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Abstract/Résumé

In this note, a constructive proof is given that the classes of proper interval graphs and unit

interval graphs coincide, a result originally established by F.S. Roberts.
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Dans cette note, nous donnons une preuve constructive d’un résultat de F.S. Roberts qui

établit que les classe des graphes d’intervalles propres et des graphes d’intervalles unitaires

cöıncident.
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A graph G = (V, E) is an interval graph if to each vertex v ∈ V a closed
(resp. open) interval Iv = [lv, rv ] on the real line can be associated, such that
any pairwise distinct vertices u, v ∈ V are adjacent if and only if Iu∩Iv 6= ∅. The
family {Iv}v∈V is an interval representation of G. The complement G = (V, F )

of an interval graph G can be transitively oriented by setting (u, v) ∈ ~F if

ru < lv . The orientation ~F of the edges of G induces a partial order called
interval order (we shall write Iu ≺ Iv if ru < lv). G is a proper interval graph
if there is an interval representation of G in which no interval properly contains
another. In the same way, G is an unit interval graph if there is an interval
representation of G in which all the intervals have the same length. For more
details about the world of interval graphs, the reader can consult [2].

In 1969, F.S. Roberts proved that the classes of proper interval graphs and
unit interval graphs coincide [4]. He showed notably that K1,3-free interval
graphs are unit interval graphs by using the Scott-Suppes characterization of
semiorders [5]. Then, the trivial implications “unit ⇒ proper ⇒ K1,3-free”
for interval graphs enabled him to establish the whole result. In this note, a
consructive proof which does not rely on some characterizations by forbidden
subgraphs is presented. The main idea is to build directly an unit interval rep-
resentation from the maximal cliques of the proper interval graph. For this,
we make use of a strong structural property of these maximal cliques (assertion
(3) of Theorem) which is first simply established thanks to a characterization
inspired from [3] (assertion (2) of Theorem).

The reader shall note that another constructive proof was recently given by
K.P. Bogart and D.B. West [1], where proper intervals are converted into unit
intervals by means of successive contractions, dilatations and translations. For
additional characterizations of proper and unit interval graphs, the reader is
referred to [3, 6]. All graph-theoretical terms not defined here can be found in
[2].

Theorem For an undirected graph G = (V, E), the following conditions are
equivalent:

(1) G is a proper interval graph,

(2) there exists a linear order v1 < · · · < vn on V such that for all vi < vj ,
vivj ∈ E implies that {vi, . . . , vj} is a clique in G,

(3) the clique matrix of G (maximal cliques-versus-vertices incidence matrix)
has the consecutive 1’s property for rows and columns,

(4) G is an unit interval graph,

(5) G is a K1,3-free interval graph.

Proof. (1) ⇒ (2). Let {Iv}v∈V be a proper interval representation of G. For
a, b ∈ V , set a < b if la < lb or la = lb and ra ≤ rb. Trivially, < is a linear
order on V . Let a, b, c ∈ V with a < b < c and ac ∈ E. Since Ia, Ib, Ic are
proper, we have la ≤ lb ≤ lc < ra ≤ rb ≤ rc and also ab, bc ∈ E. Now, let
vi < · · · < vj ∈ V with vivj ∈ E. By applying the previous assertion first
to each triplet {vi, vk, vj} and then to all remaining triplets of {vi, . . . , vj}, we
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conclude that this set induces a clique in G.

(2) ⇒ (3). A (0, 1)-matrix has the consecutive 1’s property for columns (resp.
rows) if its rows (resp. columns) can be permuted in such a way that the 1’s
in each column (resp. row) occur consecutively. Let {v1, . . . , vn} be the set
V of vertices ordered according to < and M be the clique matrix of G such
that a column j corresponds to the vertex vj . Suppose that there is a row i

of M which has not the consecutive 1’s property, that is there is in G a max-
imal clique Ci containing two vertices va < vb with a strictly lower than b.
Now vavb ∈ E implies that {va, . . . , vb} is a clique, which is in contradiction
with the maximality of Ci. Consequently, M has the consecutive 1’s property
for rows. By ordering the rows of M according to the 1’s most to the left, the
consecutive 1’s property for rows yields the consecutive 1’s property for columns.

