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Abstract/Résumé

In this paper we show that, if G is a Berge graph such that neither G nor its complement G contains
certain induced subgraphs, named proper wheels and long prisms, then either G is a basic perfect graph
(a bipartite graph, a line graph of a bipartite graph or the complement of such graphs) or it has a skew
partition that cannot occur in a minimally imperfect graph. This structural result implies that G is
perfect.
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Dans cet article, nous démontrons que, si G est un graphe de Berge tel que ni G ni son complement Ḡ
ne contiennent certains sous-graphes induits, que l’on appelle roues propres et prismes longs, alors ou
bien G est un graphe parfait de base (un graphe biparti, un graphe de ligne de graphe biparti, ou le
complement de tels graphes) ou bien G a une partition antisymétrique qui ne peut pas exister dans un
graphe minimalement imparfait. Ce résultat structurel implique que G est parfait.
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1 Introduction

A graph is perfect if, in all its induced subgraphs, the size of a largest clique is equal to the chromatic
number. A graph is Berge if it does not contain an odd hole or its complement. The strong perfect
graph conjecture (SPGC) [1] states that Berge graphs are perfect. In 2001, Conforti, Cornuéjols and
Vušković [6] suggested the following approach to solving the SPGC: show that all Berge graphs can be
decomposed into four basic classes of perfect graphs (bipartite graphs, line graphs of bipartite graphs and
their complements) using decompositions that cannot occur in minimally imperfect graphs (2-joins and
certain kinds of skew partitions). Chudnovsky, Robertson, Seymour, Thomas [3] announced recently
that they solved the SPGC using this approach. Conforti, Cornuéjols, Vušković, Zambelli obtained
partial results discussed in the present paper and in [7]. There are three separate cases to decomposing
Berge graphs G depending on whether they contain certain induced subgraphs called long prisms and
proper wheels (to be defined later):

(i) Neither G nor its complement Ḡ contains a long prism or a proper wheel,

(ii) G contains a long prism,

(iii) G contains a proper wheel but neither G nor Ḡ contains a long prism.

This paper proves a decomposition theorem for Berge graphs that satisfy (i). Chudnovsky, Robertson,
Seymour, Thomas [3] simultaneously proved a similar result. Furthermore, they obtained a decomposi-
tion of Berge graphs that satisfy (ii). Finally they also showed in [3] that no minimally imperfect Berge
graph satisfies (iii), thus solving the SPGC. Our results on decomposing Berge graphs that satisfy (iii)
are available in [7].

1.1 Notation and definitions

We refer to West [13] for standard terminology in graph theory. Let G be an undirected simple graph.
We denote by G the complement graph of G. Given X ⊂ V (G), we denote by G[X ] the subgraph of G
induced by X and by G[X ] the subgraph of G induced by X . Given two distinct nodes x, y ∈ V (G) and
an induced subgraph G′ of G, we say that x and y are twins with respect to G′ if they have the same
neighbors in G′ \ {x, y}. If x and y are adjacent (resp. not adjacent) we say that x and y are true twins
(resp. false twins) with respect to G′.

Given a path P = x1, . . . , xn and 1 ≤ i ≤ j ≤ n, we denote with Pxixj
the path xi, ..., xj contained in

P , and we say that Pxixj
is a sub-path of P . The set {xi | 1 < i < n} is the interior of P . The nodes in

the interior of P are also referred to as the intermediate nodes of P . The length of a path is its number
of edges, and it is denoted by |P |. P is said to be odd (resp. even) if P has odd (resp. even) length.

A path in G is called a co-path. The interior and the length of a co-path P are, respectively, the
interior and the length of P . A set X ⊆ V (G) is said to be co-connected if G[X ] is a connected graph.

Given a set X ⊂ V (G), a node x /∈ X and an edge e = yz such that y, z /∈ X , we say that x is
universal for X if x is adjacent to every node of X , and we say that e sees X if both y and z are universal
for X .

Given two disjoint sets of nodes A and B, a direct connection between A and B is a minimal chordless
path (in term of its node set) P = x1, ..., xn such that x1 has a neighbor in A and xn has a neighbor in
B.

Definition 1 Given two node disjoint triangles a1, a2, a3 and b1, b2, b3, a long prism is a graph induced
by three node disjoint chordless paths P 1 = a1, . . . , b1, P 2 = a2, . . . , b2 and P 3 = a3, . . . , b3, at least one
of which has length greater than one, such that the only adjacencies between the nodes of distinct paths
are the edges of the two triangles. We denote such a graph by 3PC(a1a2a3, b1b2b3).

The following concepts were introduced in [5].

Definition 2 A wheel (H, v) consists of a hole H and a node v not in H that has at least 3 neighbors
in H. If v has k neighbors in H, we say that (H, v) is a k-wheel. The node v is called the center of the
wheel. If x and y are neighbors of v in H, a sub-path of H with endnodes x and y is called a sector if it
contains no neighbor of v in its interior.
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An odd wheel is a wheel containing an odd number of triangles. An even wheel is a wheel which is
not odd.

A triangle-free wheel is a wheel containing no triangle.
A twin wheel is a 3-wheel (H, v) such that (H, v) contains exactly 2 triangles.
A line wheel is a 4-wheel (H, v) such that (H, v) contains exactly 2 triangles and these triangles have

only node v in common.
A universal wheel is a wheel (H, v) in which v is adjacent to every node of H.
A proper wheel is an even wheel which is not a triangle-free wheel, a twin wheel, a line wheel or a

universal wheel.

A double line wheel (H, u, v) is the graph induced by a hole H and two distinct nonadjacent nodes u
and v not in H such that (H, u) and (H, v) are both line wheels and the edges of H that see u or v are
distinct and these four edges alternate between those that see u and those that see v.

Definition 3 A cap (H, v) consists of a hole H and a node v not in H that has exactly two neighbors
a and b in H, and a and b are adjacent. We say that v is the tip of (H, v) while a and b are the
attachments of v in H.

