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Abstract/Résumé

In this note, we present linear time algorithms for computing the median set of plane triangulations with inner

vertices of degree ≥ 6 and plane quadrangulations with inner vertices of degree ≥ 4.

Dans cette note, nous présentons un algorithme linéaire pour calculer l’ensemble médian de triangulations

planaires dont les sommets intérieurs sont de degré ≥ 6 et de quadrangulations planaires dont les sommets intérieurs

sont de degré ≥ 4.
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1. Introduction

Given a finite, connected graph G = (V,E) endowed with a non-negative weight function
π(v)(v ∈ V ) the median set Med(π) consists of all vertices x minimizing the total weighted distance

Fπ(x) =
∑

v∈V

π(v)d(v, x).

Finding the median set of a graph, or, more generally, of a network or a finite metric space is a
classical optimization and algorithmic problem with many practical applications. The weighted
version of the median problem is one of the basic models in facility location (where it is some-
times called the Fermat-Weber problem); see for example [24]. It arises with majority consensus in
classification and data analysis [5, 9, 23], where the median points are usually called Kemeny medi-
ans. Algorithms for locating medians in graphs are especially useful in the areas of transportation
and communication in distributed networks: placing a common resource at a median minimizes
the cost of sharing the resource with other locations or the total time of broadcasting messages.
Recently, motivated by a heuristic for reconstructing discrete sets from projections presented in
[8], the medians sets of polyominoes and some other special subsets of the square grid have been
investigated in [19, 22] (in [17], similar questions have been considered in the more general setting
of linear metrics). Finally, [12] provides efficient algorithms for the approximate computation of
the values of the function Fπ(x) for points in R

n endowed with the Euclidean distance.
There are known several algorithms [24] for finding medians of graphs, but only for trees the

classical majority rule can be implemented in linear time [20, 21, 27]: given a tree T and an edge
e = xy, the median set is contained in the heaviest of two subtrees Tx, Ty defined by this edge (if the
subtrees have the same weight, then both x and y are medians). This is so because Fπ(x)−Fπ(y)
equals the difference between the weights of Ty and Tx and the fact that every local minimum
of the function Fπ is a global minimum; for more details, see [24]. Later, using techniques from
computational geometry this approach has been extended to design an efficient algorithm for the
median problem on simple rectilinear polygons with an intrinsic l1-metric. More recently, similar
ideas were used in [2, 14] to develop simple (but very nice) self-stabilizing algorithms for finding
medians of trees; see also [1, 4] for efficient algorithms for maintaining medians in dynamic trees.
Last but not least, [7] characterizes the graphs in which all local medians are global medians for
each weight function π (by a local median one means a vertex x such that Fπ(x) does not exceed
Fπ(y) for any neighbor y of x). In particular, it is shown in [7] that these graphs can be recognized
in polynomial time and that they are exactly the graphs in which all median sets induce connected
or isometric subgraphs.

In this note, we describe linear time algorithms for computing the median sets in two classes of
face regular plane graphs. Namely, we consider plane triangulations with inner vertices of degree
at least six (called trigraphs) and plane quadrangulations with inner vertices of degree at least four
(called squaregraphs); see Fig.1 for examples. Particular cases of these graphs are, the subgraphs of
the regular triangular and square grids which are induced by the vertices lying on a simple circuit
and inside the region bounded by this circuit (the latter comprises the graphs from [19, 22]).
Notice that these classes of plane graphs are particular instances of bridged and median graphs,
two classes of graphs playing an important role in metric graph theory. The trigraphs has been
introduced and investigated in [6] where they are the basic building stones in the construction of
weakly median graphs. The present paper continues the line of research of [16] where linear time
algorithms for computing the diameter and the center of these graphs have been proposed (the
terms ”trigraph” and ”squaregraph” are owed from that paper). It should be noted in passing
that, due to the different nature of the objective functions (minsum and minmax), the method
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used here is completely different from that of [16]. Nevertheless, both papers have the same flavor
of developing a kind of computational geometry in plane graphs based on natural convexity and
metric properties of graphs in question.

Fig. 1

By replacing every inner face of a plane triangulation by an equilateral triangle of side 1, one
obtain a two-dimensional (pseudo-)manifold embedded in some high dimensional space. Analo-
gously, one can define such a manifold if one replace every inner face of a plane quadrangulation
by a unit square. (For squaregraphs and trigraphs such manifolds can be effectively constructed
via an isometric embedding of these graphs into hypercubes and half-cubes as is done in [6].)
The resulting manifolds can be endowed in a natural way with an intrinsic Euclidean metric as
is explained in [13]. Now, the trigraphs and the squaregraphs are precisely the plane triangula-
tions and quadrangulations for which these surfaces have intrinsic metric of non-positive curvature
[10, 13], therefore they may arise, among others, in the following type of applications. Recently,
[25, 11] proposed a new technique (called Isomap) of data analysis (as an alternative to princi-
pal component analysis or multidimensional scaling) which, on the base of easily measured local
metric information, aims to build the underlying global geometry of data sets in the form of a
low-dimensional structure embedded in high-dimensional data space. Isomap deals with data sets
of R

n which are assumed to lie on a smooth manifold M of low dimension. The crucial stage of
the method consists in approximating the unknown geodesic distance in M between data points in
terms of the graph distance with respect to some graph G constructed on the data points. Hence,
when M is 2-dimensional and has non-positive curvature it is likely that the resulting graph G will
be a trigraph or a squaregraph. On the other hand, the medians computed with respect to the
distance function of G can be viewed as a natural extension of the usual notion of median used in
data analysis and statistics. Finally, notice that the terrains can be viewed as particular instances
of such pseudo-manifolds, and that efficient algorithms for the center problem on terrains have
been proposed in [3].

