∈ I+ and bc is the largest index

such that c ∩ Ibc
= ∅ with Ibc

∈ I−, then for all j ∈ {ac, . . . , bc}, c ∩ Ij = ∅, i.e.
cIj ∈ E (see Fig. 2) and so Gb is Y -convex.

c ∈ C

Iac
Ibc

lc

rc

li

ri

I+

I−

Fig. 2. An illustration of the proof of Lemma 4.

♦
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As we said in preliminaries, we do not need an explicit construction of Gb.
We need only to compute the ordering on Y and for each i ∈ X , the two values ai

and bi. This can be done as follows. First, compute a maximum clique X = C
in two different ways: the one, called C+, is the maximum clique C ordered
according to the order <, and the other, called C−, is C ordered according to
the order >. This can be done in O(n) time [10]. Additionally, we compute
Y = I \ C = I+ + I− ordered as described in Lemma 4. This can be done
in O(n) time thanks to the orders < and >. Thus, we can determine ai for
all i ∈ X by using the ordered representation C− of X . Indeed, by a linear
scanning of I+, we compute each ai for all i ∈ C− (see Fig. 3). In the same
way, we can determine bi for all i ∈ X by using C+ and using I−. Now, a
maximum matching in Gb can be computed in O(n) time using the algorithm
of G. Steiner and J.S. Yeomans [14].
The procedure Complete Stables can be easily implemented in linear time (for
example by using a data structure which for each I ∈ I indicates the stable in
S which I belongs to).

Iac

c ∈ C

X = C−

rc

li

ri

I+

Fig. 3. The determination of ai for all i ∈ X.

Finally, the Stage 3 can be done in linear time too. Indeed, the proof of
Lemma 1 yields a linear-time algorithm to compute a perfect matching M in I.
The overall space used in different stages of the matching algorithm always re-
mains in O(n), therefore we can state the following result.

Theorem 2 The algorithm Matching Disjoint Intervals finds a maximum di-
joint matching in a set of intervals I = {I1, . . . , In} in O(n) time and space if
we have in input the list of endpoints of the n intervals and the orders < and >
on I.

5 Applications and perspectives

Our interest in developing an efficient algorithm for maximum disjoint matching
among intervals comes actually from the study of two scheduling problems.
First, we have the practical problem of working schedules planning (WSP).
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WSP problem:

Let T1, . . . , Tn be n tasks such that Ti = (li, ri) with li, ri ∈ N, the starting

and ending dates of Ti. Let m ∈ N be the number of employees available and

qualified to execute these tasks. Given that the tasks allocated to an employee

musnt not overlap and the reglementation imposes no more than k ∈ N tasks

by employees, are there enough employees to execute all the tasks ?

Then, the following problem arises in scheduling theory: n unit-time jobs
must be complete on k processors with the constraint that some jobs cannot be
executed at the same time because they share a same ressource. By creating
an undirected graph G = (V, E) with a vertex for each of the n jobs and an
edge between each pair of conflicting jobs, we can see that a minimum length
of schedule corresponds to a partition of V into a minimum number of indepen-
dent sets of size at most k. In this way, B.S. Baker and E.G. Coffman defined
the mutual exclusion scheduling (MES) problem as follows: given an undirected
graph G and k ∈ N, find a minimum coloring of G, such that each colour is used
at most k times. Clearly, the WSP problem is equivalent to the MES prob-
lem for interval graphs. This last one, and so the WSP problem, were proved
NP-complete even if k is a constant such that k ≥ 4 [3] (the complexity for
a constant k = 3 remains an open question at our knowledge). On the other
hand, they can be solved for k = 2 by matching technics. Indeed for k = 2,
these two problems correspond to the problem of finding a maximum disjoint
matching in a set of intervals, i.e. the problem of finding a maximum matching
(MM) in a co-interval graph.
The difference between WSP, MES and MM relies on the structures used to
represent the datas in entry of the problems. Indeed, the input for the WSP
problem is the list of endpoints of the n intervals: we can consider that in this
case the size of the datas is in O(n). The MES problem has in input a rep-
resentation of the interval graph G = (V, E) by adjacency lists, which size is
in O(|V | + |E|). In the same way, for the MM problem in a co-interval graph
G = (V, E), we have some adjacency lists of size O(|V | + |E|) in input.

From Theorem 2, we can state the next corollary.

Corollary 1 The algorithm Matching Disjoint Intervals solves:

(1) the WSP problem with k = 2 in O(n log n) time where n is the number of
tasks,

(2) the MES problem for interval graphs with k = 2 in linear time,

(3) the problem of maximum matching in co-interval graphs in linear time.

Proof. In the case of the WSP problem, the orders < and > on I can be
computed in O(n log n) time by some simple sortings. Then, from an interval
graph G with n vertices and m edges (resp. a co-interval graph G with n vertices
and m edges), we can compute an interval representation I of G (resp. G), i.e.
a list of endpoints of the n intervals, with the orders < and > on I in O(n+m)
(resp. O(n+m)) time [11]. Consequently, from Theorem 2 we deduce the three
assertions of the corollary.
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♦

Remark. The linear-time algorithm for maximum matchings in convex bi-
partite graphs of G. Steiner and J.S. Yeomans is complex and not the most
practicle. It is possible to keep a time complexity in O(n log n) in the case (1)
by using the much simpler O(n log n)-time algorithm of G. Gallo [7] to compute
a maximum matching in Gb. In the same way, we can prefer the F. Glover’s
algorithm [8], running in O(m), to compute the Stage 2 in the case (3).

To conclude, we can note that the Theorem 1 is still valid for a class of graphs
which englobes the class of co-interval graphs: the co-triangulated graphs, i.e.
the graphs whose the complementaries are some triangulated graphs. The tri-
angulated graphs are the graphs which have no cycle of length four without
chord as an induced subgraph [9]. They also have many good properties as to
be colored in linear time. Consequently, a maximum matching in these graphs
can already be computed in O(

√
nm) thanks to our matching algorithm and by

using the practical algorithm for maximum matchings in bipartite graphs of [6]
to compute Stage 2. However, it seems to be interesting to study the proper-
ties of the arbitrary bipartite graph Gb in this case, in order to design a most
efficient algorithm for finding a maximum matching in co-triangulated graphs.
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