A hole or an anti-hole is big if it has at least 6 nodes. If (H, v) is a wheel or a cap, we say that (H, v)
is big if H is big.

A graph G has a skew partition if the nodes of V (G) can be partitioned into nonempty sets A, B, C, D
such that every node of A is adjacent to every node of B and there is no edge between C and D. We
say that the set A ∪ B is a skew cutset of G that separates C from D. When A or B has cardinality
one, A∪B is called a star cutset. Chvátal [4] conjectured that a minimally imperfect graph cannot have
a skew partition. Recently, Chudnovsky, Robertson, Seymour and Thomas [3] proved the conjecture.
Previously, Robertson, Seymour and Thomas [11] had shown that the skew-partition conjecture holds
for special types of skew partitions. Namely, a skew partition (A, B, C, D) is good if either C contains a
node universal for A, or A contains a node with no neighbors in C. For example, a star cutset defines a
good skew partition.

Theorem 4 (Robertson, Seymour and Thomas [11]) No minimal imperfect graph contains a good skew
partition.

Theorem 4 generalizes previous results due to Hoàng, who showed that no minimally imperfect graph
contains a T-cutset (i.e. a skew cutset in which both C and D contain a node universal for A) or a
U-cutset (i.e. a skew cutset in which C contains a node universal for A and a node universal for B).

A Berge graph is basic if it belongs to one of the following four classes of perfect graphs: bipartite
graphs, line graphs of bipartite graphs and their complements.

In this paper we will prove the following.

Theorem 5 Let G be a Berge graph such that neither G nor G contains a proper wheel or a long prism.
Then either G is basic, or G contains a good skew partition.

Note that, since basic graphs are perfect, Theorems 4 and 5 imply that the Strong Perfect Graph
Conjecture holds for graphs containing no proper wheel, long prism or their complements.

To prove Theorem 5, we will sometimes use the following lemma, due to Roussel and Rubio [12] and
proved independently also by Robertson, Seymour and Thomas [11], who divulged it as a useful tool in
the study of Berge graphs and named it The Wonderful Lemma.

Lemma 6 (The Wonderful Lemma) (Roussel and Rubio [12]) Let G be a Berge graph where V (G)
can be partitioned into a co-connected set S and an odd chordless path P = u, u′, . . . , v′, v of length at
least 3 such that u and v are both universal for S. Then one of the following holds:

(i) An odd number of edges of P see S.

(ii) |P | = 3 and S ∪ {u′, v′} contains an odd chordless co-path between u′ and v′.

(iii) |P | ≥ 5 and there exist two nonadjacent nodes x, x′ in S such that (V (P )\{u, v})∪{x, x′} induces
a chordless path.
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The original proof of the Wonderful Lemma (with a slightly different statement) can be found in [12].
A similar proof is contained in [7].

Remark 7 In a Berge graph containing no long prism, only the first two outcomes of the Wonderful
Lemma are possible. Indeed, if P has length at least 5 and there exist two nonadjacent nodes x, x′ in S
such that (V (P ) \ {u, v}) ∪ {x, x′} induces a chordless path, then V (P ) ∪ {x, x′} induces a long prism.

We will also use the fact that the following structure contains an odd hole and therefore cannot occur
in a Berge graph. Given a triangle a1, a2, a3 and a node y distinct from a1, a2, a3, a 3PC(a1a2a3, y) is
a graph induced by three chordless paths P 1 = a1, . . . , y, P 2 = a2, . . . , y and P 3 = a3, . . . , y, having no
common nodes other than y and such that the only adjacencies between nodes of P i \ y and P j \ y, for
i, j ∈ {1, 2, 3} distinct, are the edges of the triangle. Also, at most one of the paths P 1, P 2, P 3 is an
edge.

2 Proof of Theorem 5

Let G be a Berge graph such that neither G nor G contains a proper wheel or a long prism.

2.1 Double line wheels

Lemma 8 If G contains a double line wheel (H, u, v), then either G is the line graph of a bipartite graph
or it contains a good skew partition.

Proof: If |H | > 6, let ab and cd be the edges of H that see u and assume, by symmetry, that a and c
are endnodes of a sector, denoted by Hac, of length at least 4. Let st be the edge of Hac that sees v.
W.l.o.g. a 6= s, t. Then G contains a long prism 3PC(uab, stv).

Hence |H | = 6. Let H = (a1, ..., a6, a1) and assume that u is adjacent to a1, a2, a4 and a5 and
that v is adjacent to a2, a3, a5 and a6. Let H ′ = (a1, u, a4, a3, v, a6, a1), Q = (a1, v, u, a6, a2, a5, a1) and
Q′ = (a2, a5, a3, u, v, a4, a2). Then H ′ is a 6-hole and (H ′, a2, a5) is a double line wheel, while Q and Q′

are both 6-anti-holes and (Q, a3, a4) (Q′, a1, a6) are both double line wheels in G.
For x ∈ V \ (V (H) ∪ {u, v}), we examine the adjacencies between x and (H, u, v). Since, as we just

observed, the complement of a double line wheel is a double line wheel, then, by going to the complement,
we can assume that x has at most four neighbors in (H, u, v).

Claim 1: If x has at most four neighbors in (H, u, v), then one of the following holds, up to the
symmetries of (H, u, v):

(i) x has no neighbor in (H, u, v);
(ii) x is true or false twin of one of the nodes in (H, u, v) w.r.t. (H, u, v);
(iii) The only neighbors of x in (H, u, v) are a1, a3, a4 and a6;
(iv) The only neighbors of x in (H, u, v) are a1 and a6;
(v) The only neighbors of x in (H, u, v) are a1, a2 and u.