Our method of computing Med(π) for trigraphs is based on the following. From the results of
[7] follows that in trigraphs the function Fπ is unimodal for all the choices of weights. As in case of
trees, solely this important fact does not yield a linear time algorithm because computing Fπ(x) for
a single vertex x already needs linear time. Instead, for trigraphs we show how to compute in total
linear time the differences ∆(x, y) := Fπ(x)− Fπ(y) for all edges xy of G. Using this information,
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we define the directed graph
−→
Gπ in which the edge xy of G is replaced by the arc −→yx if ∆(x, y) < 0

and by the arc −→xy if ∆(x, y) > 0; no arc between x and y is defined if ∆(x, y) = 0. Due to the
unimodality of the function Fπ, the median set Med(π) consists of all vertices having no outgoing

arcs in
−→
Gπ. Clearly, these vertices can be found in linear time by traversing

−→
Gπ. Notice also that

with these differences at hand we can easily compute in total linear time all values of the function
Fπ in the following way: compute Fπ(c) for some vertex c and construct a Breadth-First-Search
tree rooted at c. For each vertex v let v ′ be its father in this tree. Now, if Fπ(v′) has been already
computed, then set Fπ(v) := Fπ(v′) + ∆(v, v′), and continue the traversal of the tree.

For squaregraphs, the majority rule together with a simple but nice trick yield a divide-and-
conquer linear time algorithm for computing a part of the median set Med(π).

The paper is organized as follows. In the next section, we recall some necessary notions
and formulate some auxiliary results. As a warm-up, in Section 3 we present the algorithm for
computing medians of squaregraphs. In Section 4 we describe the main contribution of this note
– a linear time algorithm for the median problem in trigraphs.

2. Preliminaries

All graphs G = (V,E) occurring in this note are connected, finite, and undirected. Since computing
the median set of a graph can be reduced in linear time to computing the median sets inside its 2-
connected components [21], we may assume without loss of generality that G itself is 2-connected.
In a graph G, the length of a path from a vertex v to a vertex u is the number of edges in the path.
The distance d(u, v) from u to v is the length of a minimum length (u, v)-path and the interval
I(u, v) between these vertices is the set I(u, v) = {w ∈ V : d(u, v) = d(u,w) + d(w, v)}. A subset
S ⊆ V is called convex if I(u, v) ⊆ S whenever u, v ∈ S, and gated [21] if for each v /∈ S there exists
a (necessarily unique) vertex v′ ∈ S (the gate of v in S) such that v′ ∈ I(v, u) for every u ∈ S. For
a weight function π and a subset S of vertices, let π(S) =

∑
s∈S π(s) denote the weight of S. In

particular, π(V ) denotes the total weight of vertices of G. Obviously, we can suppose that π(V ) is
known in advance (otherwise, it can be easily computed in linear time).

For an edge uv of a graph G, let

W (u, v) = {x ∈ V : d(u, x) < d(v, x)},

W (v, u) = {x ∈ V : d(v, x) < d(u, x)}.

The following well-known lemma is trivial but crucial:

Lemma 1. For every weight function π and every edge uv of G we have

Fπ(u)− Fπ(v) = π(W (v, u)) − π(W (u, v)).

Indeed, a vertex x of W (v, u) contributes with +π(x) to Fπ(u)− Fπ(v), a vertex x of W (u, v)
contributes with −π(x) to this difference, while every vertex equidistant to u and v does not
contribute at all. Summing up over all vertices of G, we obtain the right-hand side.

In view of Lemma 1, in order to construct the oriented graph
−→
Gπ efficiently, we must be

able to compute π(W (u, v)) and π(W (v, u)) for all edges uv of G. If G is a bipartite graph, then
W (u, v)∪W (v, u) = V, therefore it is enough to find the weight of only one of these complementary
sets. Moreover, if G is a squaregraph, then W (u, v) and W (v, u) are gated sets, because the
squaregraphs are median graphs; cf. [26]. From the results of [21] follows that in this case
Med(π) ⊆ W (u, v) if and only if π(W (u, v)) > π(W (v, u)). In case of trigraphs, the sets W (u, v)
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and W (v, u) are convex, but they no longer cover the whole vertex-set of G. Nevertheless, these sets
extend to two couples of complementary convex sets which we will call half-planes. More precisely,
in [6] it is shown that any two adjacent vertices u and v of a trigraph G are separated by exactly two
distinct pairs of complementary half-planes H ′

u,H ′

v and H ′′

u ,H ′′

v such that u ∈W (u, v) = H ′

u ∩H ′′

u

and v ∈W (v, u) = H ′

v ∩H ′′

v . In Section 4 we will show that the half-planes of G separating u and
v have a geometric nature which allow to proceed them efficiently.

To conclude this section, notice that in subsequent algorithms every trigraph or squaregraph
G is represented by a doubly-connected edge list; for precise definition and details see [18]. We
recall here only a few things about this data structure. Since every edge of G bounds two faces, it
is convenient to view the different sides of an edge as two distinct half-edges. The two half-edges
−→xy and −→yx we get for an edge xy are called twins (so that twin(−→xy) = −→yx and twin(−→yx) = −→xy).
The half-edges bounding the outer face ∂G are oriented so that ∂G is traversed in clockwise order.
On the other hand, the half-edges of every inner face are oriented so that the face is traversed
in counterclockwise order. The half-edge record of a half-edge −→e stores a pointer to its origin, a
pointer to its twin, a pointer to the incident face, and two pointers next(−→e ) and prev(−→e ) to the
next and the previous edges on the boundary of incident face.