(3) ⇒ (4). One can suppose without loss of generality that G is connected.
Let M = (aij)mn

be the m × n clique matrix of G such that the 1’s of each
row and each column appear consecutively (with the rows ordered according
to the 1’s most to the left). For each row i, set a(i) = min{j | aij = 1} and
b(i) = max{j | aij = 1}. Denote by vj the vertex of G corresponding to the
column j: each row i defines a maximal clique Ci = {va(i), . . . , vb(i)}. Then,
the consecutive 1’s property for columns implies that C1, . . . , Cm are linearly
ordered such that, for every vertex vj ∈ V , the maximal cliques containing vj

occur consecutively. Now an inductive process is proposed to construct an unit
interval representation {Ij}vj∈V of G; to each vertex vj ∈ V shall be associated
an interval Ij of unit length U on the real line. The inductive step is the follow-

ing. Having an unit interval representation of the subgraph induced by
⋃i

j=1 Cj

such that I1 is the interval most to the left and no two intervals share a common
endpoint, one can obtain an unit interval representation of the subgraph induced
by

⋃i+1
j=1 Cj having the same properties. Recalling that Ci = {va(i), . . . , vb(i)}

and Ci+1 = {va(i+1), . . . , vb(i+1)}, the maximality of Ci and the connectivity of
G yield a(i) < a(i + 1) < b(i) < b(i + 1). Thus, we only have to define the
endpoints of the set of unit intervals Ir = {Ib(i)+1, . . . , Ib(i+1)} in such way that
these ones intersect all the unit intervals of the set Im = {Ia(i+1), . . . , Ib(i)}
but none of the set Il = {Ia(i), . . . , Ia(i+1)−1} (see Fig. 1). To realize this, we
propose the following construction. Define L = ra(i+1) − ra(i+1)−1 to be the
portion of Ia(i+1) ∈ Im which shall contain the left endpoints of the intervals
of Ir. Clearly, this portion is intersected by every interval of Im but none
of Il. Then, set ε = L

b(i+1)−b(i)+1 and for j ∈ {b(i) + 1, . . . , b(i + 1)}, define

Ij = [lj , lj + U ] with lj = ra(i+1)−1 + ε(j − b(i)). The value ε represents the
shift between two consecutive intervals; this one is calculated so that the left
endpoints of the b(i+1)− b(i) intervals of Ir belong to the portion L of Ia(i+1).
Consequently, this construction gives a correct unit interval representation of
the subgraph induced by

⋃i+1
j=1 Cj . Finally, we conclude by giving the initial

step of the induction. An unit interval representation of C1 having the desired
properties is easily obtained by setting ε = U

b(1) and, for j ∈ {a(1), . . . , b(1)},

defining Ij = [lj , lj + U ] with lj = ε(j − 1) (here a(1) = 1 and the cardinality of
C1 equals b(1)). Then, the application of the initial and inductive steps leads to
a complete unit interval representation of G (an example of such a contruction
is given in Appendix).
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Fig. 1. The construction of Ci+1 from Ci.

(4) ⇒ (5). Let {Iv}v∈V be an unit interval representation of G and suppose the
existence of four intervals Ia, Ib, Ic, Id inducing a copy of K1,3 with Ia ≺ Ib ≺ Ic.
This imposes on Ib to be strictly smaller than Id, which is a contradiction.

(5) ⇒ (1). Let {Iv}v∈V be an interval representation of G. Suppose that two
intervals Ib, Id are such that Ib ⊂ Id. Since G is K1,3-free, there cannot ex-
ist Ia, Ic both intersecting Id with Ia ≺ Ib ≺ Ic. Consequently, if there is an
interval Ia (resp. Ic) intersecting Id such that Ia ≺ Ib (resp. Ib ≺ Ic), then
one can always extend the right endpoint (resp. the left endpoint) of Ib until
rd + ε (resp. ld − ε), ε > 0, without modifying the graph G. By repeating this
operation while there exists an interval containing another, we obtain a proper
interval representation of G. �
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Appendix

Here is an application of the method previously described to build an unit
interval representation from the clique matrix of a proper interval graph. The
set of considered intervals is I = {1, 2, 3, 4, 5, 6, 7} defined below on Fig. 2. One
can easily verify that these intervals induce a proper interval graph.

1

2

3 6

4 7

5

C1 C2 C3 C4

Fig. 2. The seven intervals of the set I.

The corresponding clique matrix is:

1 2 3 4 5 6 7
C1 1 1 1 0 0 0 0
C2 0 1 1 1 0 0 0
C3 0 0 0 1 1 0 0
C4 0 0 0 0 1 1 1

The result of the construction appears below on Fig. 3.
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Fig. 3. The result of the construction.

Sucessively, we set ε1 = U
3 , ε2 = U

6 , ε3 = U
4 and ε4 = U

4 in order to obtain

the set of unit intervals 1′ = [0, U ], 2′ = [U
3 , 4U

3 ], 3′ = [ 2U
3 , 5U

3 ], 4′ = [ 7U
6 , 13U

6 ],

5′ = [ 23U
12 , 35U

12 ], 6′ = [ 29U
12 , 41U

12 ] and 7′ = [ 8U
3 , 11U

3 ].
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