(1)

Proof of Claim 1: Since G does not contain any proper wheel, then (H, x) can be a universal wheel,
a twin wheel, a line wheel or V (H) ∪ x induces a triangle-free-graph or a cap. If (H, x) is a universal
wheel, then x has more than four neighbors in (H, u, v). Assume that (H, x) is a twin wheel and let
NH(x) = {ai−1, ai, ai+1}. Then x is adjacent to u if and only if ai is a neighbor of u, otherwise, if
C is the hole obtained from H by replacing ai with x, then (C, u) is a proper wheel or an odd wheel.
Similarly, x is adjacent to v if and only if ai is a neighbor of v. But then x is a twin of ai w.r.t. (H, u, v).
Assume now that (H, x) is a line wheel. Since x has already four neighbors in (H, u, v), either x is a
false twin of u or v or (iv) holds.
Assume next that V (H) ∪ x induces a cap. By symmetry, we can assume that x is adjacent to a1.
Assume first that x is adjacent to a1 and a6. If x is adjacent to both u, v, then (Q′, x) is an odd wheel in
G. If x is adjacent to exactly one of u, v, say u, then x, u, a2, v, a6 induces a 5-hole. So (iv) must hold.
Assume now that x is adjacent to a1 and a2. Then (v) must hold since, otherwise, (Q′, x) is a proper
wheel in G.
Finally, assume that V (H)∪x induces a triangle-free graph. By symmetry we can assume that V (H ′)∪x
also induces a triangle-free graph. If x has no neighbor in (H, u, v), (i) holds. Thus, by symmetry, we
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can assume that x is either adjacent to a1 or to a2. If x is adjacent to a1, then x is not adjacent to a2,
a6 and u, and (Q, x) must be a twin wheel in G, hence x is a twin of a6 w.r.t. (H, u, v). Assume then
that x is adjacent to a2 and, by symmetry and by the previous case, assume x is not adjacent to a1, a3,
a4 and a6. Also, x is not adjacent to a5, else there is a 5-hole (a1, a2, x, a5, a6, a1). Hence (Q, x) must
be a line wheel in G, so x is adjacent to v but not to u, but now (Q′, x) is a proper wheel in G. This
completes the proof of Claim 1.

We say that a graph G′ is an extended multi line wheel if G′ can be partitioned into sets A1, ..., A6,
U , V and W with the property that every node in Ai is adjacent to every node in Ai+1 (where the
indices are taken modulo 6), every node in U (resp. V ) (resp. W ) is adjacent to every node in A1, A2,
A4 and A5 (resp. A2, A3, A5, A6) (resp. A1, A3, A4, A6) and these are the only edges with endnodes
in different sets of the partition. All the sets, except at most W , are nonempty.

Since G contains a double line wheel (H, u, v), then G contains an extended multi line wheel G′ such
that ai ∈ Ai, u ∈ U and v ∈ V . Assume G′ is maximal (in terms of its node set) with this property.

Claim 2:

• Every node of Type (1)(iii) w.r.t. (H, u, v) belongs to W .

• If a node x of Type (1)(ii) w.r.t. (H, u, v) does not belongs to G′, then x is a true twin of a node
of degree 3 in (H, u, v), say a1, and x is of Type (v) w.r.t. (H∗, u, v) for some 6-hole H∗ obtained
from H by replacing a6 by a node a∗

6 ∈ A6.

• If a node x is of Type (1)(iv) w.r.t. (H, u, v), adjacent to a1 and a6, then x is universal for A1 ∪A6

and has no neighbor in G′ \ A1 ∪ A6.

• If a node x is of Type (1)(v) w.r.t. (H, u, v), adjacent to a1, a2 and u, then x is universal for
A1 ∪ A2 ∪ U and has no neighbor in A3 ∪ A4 ∪ A5 ∪ V .

Proof of Claim 2: By construction, every node of G′ must be a twin of a node of (H, u, v) w.r.t.
(H, u, v) or must be of Type (1)(iii). Suppose that some node x of Type (1)(iii) does not belong to
W . Then either x is not adjacent to some node y in A1, A3, A4 or A6 or x is adjacent to some node y
in A2, A5, U or V . Let (H∗, u∗, v∗) be the double line wheel obtained by adding y and removing the
corresponding node of (H, u, v). Now x contradicts Claim 1 in (H∗, u∗, v∗) or in its complement. So the
first part of Claim 2 holds. Now suppose that some node x of Type (1)(ii) does not belong to G′. By
symmetry we can assume that x is a twin of a1 or a2 w.r.t. (H, u, v). If x is a twin of a1, then either
x is not adjacent to some node y in A2, A6 or U or x is adjacent to some node y in A3, A4, A5 or V .
Constructing (H∗, u∗, v∗) as above, we obtain a contradiction of Claim 1 unless y is in A6. If x is a twin
of a2, constructing (H∗, u∗, v∗) as above, we obtain a contradiction of Claim 1 in all cases. The last two
statements of Claim 2 follow similarly. This completes the proof of Claim 2.

By Claim 2, the nodes of G \G′ partition into two sets X and Y as follows: X contains the nodes of
G \G′ that have no neighbor in V (G′) or are of Type (1)(iv) or (v) w.r.t. at least one double line wheel
(H∗, u∗, v∗) where H∗ = a∗

1, . . . , a
∗
6, a

∗
1 with a∗

i ∈ Ai, u∗ ∈ U , v∗ ∈ V . The set Y contains the remaining
nodes of G \G′. In the complement graph G, the nodes of Y have either no neighbor in V (G′) or are of
Type (1)(iv) or (v) w.r.t. at least one double line wheel (Q∗, a∗

3, a
∗
4) where Q∗ = a∗

1, v
∗, u∗, a∗

6, a
∗
2, a

∗
5, a

∗
1

with a∗
i ∈ Ai, u∗ ∈ U , v∗ ∈ V .

Claim 3: Let X1,2 be the set of nodes of X that are universal for A1 ∪A2 ∪U and possibly adjacent to
nodes of A6 but to no other nodes of G′. Then there exists a node of A6 that has no neighbor in X1,2.