3. Computing median sets in squaregraphs

Let G be a squaregraph and let uv be an edge on the outer face of G. As we noticed above,
the half-planes W (u, v) and W (v, u) separating u and v are gated sets. Moreover, the subgraph P
induced by all vertices of W (u, v) having a neighbor in the set W (v, u) is a gated path (analogously
one can define the gated path Q ⊆W (v, u)). Notice that there is a natural isomorphism between
the paths P and Q. For every vertex x ∈ P, let Fx consists of all vertices of W (v, u) whose gate
in W (u, v) is the vertex x and call this set the fiber of x. Analogously define the fiber Fy of every
vertex y ∈ Q. The subgraph induced by P ∪Q is a strip consisting of one or several inner faces of
G. This strip and the paths P and Q can be easily constructed in O(|P |+ |Q|) time starting from
the edge uv and the unique inner face containing this edge.

Now, the median set Med(π) is contained in W (u, v) if π(W (u, v)) > 1
2π(V ) and is contained in

W (v, u) if π(W (v, u)) > 1
2(π(V )) [21]. Finally, if π(W (u, v)) = π(W (v, u)), then Med(π) intersects

both sets W (u, v) and W (v, u). Since Med(π) is convex and therefore gated, it will have common
vertices with both P and Q. Therefore we can continue the search in the subgraph induced by
W (u, v) in the first case, in the subgraph induced by W (v, u) in the second case, and in the strip
P ∪ Q in the third case. The respective subgraph G′ is endowed with a new weight function π ′

defined in the following way. In the first case, define π ′ on W (u, v) by setting π′(x) := π(x) for
every x ∈W (u, v)− P and π′(x) := π(Fx) for every x ∈ P. Analogously, in the second case define
π′ on W (v, u) by setting π′(y) := π(y) for every y ∈ W (v, u) − Q and π ′(y) := π(Fy) for every
y ∈ Q. Finally, in the third case define π ′ on P ∪Q by setting π′(x) := π(Fy) and π′(y) = π(Fx),
where x ∈ P and y ∈ Q are adjacent to each other. Then one can see that Med(π ′)=Med(π) in
first and second cases and that Med(π ′) ⊆ Med(π) in third case. In the latter case Med(π ′) can
be easily computed applying the majority rule to the resulting strip.

In order to implement this algorithm in linear time, at each step we have to decide in which
of three cases we are by traversing a part of the current graph G proportional in size to the part
which will be removed from further consideration. For example, if Med(π) is contained in W (u, v),
then we have to decide this in time O(|W (v, u)|). This is possible using the following trick: perform
in parallel the Breadth-First-Search on the sets W (u, v) and W (v, u) starting from the paths P
and Q, respectively, and stop when one of the sets will be completely traversed. (This can be
easily done by alternatively searching each of the half-planes according to BFS). During these
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BFS traversals, we add the weight of the current vertex v to the weight of the half-plane and the
fiber Fx containing it. For this notice that v will be in the same half-plane and the same fiber
as its father in the respective BFS tree. Suppose without loss of generality that the search of
W (v, u) was completed first. If π(W (v, u)) < 1

2π(V ), then Med(π) is contained in W (u, v) and we
spent O(|W (v, u)|) time to decide this and to construct the weight function π ′. Since finding the
median set in W (u, v) will take O(|W (u, v)|) time, we conclude that the overall time is O(|V |).
On the other hand, if π(W (v, u)) ≥ 1

2π(V ), then Med(π) is contained in W (v, u). In this case, we
continue the traversal of W (u, v) in order to compute the weights of all fibers of this set. Since
|W (u, v)| ≥ |W (v, u)|, we spent O(|W (u, v)|) time to conclude that the search of median vertices
should be continued in W (v, u) or in P ∪Q. All this shows that employing this simple approach
we can find at least one part of Med(π) is linear time. To compute the whole median set either
we have to expand the computed part in a careful way by taking into account that Med(π) is an
interval or to adopt an approach similar to that for trigraphs presented in the next section.

4. Computing median sets in trigraphs

Throughout this section, G = (V,E) is a trigraph stored in the form of a doubly-connected edge
list whose outer face is traversed clockwise. Notice that the outer face of each other type of regions
occurring below (half-planes, sectors, cones, and stripes) is also traversed clockwise. Trigraphs, as
a subclass of bridged graphs, have the following characteristic property: balls and, more generally,
neighborhoods of convex sets in such graphs are convex. (Recall that the ball Br(c) of radius r
and center c consists of all vertices at distance at most r from c. The neighborhood N(S) of a set S
consists of S and all vertices of V − S having a neighbor in S.) From this property one can easily
conclude that trigraphs do not have induced 4- and 5-cycles. On the other hand, as is shown in
[6], trigraphs do not have 4-cliques K4 and the graph K1,1,3 consisting of three triangles having an
edge in common. Another useful property of these graphs established in [6] is the following

Triangle condition: for any three vertices u, v, w of G with 1 = d(v, w) < d(u, v) = d(u,w) there
exists a common neighbor x of v and w such that d(u, x) = d(u, v) − 1.

For further results and references on trigraphs and bridged graphs see [6].