Proof of Claim 3: Suppose not. Since every node of A6 has a neighbor in X1,2 and every node of X1,2

has a non-neighbor in A6, there must exist r, s ∈ A6 and t, z ∈ X1,2 such that rt and sz are edges but
rz and st are not. Indeed, it is immediate to verify that the statement is true if |A6| ≤ 2 or |X1,2| ≤ 2.
By induction on |A6| + |X1,2|, given z ∈ X1,2, either we are done by applying the inductive hypothesis
to A6 and X1,2 \ z, or A6 contains a node s with no neighbors in X1,2 \ z so z and s are adjacent. Let r
be a non-neighbor of z in A6 and t be a neighbor of r in X1,2, then rt and sz are edges but rz and st
are not.
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If neither rs nor zt is an edge, consider the 6-hole L = r, t, a2, z, s, a5, r. Then (L, u) is a proper
wheel. If exactly one of rs and zt is an edge, there is a 5-hole r, t, a2, z, s, r or r, t, z, s, a5, r. If both rs
and zt are edges, the nodes in {r, s, t, z, a2, a3, a4, a5} induce a long prism. This proves Claim 3.

Claim 4: If xi, xj ∈ X are universal for Ai, Ai+1 and for Aj , Aj+1, respectively, where 1 ≤ i < j ≤ 5,
and possibly to other nodes of G′, then xi and xj are in different connected components of G[X ].

Proof of Claim 4: Suppose not. Choose a pair xi, xj ∈ X , i < j, with a shortest path P connecting
them in G[X ]. By the choice of P , the internal nodes of P have no neighbor in G′. By Claim 2, there
exists a double line wheel (H∗, u∗, v∗) where H∗ = a∗

1, . . . , a
∗
6, a

∗
1 with a∗

i ∈ Ai, u∗ ∈ U , v∗ ∈ V , such
that xi and xj are both of Type (1)(iv) or (v) w.r.t. (H∗, u∗, v∗). If j − i ≥ 2, the nodes of H ∪P induce
a long prism. If j = i+1, it is sufficient to consider the cases j = 2 and j = 3 by symmetry. If j = 2, the
nodes of V (P ) ∪ {a2, a3, a4, a5, u, v} induce a long prism. If j = 3, the nodes of V (P ) ∪ {a2, a4, a5, u, v}
induce a long prism. This proves Claim 4.

Assume that Y is nonempty. By symmetry Y contains a node y universal for A2 ∪ A3 ∪ A5 ∪ A6.
Furthermore, if y is of Type (1)(iv) in G, we can assume that, in G, y is universal for A1 ∪ A4 and
has no neighbor in U ∪ V . If y is of Type (1)(v) in G, we can assume that, in G, y has no neighbor
in A1 ∪ A4 ∪ V . Finally, if all the nodes of Y are universal for G′, choose y to be any node of Y . Let
A be the co-connected component of Y containing y and let B be the set of nodes A2 ∪ A3 ∪ A5 ∪ A6

together with the nodes of G \ G′ that are universal for A. By Claim 4 applied to G, A is universal for
A2 ∪ A3 ∪ A5 ∪ A6. Clearly, A is universal for Y \ A. Therefore, by Claim 4 applied to G, A ∪ B is a
skew cutset separating V from A1 ∪ A4 ∪ U . By Claim 3 applied to G, if y is of Type (1)(v) in G, at
least one node of U is universal for A. And if y is not of Type (1)(v) in G, the nodes of A1 are universal
for A. So A ∪ B is a good skew cutset.

By the argument above applied to G, if X is nonempty then G has a good skew partition. Hence we
may assume that X and Y are both empty. If any of the sets A1, ..., A6, U , V , W has cardinality greater
than one, then G has a star cutset. So, if G has no good skew partition, G′ is a multi line wheel. 2

2.2 Line wheels

Lemma 9 If G contains a line wheel, then G is either the line graph of a bipartite graph, or it contains
a good skew partition.

Proof: By Lemma 8, if G contains a double line wheel then we are done. Hence we can assume that G
does not contain a double line wheel or its complement.

Assume that G contains a line wheel (H, v). Let ab and cd be the two edges of H that see v. Assume,
w.l.o.g., that a and c are the endpoints of a sector of (H, v), denoted by Hac while b and d are the
endpoints of the other sector of (H, v), denoted by Hbd. Let A be a maximal co-connected set in G \H
such that v ∈ A and A sees both ab and cd (note that the nodes in A are either centers of line wheels
w.r.t.H or they are universal for H). Let B be the set of nodes that are universal for A in G\(A∪{b, c}).
If Hac \ a and Hbd \ d lie in distinct connected components of G \ (A ∪ B), then let C be the connected
component containing Hac \a and D = V (G)\ (A∪B ∪C). Then (A, B, C, D) is a skew partition, c ∈ C
and b ∈ D are both universal for A, hence A ∪ B is a T-cutset and we are done.

We will show that it must be the case that Hac \ a and Hbd \ d lie in distinct connected components
of G \ (A ∪ B). Assume not. Then there exists a path P = x1, . . . , xn in G \ (V (H) ∪ A ∪ B) such that
x1 has a neighbor in Hac \a, xn has a neighbor in Hbd \ d and no intermediate node of P has a neighbor
in H \ {a, d}.

Claim 1: a and d cannot both have a neighbor in P \ {x1, xn}.

Proof of Claim 1: Assume not and let xi and xj (2 ≤ i, j ≤ n−1) be two nodes at minimum distance
in P such that xi is adjacent to a and xj is adjacent to d. Then F = a, xi, Pxixj

, xj , d is an odd path,
otherwise C = (a, F, d, c, Hac, a) would be an odd hole. Since a and d are both universal for A and no
node in F \ {a, d} is universal for A, then, by Lemma 6 and Remark 7, F has length 3 and there exists
an odd chordless co-path Q between xi and xj contained in A∪ {xi, xj}. Thus C = (b, xi, Q, xj , b) is an
odd anti-hole, a contradiction. This completes the proof of Claim 1.

Claim 2: No node of P has a neighbor in both Hac and Hbd.
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Proof of Claim 2: By contradiction, assume xi (1 ≤ i ≤ n) has a neighbor in both Hac and Hbd.

Case 1: xi has two nonadjacent neighbors in H .

Then (H, xi) must be either a universal wheel, a twin wheel, a line wheel or H ∪ xi is a triangle-free
graph. If xi sees both ab and cd, then, since xi is not universal for A, A ∪ xi is a co-connected set that
sees both ab and cd, contradicting the maximality of A. Let s and s′ be the neighbors of xi in Hac which
are closest to, respectively, a and c in Hac. Let t and t′ be the neighbor of xi in Hbd which are closest
to, respectively, d and b in Hbd. Suppose that s, s′, t, t′ are all contained in {a, b, c, d}. Since xi does not
see both or exactly one of ab, cd, we can assume w.l.o.g. that s = a and t′ = d. Hence (a, b, Hbd, d, xi, a)
is an odd hole. Therefore we can assume w.l.o.g. that s is in the interior of Hac. Suppose t = b. Then s′

is in the interior of Hac, otherwise (b, Hbd, d, c, xi, b) is an odd hole. Hence, by symmetry, we can assume
that t 6= b. Let Has and Hdt be, respectively, the paths between a and s and d and t in H \ b.

If the distance between s and t in H is even, then F = a, Has, s, xi, t, Hdt, d is an odd chordless path
(since a and d have odd distance in H). Since a and d are both universal for A and no node in F \{a, d}
is universal for A, then by Lemma 6 and Remark 7 F has length 3, hence F = a, s, xi, d and there
exists an odd chordless co-path Q between xi and s contained in A ∪ {xi, s}. If b or c is adjacent to
neither xi nor s, then C = (b, q, Q, r, b) or C ′ = (c, q, Q, r, c) is an odd anti-hole, a contradiction. Hence
both b and c are adjacent to xi or s. Since b cannot be adjacent to s, then b is adjacent to xi. xi is
adjacent to s, b and d in H , hence (H, xi) must be a triangle-free wheel, therefore xi is not adjacent to
c, thus c is adjacent to s. But then V (Q) ∪ {a, b, c, d} induces the complement of a long prism, namely
a 3PC(acxi, dbs), a contradiction.

Therefore s and t must have odd distance in H . One can readily verify that this implies that (H, xi)
has to be a line wheel. Furthermore, given s′ and t′ the neighbors of xi in H adjacent to, respectively, s
and t, ss′ must be an edge of Hac and tt′ must be an edge of Hbd. Since A contains node v and (H, v) is
a line wheel, and since A ∪ xi is co-connected, then let y be a node in A such that (H, y) is a line wheel
and y has minimum distance from xi in G[A ∪ xi]. Let Q be a shortest co-path between xi and y in
A ∪ xi. If Q has length one, then (H, xi, y) is a double line wheel, a contradiction. Hence Q has length
strictly greater than one. Since xi is not adjacent to both b and d, we may assume, w.l.o.g., that xi is
not adjacent to d. Since s is adjacent to neither b nor d, then, since every node of Q\{xi, y} is universal
for A, C = (s, y, Q, xi, d, s) is an anti-hole, hence Q must have odd length. If H has length greater than
6, then either Hac or Hbd had length at least 4, hence there exists a node w in H \ {a, b, c, d, s, s′, t, t′}.
Since such a node is universal for Q \ {xi, y} and Q has odd length strictly greater than one, then
C = (w, xi, Q, y, w) is an odd anti-hole, a contradiction. Hence H has length 6 and H = (a, b, t, d, c, s),
where b = t′ and c = s′. But then V (Q) ∪ {a, d, s, t} induces the complement of a long prism, namely a
3PC(sty, daxi).

Case 2: xi has only two neighbors in H and they are adjacent.

Then, w.l.o.g., i = 1 and x1 is adjacent to both c and d. Then n > 1. Let xj be the node of lowest
index in P \x1 to have a neighbor in H . Node xj cannot be adjacent to c by the definition of P . Suppose
xj is not adjacent to d. If xj has a unique neighbor t in H , then there is a 3PC(cdx1, t), if xj has two
nonadjacent neighbors in H , then there is a 3PC(cdx1, xj), hence xj has exactly two neighbors t and t′

in H and they are adjacent, but then there is a long prism, namely a 3PC(cdxi, tt
′xj), a contradiction.

So xj is adjacent to d. Suppose that a has a neighbor in P . Let xk be the node of lowest index adjacent
to a. By Claim 1, k = n. Since xn has a neighbor in Hbd, then by Case 1, xn is adjacent to a and
b but no other node of H . Hence the nodes of H together with a subset of the nodes of Pxjxn

induce
a 3PC(abxn, d). Therefore a has no neighbors in P . Let F be the shortest path between c and b in
P ∪ H \ {a, d}. Then F is an odd path, otherwise H ′ = (c, F, b, a, Hac, c) would be an odd hole. Since b
and c are universal for A and no node in F is universal for A, then by Lemma 6 and Remark 7 F has
length 3, hence F = c, x1, x2, b and there exists an odd chordless co-path Q between x1 and x2 contained
in A ∪ {x1, x2}. But then C = (a, x1, Q, x2, a) is an odd anti-hole, a contradiction. This concludes the
proof of Claim 2.