4.1. Half-planes, sectors, cones, zips. Let (H1,H
′

1), . . . , (Hm,H ′

m) be the pairs of comple-
mentary half-planes of G. Denote by Pi and P ′

i the subgraphs induced by the vertices of Hi and
H ′

i which have neighbors in the complementary half-plane (i.e., in H ′

i and Hi, respectively).

Lemma 2. Pi and P ′

i are convex paths of G.

Proof. Pi is the intersection of two convex sets Hi and N(H ′

i), therefore it is convex (analogously
one deduce that P ′

i is convex). Since G is K4-free and P ′

i is convex, every vertex of Pi has one or
two adjacent neighbors in P ′

i .
Pick two adjacent vertices x, y of Pi, and let x′ and y′ be their mutually closest neighbors

in P ′

i . We assert that x′ = y′. Suppose not. If x′ and y′ are adjacent, then we obtain a 4-cycle
(x, y, y′, x′) which cannot be induced. But if x is adjacent to y ′ or if y is adjacent to x′ we obtain
a contradiction with the choice of x′ and y′. Now, if x′ and y′ are not adjacent, then d(x′, y′) = 2,
because otherwise x, y ∈ I(x′, y′), contrary to the convexity of P ′

i . Pick a common neighbor z ′ of x′

and y′, which necessarily belongs to I(x′, y′) ⊆ P ′

i . The 5-cycle (x, y, y′, z′, x′) cannot be induced,
whence z′ is adjacent to x and y, again yielding a contradiction with the choice of x′ and y′. Hence
each pair of adjacent vertices of Pi has a common neighbor in P ′

i .
Since Pi is convex, it is also a trigraph. Therefore to show that Pi is a path it suffices to show

that it does not contain 3-cycles and vertices of degree 3. Suppose by way of contradiction, that P i
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contains three pairwise adjacent vertices x, y, z. If they have a common neighbor in P ′

i we will get
a K4, a contradiction. So let z ′ ∈ P ′

i be the common neighbor of x and y, y′ ∈ P ′

i be the common
neighbor of x and z, and x′ ∈ P ′

i be the common neighbor of y and z. The vertices x′, y′, and z′

are pairwise adjacent because P ′

i is convex. Now, in order to avoid an induced 4-cycle generated
by x, y, x′, y′, either x and x′ are adjacent or y and y′ are adjacent. In both cases, we obtain a
4-clique, which is impossible. Thus Pi and P ′

i induce acyclic subgraphs. Finally, assume by way of
contradiction that Pi contains a K1,3, i.e., a vertex x adjacent to three other vertices y, z, v. Now,
if we consider the common neighbors y ′, z′, v′ in P ′

i of y and x, z and x, and v and x, respectively,
the convexity of Pi and P ′

i implies that these vertices must be distinct and pairwise adjacent. This
contradicts the fact that P ′

i does not contains 3-cycles. This final contradiction shows that indeed
Pi and P ′

i are convex paths. �

e′
i

Hi

H′

i

ei

Zi

Pi

P ′

i

Fig. 2

We call the convex paths Pi and P ′

i the lines of the half-planes Hi and H ′

i. Denote by Zi the
partial subgraph of G comprising all edges with one end in Pi and another one in P ′

i and, due to
its form, call Zi a zip; see Fig. 2. for an illustration. A strip Si is the union of all inner faces of G
sharing two edges with the zip Zi. Notice that every zip Zi shares two edges ei and e′i with ∂G, so
that Si lies to the left of the half-edge of ei which bounds ∂G. Below we will show that the zip Zi

can be reconstructed in a canonical way starting from the half-edge −→ei .
As we noticed above, every two adjacent vertices u and v of G are separated by exactly two

distinct pairs of complementary half-planes Hi,H
′

i and Hj,H
′

j , where u ∈ Hi∩Hj and v ∈ H ′

i∩H ′

j.
Then, as we noticed above, Hi ∩Hj = W (u, v) and H ′

i ∩H ′

j = W (v, u). Two other intersections
Hi ∩H ′

j and H ′

i ∩Hj are called sectors and denoted by S(uv; y) and S(uv; z), respectively, where
y and z are the common neighbors of u and v (if the edge uv belongs to the outer face ∂G,
then only one of two sectors is defined). One can easily see that W (u, v) = Hi − S(uv; z) and
W (v, u) = H ′

j − S(uv; z), i.e., in order to find the weight of the sets W (u, v),W (v, u)(uv ∈ E) it
suffices to compute the weights of all half-planes and sectors; see Fig.3a. To do this, we find more
appropriate to perform all computations with objects slightly different from sectors, which we call
cones and define below.
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(b)

C(v; zw)C(u; xy)

−→

P ′

i (v)

−→
Pj (u)

−→
Pi(u)

−→

P ′

j(u)

(a)

S(uv; y)S(uv; z)

W (v, u)

W (u, v)Pi

P ′

i

v

Pj

P ′

j

u

Hj

H′

j

Hi

H′

i

zy

ux

v
w

x

w

zy

Fig. 3

Denote by
−→
Pi(u) and

←−
Pi(u) the sub-paths of the path Pi (with respect to the clockwise traversal

of ∂Hi) such that
−→
Pi(u) ∩

←−
Pi(u) = {u} and

−→
Pi(u) ∪

←−
Pi(u) = Pi. Call the oriented paths

−→
Pi(u) and

←−
Pi(u) u-rays. (Analogously one can define the u-rays

−→
Pj(u),

←−
Pj(u) and the v-rays

−→
P ′

i (v),
←−
P ′

i (v),
−→
P ′

j(v),

and
←−
P ′

j(v).) Notice that every inner half-edge having origin u extends to a unique u-ray. Let x

be the neighbor of u in the ray
−→
Pi(u). Set C(u;xy) := S(uv; y) ∪

−→
Pi(u) and call the set C(u;xy)

a cone with apex u and generator xy, see Fig.3b for an illustration. The u-rays
−→
Pi(u) and