By Claim 2, n > 1, x1 has no neighbors in Hbd and xn has no neighbors in Hac. By Claim 1 and 2, we
can assume that a has no neighbors in P \x1. Suppose that (H, x1) is not a cap. Let t be the neighbor of
x1 closest to a in Hac and t′ be the neighbor of x1 closest to c in Hac (possibly t = t′). Let Hat and Hct′

be, respectively, the paths between a and t and c and t′ in Hac. Since (H, x1) is not a cap, then Hat and
Hct′ have the same parity. Let s be the neighbor of xn closest to b in Hbd, and Hbs the path between s and
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b in Hbd. Since a has no neighbors in P \ x1, then H ′ = (a, Hat, t, x1, P, xn, s, Hbs, b, a) is a hole, hence
H ′ has even length. Since Hat and Hct′ have the same parity, then F = c, Hct′ , t

′, x1, P, xn, s, Hbs, b is an
odd chordless path. Since b and c are universal for A and no intermediate node in F is universal for A,
then by Lemma 6 and Remark 7 F has length 3, hence F = c, x1, x2, b, and there exists an odd chordless
co-path Q between x1 and x2 in A ∪ {x1, x2}. If a is not adjacent to x1, then C = (a, x1, Q, x2, a) is
an odd anti-hole. Analogously, if d is not adjacent to x2, then C ′ = (d, x1, Q, x2, d) is an odd anti-hole.
Hence a is adjacent to x1 and d is adjacent to x2. But then V (Q) ∪ {a, b, c, d} induces the complement
of a long prism, namely a 3PC(x1bd, x2ac), a contradiction.

Therefore (H, x1) is a cap and, by symmetry, (H, xn) is a cap. Let t and t′ be the attachments of x1

in H and s and s′ be the attachments of xn in H . If a has a neighbor in P \ x1, then by Claim 1 no
node of P \ {x1, xn} is adjacent to d, hence there exists a 3PC(xnss′, a), a contradiction. So a has no
neighbors in P \ x1 and, by symmetry, d has no neighbors in P \ xn, but then V (H) ∪ V (P ) induces a
long prism, namely a 3PC(x1tt

′, xnss′), a contradiction.
2

2.3 Big universal wheels

Lemma 9 implies that Theorem 5 holds whenever G or G contains a line wheel. Hence, from now on,
we will assume that G and G do not contain any line wheel.

Lemma 10 If G contains a big universal wheel, then G has a T-cutset.

Proof: Assume G contains a universal wheel (H, x) and let A be a maximal co-connected set of G\V (H)
such that every node in A is universal for V (H). Consider a bicoloring of the nodes of H obtained by
coloring the nodes of H red and blue in such a way that two nodes have the same color if and only if they
have even distance in H . Let y be a node in G \ (V (H) ∪A) that is not universal for A such that y has
two nonadjacent neighbors in H . We will show that (H, y) is a triangle-free wheel and y is universal for
either the red or the blue nodes of H . Let u be a node in A that is not adjacent to y. By the maximality
of A, y is not universal for V (H), hence y has two consecutive nonadjacent neighbors s and t in H . Let
Hst be a path between s and t in H containing no neighbors of y. Then s and t have distance 2 in Hst,
otherwise H ′ = (y, s, Hst, t, y) is a big hole and (H ′, u) is a proper wheel (since u is adjacent to every
node but y in H ′). Hence (H, y) is not a twin wheel, so H ∪ y is a triangle-free graph in which every
pair of consecutive neighbors of y in H has distance two in H . Hence y is either universal for the red or
for the blue nodes of H . So we can partition the nodes in G \ (V (H) ∪ A) that have two nonadjacent
neighbors in H and that are not universal for A into sets ∆R and ∆B , where every node in ∆R (resp.
∆B) is universal for the red (resp. blue) nodes of H and has no blue (resp. red) neighbor in H . Next,
we will show that either ∆R or ∆B is empty. Assume not and let r and b be two nodes in ∆R and ∆B

respectively. Let st and s′t′ be two nonadjacent edges of H where s, s′ are red and t, t′ are blue. If r and
b are not adjacent, then H ′ = (r, s, t, b, t′, s′, r) is a 6-hole and (H ′, u) is a proper wheel or a line wheel
for every node u in A that is not adjacent to r or b. So r and b are adjacent and, since neither of them
is universal for A, then G[A∪{r, b}] contains a chordless path Q between r and b. G[V (Q)∪{s, s′, t, t′}]
is a long prism, namely a 3PC(rtt′, bs′s), a contradiction.

Therefore we may assume, w.l.o.g., that every node in G \ (V (H) ∪ A) that has two nonadjacent
neighbors in H and that is not universal for A is universal for the blue nodes of H and has no red
neighbor in H . Let a be a red node of H and let b1 and b2 be its neighbors in H . Let B be the set of
all nodes in G \ (A ∪ V (H)) ∪ {b1, b2} that are universal for A. If a and V (H) \ {a, b1, b2} lie in distinct
connected components of G\ (A∪B), let C be the connected component of G\ (A∪B) containing a and
D = V (G) \ (A∪B ∪C). Then (A, B, C, D) is a skew partition and, given a node t in V (H) \ {a, b1, b2},
then t ∈ D and both a and t are universal for A, hence A∪B is a T-cutset. Hence we may assume that
there exists a chordless path P = x1, . . . , xn in G \ (A ∪ B ∪ V (H)) such that x1 is adjacent to a, xn

has a neighbor in V (H) \ {a, b1, b2} and no intermediate node has a neighbor in V (H) \ {b1, b2}. Note
that x1 does not have two nonadjacent neighbors in H , hence n > 1. Also, no node in P \ xn has two
nonadjacent neighbors in H . Note that b1 and b2 cannot both have neighbors in P \ xn, otherwise let
xi and xj be neighbors of b1 and b2, respectively, in P \ xn such that xi and xj are closest possible in
P \ xn. Then H ′ = H \ a ∪ V (Pxixj

) is a hole and, for any node u ∈ A that is not universal for Pxixj
,

(H ′, u) is a proper wheel. Thus we may assume that b1 has no neighbors in P \ xn.
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If xn has only blue neighbors in H , then let t be the closest neighbor of xn to b1 and Hb1t be the
chordless path between b1 and t in H \a. H ′ = (a, x1, P, xn, t, Hb1t, b1, a) is a hole of even length, hence,
since t and a have odd distance, P is an odd path. Let s be a neighbor of xn distinct from b1 and b2.
Then F = a, x1, P, xn, s is an odd chordless path and F \ {a, s} does not have any node universal for
A. By Lemma 6 and Remark 7, F has length 3 and A ∪ {x1, x2} contains an odd chordless co-path Q
between x1 and x2. Let w be a red node distinct from a. Then C = (a, x1, Q, x2, a) is an odd anti-hole,
a contradiction.