−→
Pj(u)

are the bounding rays of C(u;xy). Analogously, if w is the neighbor of v in the ray
−→
P ′

i (v), we

define the cone C(v; zw) := S(uv; z) ∪
−→
P ′

i (v) with apex v, generator zw and bounding rays
−→
P ′

i (v)

and
−→
P ′

j(v). In order to treat degenerated cases, it will be convenient to extend the notion of a
cone to the case when u ∈ ∂G and x = y ∈ ∂G; we denote such a cone by C(u;xx) or C(u; yy)
and call it degenerated. Notice that a degenerated cone C(u;xx) may be viewed as an usual cone
C(u;xy) in the trigraph obtained from G by adding a new vertex y and making it adjacent to two
consecutive vertices u, x of ∂G (analogously, C(u; yy) may be viewed as the cone C(u;xy) in the
trigraph obtained from G by adding a new vertex x adjacent to u and y). Hence, in the sequel it
suffices to show how to deal with non-degenerated cones only.

We will establish below that every half-plane Hi can be represented as a union of cones having
their apices at the origin of −→ei , therefore π(Hi) (and therefore π(H ′

i))) can be computed provided
we know the weights of the cones of G.
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4.2. The algorithm. Summarizing our discussion, we outline the following algorithm for com-
puting the median set Med(π) of a trigraph G, whose steps will be further detailed in subsections
4.3.-4.5.:

Algorithm MEDIAN SET
Input: A trigraph G in the form of a doubly-connected edge list and a weight function π
Output: The median set Med(π)
1. Compute the zips Zi, their strips Si, and the lines Pi, P

′

i (i = 1, . . . , m);

2. For i = 1, . . . , m and all vertices u ∈ Pi, v ∈ P ′

i compute the weights π(
−→
Pi(u)), π(

←−
Pi(u)), π(

−→
P ′

i (v)), π(
←−
P ′

i (v))
of the u- and v-rays;
3. Compute the weights π(C(u; xy)) of the cones C(u; xy) of G, and then compute the weights π(S(uv; x)) of
the sectors S(uv; x) of G;
4. Compute the weights π(Hi) and π(H ′

i) of the half-planes Hi and H ′

i (i = 1, . . . , m);
5. For each edge uv of G compute π(W (u, v)) and π(W (v, u)) as the difference between weights of a half-plane
and a sector computed in steps 3 and 4;

6. Construct the graph
−→
Gπ;

7. Return the set Med(π) consisting of all vertices of G having no outgoing edges in
−→
Gπ.

4.3. Computing zips, strips, lines, and weights of rays. To perform this computation, we
traverse the half-edges of ∂G in clockwise order. Let −→ei = −→uv be the current half-edge of ∂G, for
which we aim to construct the zip Zi and the lines Pi, P

′

i (the strip Si can be easily recovered from

Zi). More precisely, our algorithm will return one half-edge per edge of respective line, so that
−→
Pi

will be an oriented path starting at u,
−→
P ′

i will be an oriented path ending at v, while
−→
Zi will keep

the half-edges having the origin in Pi and the destination in P ′

i .

twin(next(−→e ))

u

v

twin(prev(−→e ))

−→

P ′

i

−→
Pi next(−→e )

−→e

prev(−→e )

−→e

v

u

Algorithm ZIP
Input: −→ei ∈ ∂G

Output:
−→
Zi,
−→
Pi,
−→
P ′

i

k := 0,
−→
Zi := {−→ei},

−→
Pi := ∅,

−→
P ′

i := ∅,−→e :=twin(−→ei )

while −→e /∈ ∂G do

if k is even

then

add next(−→e ) to
−→
Pi and prev(−→e ) to

−→
Zi

set k := k + 1 and −→e :=twin(prev(−→e ))

else

add next(−→e ) to
−→
Zi and prev(−→e ) to

−→
P ′

i

set k := k + 1 and −→e :=twin(next(−→e ))

end do

To establish the correctness of this algorithm, it suffices to show that Pi and P ′

i induce convex
paths of G. Indeed, this would imply that, removing the edges of Zi, the connected components
of the resulting graph are convex sets of G, therefore they are complementary half-planes. Conse-
quently, we will deduce that Zi is the zip of this pair of half-planes while Pi and P ′

i are their lines.

First notice that Pi and P ′

i are paths because the algorithm alternatively adds half-edges to
−→
Pi

and
−→
P ′

i . To show for example that the path Pi is convex, by Lemma 1 of [6] it is enough to prove
that Pi is locally convex, i.e., if x, y, z are consecutive vertices of Pi, then x and z do not have
other common neighbors in G. Suppose not, and let y ′ be such a common neighbor different from
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y. Let
−→
yx′ and

−→
zz′ be the half-edges which have been added to

−→
Zi at the same iterations of the

algorithm at which the half-edges −→xy and −→yz have been added to
−→
Pi. Notice that

−−→
x′z′ is a half-edge

of
−→
P ′

i . If x and z are adjacent, then these vertices together with x′ and z′ induce a 4-cycle, which
is impossible. Hence x and z are not adjacent in G. Now, the vertices y and y ′ must be adjacent,

otherwise the vertices x, y, z, y′ induce a 4-cycle. If the half-edge
−→
yy′ belongs to

−→
Zi, then we will

obtain a contradiction with the algorithm, because the half-edges −→xy and −→yz will be added to
−→
Pi at

two consecutive steps of the algorithm. Otherwise, the vertices x, y ′, z, z′, x′ will induce a 5-cycle,
which is impossible. This shows that the paths Pi and P ′

i are indeed locally convex, and therefore
convex.

Finally notice that the complexity of this algorithm for a given boundary edge ei is O(|Zi| +
|Pi| + |P

′

i |) = O(|Zi|). Since every edge of G belongs to exactly two zips, summing up over the
edges of ∂G, one conclude that the overall complexity of the algorithm is proportional to the
number of edges of G, whence it is O(|V |). Analogously, the overall size of the lists Zi, Pi, and
P ′

i is also linear. Therefore, traversing the paths Pi and P ′

i (i = 1, . . . ,m) from the origin to the

destination, in total linear time we will compute the weights π(
−→
Pi(u)), π(

←−
Pi(u)), π(

−→
P ′

i (v)), π(
←−
P ′

i (v))
for all vertices u ∈ Pi and v ∈ P ′

i .

4.4. Computing the weights of cones and sectors. Let C(u;xy) be a cone of G bounded

by the u-rays
−→
Pi(u) and

−→
Pj(u) (as we noticed above, one may assume that the cone C(u;xy) is

non-degenerated). First observe that the rays of C(u;xy), for example
−→
Pi(u), can be constructed

in the following way. Start by inserting the half-edge −→ux in
−→
Pi(u) and set s := x. At each step,

given a current vertex s, turn counterclockwise around s starting from the half-edge next to the

half-edge lastly inserted in
−→
Pi(u), then leave two edges incident to s and insert in

−→
Pi(u) the half-

edge
−→
ss′ of the third edge. Set s := s′, and repeat while s is an inner vertex of G. The path

−→
Pj(u)

is constructed analogously. The single difference is that in the case of
−→
Pi(u) the two edges we leave

at each iteration will belong to the cone C(u;xy), while in case of
−→
Pj(u) they will be outside this

cone; see Fig.4a.

Let z0 be the neighbor of x in
−→
Pi(u) (if it exists). Then x may be adjacent to only one other

vertex of C(u;xy). On the other hand, the vertex y may have several neighbors in C(u;xy) different
from u and x, which we denote by z1, z2, . . . , zp. Notice that if z0 exists, then x has another neighbor
in C(u;xy), namely z1, and in this case z1 and z0 are adjacent. Since G is 2-connected, either the
vertices z0, z1, . . . zp induce a path of G or there exists an index 0 ≤ k < p such that zk and zk+1

are not adjacent and each of z0, . . . , zk and zk+1, . . . , zp induces a path of G; see Fig.4b. Special
cases occur when z0 does not exist or k = p− 1.

u

x

y

z1
z4

z5

u

x

y

z3z2

(a) (b)

Fig. 4

We continue with a formula expressing π(C(u;xy)) via the weights of the cone C(x; z0z1) and
of the cones of the form C(y; zjzj+1). First observe that all these cones belong to C(u;xy) : this
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follows from the way the bounding rays of a cone were constructed above. More precisely, we
obtain

C(u;xy) = {u} ∪ C(x; z0z1) ∪ (∪p−1
i=1 C(y; zizi+1)).

Some cones in this formula may overlap. However, two cones whose generators are not incident
have only the apex y in common. On the other hand, the intersection of the cones C(x; z0z1) and
C(y; z1z2) is again a cone. Finally, the intersection of two consecutive non-empty cones C(y; zj−1zj)
and C(y; zjzj+1) is a y-ray. (All this follows from the definition and the form of cones.) Hence, if z0

exists and the vertices z0, z1, . . . , zp induce a path, then we obtain the following inclusion-exclusion
formula for computing π(C(u;xy)) (for an illustration of this and subsequent cases see Fig.5):

π(C(u;xy)) = π(u) + π(C(x; z0z1)) +

p−1∑

i=1

π(C(y; zizi+1))

−π(C(x; z0z1) ∩ C(y; z1z2))

−

p−1∑

i=2

π(C(y; zi−1zi) ∩ C(y; zizi+1)). (1)

(Notice that in (1) the weight of y is added p− 1 times and is substracted p− 2 times.) Now, if z0

does not exist, then simply replace in (1) the cone C(x; z0z1) by the degenerate cone C(x; z1z1) if x
is adjacent to z1 and by {x} otherwise. On the other hand, if some consecutive vertices zk and zk+1

are not adjacent, then replace in (1) the cone C(y; zkzk+1) by the degenerate cone C(y; zk+1zk+1).
In particular, replace C(y; zp−1zp) by C(y; zpzp) if k = p− 1.

z0

z1
z4

z5

u

x

y

z3z2
z0

z1
z4

z5

u

x

y

z2 z3
z0

z1
z4

u

x

y

z3z2

z5

z0

z1
z4

z5

u

x

y

z3z2

z6

z4

z5
x

y

z3z2
z1z1

z4

z5

u

x

y

z3z2

Fig. 5

Below we will describe how to organize the computation on G so that each time we wish to
compute π(C(u;xy)), the weights of all cones and rays occurring in the right-hand side of (1) have
been already computed. For this, pick a vertex c on the outer face of G and perform the levelling
of the graph G in the following way: for an integer i define ith level Li to be the subgraph induced
by all vertices of G located at distance i from c, see Fig.6. We call an edge uv of G horizontal if
both u and v belong to the same level and vertical otherwise.
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Fig. 6: levelling of a trigraph

Lemma 3. Every connected component in each level Li is a path.