So xn has a red neighbor in H , therefore xn does not have two nonadjacent neighbors in H . Let t
be the unique red neighbor of xn in H . Since |H | ≥ 6, t is not adjacent to b1 or b2, say bi for i = 1 or 2.
Let Hbit be the path between bi and t in H \ a. Since t and bi have distinct colors, Hbit has odd length,
so |Hbit| ≥ 3. If xn has no neighbors in Hbit, then let u be a node of A that is not adjacent xn. If bi

has no neighbors in P , then H ′ = (t, Hbit, bi, a, x1, P, xn, t) is a big hole and (H ′, u) is a proper wheel.
Otherwise let xj be the node of highest index in P adjacent to bi. Then H ′′ = (t, Hbit, bi, xj , Pxjxn

, xn, t)
is a big hole and (H ′′, u) is a proper wheel. So xn has exactly two neighbors s and t in H , s and t are
adjacent and s is in Hbit, so s 6= b1, b2. So s and t have no neighbor in P \ xn. Let xj be a node of
highest index with a neighbor in {a, b2}. We already observed that xj cannot have two nonadjacent
neighbors in H . If xj has a unique neighbor v in {a, b2}, then there is a 3PC(xnst, v). So j = 1 and x1

is adjacent to b2 and there is a long prism 3PC(x1ab2, xnts), a contradiction. 2

2.4 Caps

By Lemmas 9 and 10, we may assume G and G do not contain any long prism or any big wheel except
twin wheels and triangle-free wheels.

Lemma 11 If G contains a big cap, then G has a good skew-partition.

Before proving Lemma 11, we shall prove the following three lemmas.

Lemma 12 Let Γ be a Berge graph. If Γ and Γ do not contain any big wheel (H, x) where x has more
than |H |/2 neighbors in H, then Γ does not contain both a big hole and a big anti-hole.

Proof: Assume, by contradiction, that Γ contains a hole H and an anti-hole A, where n = |H | ≥ 6 and
m = |A| ≥ 6.

Assume first that V (H)∩V (A) 6= ∅. It is immediate to verify that |V (H)∩V (A)| ≤ 4 and V (H)∩V (A)
induces a chordless path or the complement of a chordless path. W.l.o.g., assume P = Γ[V (H) ∩ V (A)]
is a chordless path, and let k = |V (H) ∩ V (A)|.

By assumption, every node in V (A) \V (H) has at most n/2 neighbors in H , hence there are at most
(m − k)n/2 edges between V (H) and V (A) \ V (H). Since P has k nodes and k − 1 edges, and every
node in A has exactly m − 3 neighbors in A, then between V (A) ∩ V (H) and V (A) \ V (H) there are
exactly k(m− 3)− 2(k − 1) = km − 5k + 2 edges, hence there are at most (m − k)n/2− (km− 5k + 2)
edges between V (A) \ V (H) and V (H) \ V (A).

Analogously, every node in V (H)\V (A) has at least m/2 neighbors in V (A), hence there are at least
(n−k)m/2 edges between V (H)\V (A) and V (A). Also, there are exactly 2 edges between V (A)∩V (H)
and V (H)\V (A), hence there are at least (n−k)m/2−2 edges between V (A)\V (H) and V (H)\V (A).
Therefore

(n − k)m

2
− 2 ≤

(m − k)n

2
− km + 5k − 2

implying n + m ≤ 10, that is a contradiction since n, m ≥ 6.
Hence we may assume that A and H are node disjoint. Every node in A has at most n/2 neighbors

in H , hence there are at most mn/2 edges between V (A) and V (H). Every node in H has at least
m/2 neighbors in A, hence there are at least mn/2 edges between V (A) and V (H), therefore there are
exactly mn/2 edges between V (A) and V (H), every node in V (A) has exactly n/2 neighbors in V (H)
and every node in V (H) has exactly m/2 neighbors in V (A). Let x be a node of A. If (H, x) is not a
triangle-free wheel, then H ∪ x contains a hole H ′ of length at least 6 containing x, but H ′ and A have
one node in common and we already showed that this is not possible. Hence, for every x ∈ V (A), (H, x)
is a triangle-free wheel. Let X and Y be the two stable sets of size n/2 partitioning V (H), then for every
x ∈ V (A) either x is universal for X and has no neighbors in Y , or vice-versa. Since every node in H has
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neighbors in A and A is co-connected, there exist two non adjacent nodes x and y in A such that x is
universal for X and has no neighbors in Y while y is universal for Y and has no neighbors in X . Let x′y′

and x′′y′′ be two nonadjacent edges of H with x′, x′′ ∈ X and y′, y′′ ∈ Y , then H ′ = (x, x′, y′, y, y′′, x′′, x)
is a 6-hole and H ′ and A have two nodes in common, a contradiction. 2

Note that, since G and G do not contain any big wheel except twin wheels and triangle-free wheels,
then neither G nor G contains a big wheel (H, x) where x has more than |H |/2 neighbors in H . Hence,
by Lemma 12, we may assume, w.l.o.g., that G contains no big anti-hole.

Lemma 13 Assume G contains a cap (H, x) and let a, b denote the attachments of x in H. Let P =
x1, . . . , xn be a direct connection between x and V (H) \ {a, b} contained in G \ H such that no node of
P is adjacent to a. Then x1 is adjacent to b and no other node of P is adjacent to b.