Proof. Notice that the union of the levels Lj (j < i) is the ball Bi−1(c), therefore it is a convex
subset of G. Since G is K4-free, this implies that every vertex of Li is adjacent to at most two
consecutive vertices in the previous level Li−1. From triangle condition we know that any two
adjacent vertices x, y of Li have a common neighbor u in Li−1. Since G is K4-free, this common
neighbor is necessarily unique.

Now, assume by way of contradiction that Li contains three pairwise adjacent vertices x, y, z.
Let z′, y′, x′ be the common neighbors in Li−1 of x, y, of x, z, and of y, z, respectively. Convexity
of Bi−1(c) and the fact that G is K4-free imply that x′, y′, z′ are distinct and pairwise adjacent.
Since x and y have already two neighbors in Li−1, we conclude that the vertices x, y′, x′, y induce
a 4-cycle, which is impossible. Finally, suppose that Li contains a vertex x adjacent to three other
vertices y, z, v. Now, if we consider the common neighbors y ′, z′, v′ in Li−1 of, respectively, y and
x, z and x, and v and x, then each two of them either coincide or are adjacent. If y ′, z′, v′ are
pairwise distinct, then together with x they will form a K4. On the other hand, if all these vertices
coincide, then together with x, y, z, v they induce a forbidden K1,1,3. Finally, if y′ = z′ 6= v′, then
x, y, z, y′, v′ induce a K1,1,3. Hence, every vertex of Li has degree 1 or 2 and Li does not contain
triangles. Thus every connected component of Li is a path or a cycle. Since the base-point b
belongs to the outer face, one can easily see that the second case is impossible, thus Li consists
solely of paths. �

With respect to the levelling of G, we present the following classification of cones of G. A cone
C(u;xy) is called a D-cone if u ∈ Li−1 and x, y ∈ Li, and a RD-cone if u, x ∈ Li−1, y ∈ Li, and x
is right from u on Li−1. Analogously one can define the LD-cones, the U-cones, the LU-cones, and
the RU-cones. Call a {D,RD,LD}-cone a downward cone and a {U,RU,LU}-cone an upward cone.
Clearly, every cone of G is of one of these six types; for illustrations see Fig.7.

LU-cone U-cone

D-cone

RD-cone

Li

Li−1
RU-cone

Li+1
LD-cone

Fig. 7

The computation of the weights of cones is performed in the following way. First, we sweep
G level by level in decreasing order of their distances to c (upward) and compute the weights of
downward cones. In order to compute the LD-cones with apices in the ith level, Li is swept from
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left to the right, while to compute the analogous RD-cones, Li is swept from right to the left (the
D-cones can be computed at each of these traversals). Since every vertex of Li+1 has one or two
adjacent neighbors in Li, one can easily see that every cone used in the computation of the weight
of some downward cone with the apex at Li may occur at most four times at the right-hand side
of (1). Therefore the weights of the downwards cones with apices at Li can be computed in time
proportional to the number of edges in the subgraph induced by Li ∪ Li+1, whence the overall
computation of weights of downward cones is linear.

Now, to compute the weights of upward cones, we sweep the levels of the graph G in increasing
order of their distances to c (downward). At stage i, we traverse the level Li from right to left,
and for every vertex y ∈ Li, we compute the weights of all upward cones having y as the left
end-vertex of their generator, i.e. of all cones C(u;xy) such that the half-edge −→xy occurs in the
counterclockwise traversal of the inner face (u, x, y). However, computing π(C(u;xy)) directly via
(1) would not yield a linear time algorithm because every cone with apex y appears in the right-
hand side of this formula for all upward cones C(u;xy) except a constant number. Instead, we
proceed in the following way. Let z0, z1, . . . , zp−1, zp be the neighbors of y in G ordered in the
counterclockwise order, where z0, zp ∈ Li−1, z1, zp−1 ∈ Li and the remaining neighbors are in Li+1.
First, applying (1) we compute the weight of the rightmost upward cone C(zp−1; zpy). Then we
successively update this weight by turning around the vertex y in clockwise order. Assume for
example that we wish to compute the weights of the upward cones C(zi−1; ziy) (i = 2, . . . , p− 1).
For this, notice that the symmetric difference between two consecutive cones C(zi; zi+1y) and
C(zi−1; ziy) consists of two cones C(y; zjzj+1) and C(zi; zzi+1), where z is the common neighbor
of zi and zi+1 different from y (if z does not exist, then the second cone is the degenerated cone
C(zi; zi+1zi+1)). As we will establish below, one can suppose that the weights of these two cones
have been already computed. Now, knowing π(C(zi; zi−1y)), the weight of the cone C(zi+1; ziy) is
obtained by setting

π(C(zi−1; ziy)) := π(C(zi; zi+1y)) + π(C(zi; zzi+1))− π(C(y; zjzj+1))

(for an illustration see Fig.8). Clearly, the complexity of performing these computations for a given
vertex y is proportional to its degree, therefore the overall time of computing the upward cones is
also linear.

zi

zi+1

z0
zp

zj+1

z

zj

zi−1

y

Li−1
Li

Li+1

Fig. 8: C(zi; zi+1y) ∆ C(zi−1; ziy) = C(y; zjzj+1) ∪ C(zi; zzi+1)

The correctness of this algorithm follows from the following result.

Lemma 4. If C(u;xy) is the current cone, then the weights of cones arising at the right-hand side
of (1) have been already computed.
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Proof. The basic ingredients of the proof are Lemma 3 and the following facts about C(u;xy).
First, from Lemma 2 we conclude that the cone C(u;xy) is convex and that its rays are convex
paths. Second, for every vertex z 6= u of C(u;xy) every shortest path between u and z intersects
the generator {x, y}. As above, by z0, z1, . . . , zp we denote the neighbors of y and/or x in C(u;xy).
From previous properties of cones, we conclude that neither of these vertices is adjacent to u. Now,
suppose that the levelling of G has n levels and that u belongs to Li. We proceed by induction on
n− i for downward cones and by induction on i for upward cones.

Case 1. C(u;xy) is a downward cone.
If x, y ∈ Li+1 (i.e., C(u;xy) is a D-cone), however some zj belongs to Li, then zj and u must

be adjacent because they have a common neighbor outside the ball Bi(c), which is impossible. So,
assume without loss of generality that x ∈ Li+1 and y ∈ Li. Since u is not adjacent to z0, we
conclude that z0, z1 /∈ Bi(c), thus the weight π(C(x; z0z1)) is already known in view of induction
hypothesis. As to the cones C(y, zjzj+1), assume by way of contradiction that some zj belongs
to the level Li−1. Since zj is not adjacent to u and u, y ∈ Li, by triangle condition there exists
a common neighbor z 6= zj of u and y one step closer to c. Since z, zj ∈ Lj−1 and both these
vertices are adjacent to y, the convexity of the ball Bi−1(c) yields that z is adjacent to zj . Then
z ∈ I(u, zj) ⊂ C(u;xy), which is impossible.

Case 2. C(u;xy) is an upward cone.
First assume that x, y ∈ Li−1, and pick a cone from the right-hand side of (1), say the cone

C(y; zjzj+1). If the vertices of its generator belong to the levels Li−1 and Li−2, then, by the
induction hypothesis, the weight of this cone is known. On the other hand, if one vertex of its
generator belongs to Li+1 and another one to Li or Li+1, then C(y; zjzj+1) is a downward cone,
therefore its weight has been computed at previous stage. The case when C(u;xy) is a LU- or
DU-cone is analogous subject to minor modifications. For example, if, say y ∈ Li and x ∈ Li−1,
then no cone C(y; zjzj+1) may have both zj and zj+1 in Li−1 : the convexity of Bi−1(c) then
implies that x, y, zj , zj+1 are pairwise adjacent and we get a K4. In all other cases, C(y; zjzj+1) is
either a downward or an upward cone whose weight has been already computed due to induction
hypothesis. �

4.5. Computing the weights of half-planes. Let Hi,H
′

i be a pair of complementary half-
planes defined by the zone Zi. Let uv and u′v′ be the boundary edges of Zi so that u, v′ are the
end-vertices of Pi and v, u′ are the end-vertices of P ′

i . We will show how to compute π(Hi) (π(H ′

i)
can be computed analogously but using the vertex u′). Denote by z1 := v, . . . , zp the neighbors of
the vertex u ordered clockwise. Then z2, . . . , zp are the neighbors of u lying in the half-plane Hi; see
Fig.9. Now notice that Hi is the union of the non-degenerated cones C(u; zjzj+1) (j = 2, . . . p− 1)
and of the degenerated cone C(u; zpzp). The u-rays defined by the edges uz3, . . . , uzp−1, being the
intersection of two consecutive cones, are counted twice. Hence

π(Hi) =

p∑

j=2

π(C(u; zjzj+1))−

p−1∑

j=2

π(C(u; zjzj+1) ∩ C(u; zj+1zj+2)),

where C(u; zpzp+1) stands for the degenerated cone C(u; zpzp). This shows that the weight of Hi

can be computed in time proportional to the degree of the vertex u. The vertices u and v are
separated by two pairs of complementary half-planes, therefore u will be involved in computing
the weights of two half-planes only. This proves that the weights of the half-planes if G can be
computed in time proportional to the sum of degrees of vertices of ∂G, i.e., in linear time.
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z1 = v

zp

Hi

z3

z4

z2

u′

v′
Zi

H′

i

u

C(u, z4z5)

C(u, z3z4)

C(u, z2z3)

. . . C(u, zpzp)

Fig. 9

4.6. Complexity and analysis of the algorithm MEDIAN SET. While describing in details
steps 1-4 of the algorithm, we established that the complexity of each of these steps is linear. When
the weights of complementary half-planes Hi,H

′

i are computed, then they are broadcasted to all
edges of the zip Zi. Now, given an edge uv ∈ Zi, the weights of W (u, v) and W (v, u) can be found in
constant time as noticed in step 5 and illustrated in Fig. 3. Hence step 5 needs O(|E|) operations,
the same order as the steps 6 and 7. Since |E| ≤ 3|V | − 2 because G is planar, we conclude
that the complexity of the algorithm MEDIAN SET is O(|V |). This algorithm can be modified
(even simplified) in order to compute the median sets of squaregraphs (we skip the straightforward
details). Concluding, we obtain the following result:

Theorem 1. For every weight function π defined on vertices of a trigraph or a squaregraph
G = (V,E), the median set Med(π) can be computed in linear time O(|V |).
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