Proof: Assume first that b has no neighbors in P . If xn has a unique neighbor t in H , then there is a
3PC(abx, t). If xn has two nonadjacent neighbors in H , then there is a 3PC(abx, xn). Hence xn has
exactly two neighbors t and t′ in H and they are adjacent, but then either G contains a long prism
3PC(abx, tt′xn), or |H | = 4, n = 1 and V (H)∪ {x, x1} induces an anti-hole of length 6. Therefore b has
a neighbor in P . If n = 1 we are done, hence we may assume n ≥ 2. Let t be the closest neighbor of xn

to a in H and Hta be the path between a and t in H \ b, let H ′ = (x, x1, P, xn, t, Hta, a, x). Since n ≥ 2,
H ′ has length at least 6 and b is adjacent to a, x and some other node of P , so (H ′, b) is a big wheel
that is not triangle-free, hence it must be a twin wheel, therefore b must be adjacent to x1 and no other
node of P . 2

Lemma 14 Assume G contains a connected set S, a chordless co-path Q = y1, ..., yn disjoint from S
such that y1 and yn have no neighbors in S and for every i, 2 ≤ i ≤ n− 1, yi has a neighbor in S. Then
n ≤ 4.

Proof: Assume, by contradiction, that n ≥ 5. Since y2 and y3 have at least a neighbor in S and S
is connected, there exists a chordless path Q = y2, q1, . . . , qm, y3 between y2 and y3 whose interior is
contained in S. Q has even length, otherwise yn, y2, Q, y3 is an odd hole, and Q has length at least 4,
otherwise Q = y2, q1, y3 and, given h the smallest index such that yh is nonadjacent to q1 (h is well
defined since yn has no neighbors in S), then y1, Py1yh

, yh, q1, y1 is an antihole of length at least 6, a
contradiction. Hence Q′ = y2, Q, y3, y1 is an odd path of length at least 5 and X = V (P ) \ {y1, y2, y3} is
a co-connected set universal for y1 and y2. By Lemma 6 and Remark 7, the interior of Q′ must contain
a node universal for X , a contradiction since yn has no neighbors in the interior of Q and y3 is not
adjacent to y4. 2

Proof of Lemma 11:
Consider a big cap (H, v) and let a, b be the attachments of x in H . Let a0 = a, P 0 be the path

induced by V (H) \ b, A0 = {a0} and S0 = V (P 0) \ a0.
Let P 0, . . . , P k be a sequence of chordless paths in G, where P i = xi

1, . . . , x
i
li
. For every i, 1 ≤ i ≤ k,

let ai = xi
1, Ai = Ai−1 ∪ ai and Si = Si−1 ∪ V (P i) \ ai. Assume that the sequence P 0, . . . , P k satisfies

the following properties:

1. P i is a direct connection between x and Si−1 contained in G \ (Ai−1 ∪ {b}) such that no node in
P i is universal for Ai−1,

2. For every i, 0 ≤ i ≤ k, ai is adjacent to b.

We will prove that, if P = x1, ..., xn is a direct connection between x and Sk contained in G\ (Ak ∪ b)
such that no node in P is universal for Ak, then x1 is adjacent to b.

Note that this implies Lemma 11: obviously, P 0 is a sequence satisfying properties 1 and 2 above,
hence we can consider a sequence P 0, . . . , P k (k ≥ 0), that is the longest possible. Let A = Ak and B
be the set of all nodes in V \ x that are universal for A. If A ∪ B is not a skew cutset that separates x
from Sk, then there exists a direct connection P = x1, ..., xn between x and Sk contained in G \ (Ak ∪ b)
such that no node in P is universal for Ak . Since x1 is adjacent to b, we can choose P k+1 = P . Now
P 0, . . . , P k+1 is a sequence satisfying properties 1 and 2, contradicting the maximality of k. Hence A∪B
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is a skew cutset that separates x from Sk. Let C be the connected component of G \ (A∪B) containing
x and D = V (G) \ (A ∪B ∪C). Then (A, B, C, D) is a skew partition and x is universal for A, hence it
is a good skew partition.

Observe that, by construction, for every 0 ≤ i ≤ k, Ai is a co-connected set and Si is connected.
Moreover, x has no neighbors in Sk and every node in Ai has a neighbor in Si.

Claim 1: For every j, 1 ≤ j ≤ k, and for every node y ∈ Sj , if y is universal for Aj−1, then y is the
only neighbor of a0 in H \ b.

Proof of Claim 1: By construction, for every i such that 1 ≤ i ≤ j, no node in P i is universal for
Aj−1, hence y must be the node in P 0 adjacent to a0.

Claim 2: For every i, 0 ≤ i ≤ k, b does not see any edge of P i.

Proof of Claim 2: The statement is trivial for i = 0 and it follows immediately by Lemma 13 for i = 1.
Hence we may assume i ≥ 2. Assume, by contradiction, that b sees an edge xi

jx
i
j+1 of P i. We will show

that every node of Ai−1 is adjacent to xi
j or xi

j+1. Assume not, then there exists ah ∈ Ai−1 such that

ah is not adjacent to xi
j and xi

j+1. Let y be the neighbor of ah in the chordless path x, xi
1, P

i
xi
1
xi

j−1

, xi
j−1

closest to xi
j in P i (y is well defined since every node in Ak is adjacent to x) and let F be the path

from y to xi
j in x, xi

1, P
i
xi
1
xi

j

, xi
j . Let F ′ be a chordless path between ah and xi

j+1 in the graph induced

by Si−1 ∪ (ah ∪ V (P i
xi

j+1
xi

li

)). By construction, no node in P i except xi
li

has a neighbor in Si−1, hence

C = (ah, y, F, xi
j , x

i
j+1, F

′, ah) is a big hole and b is adjacent to ah, xi
j and xi

j+1 in C, hence (C, b) is a
big wheel that is neither a triangle-free nor a twin wheel, a contradiction.
Hence every node in Ai−1 is adjacent to xi

j or xi
j+1 but no node in P i is universal for Ai−1, so there exists

a chordless co-path Q = y1, . . . , ym in G[Ai−1] such that y1 is adjacent to xi
j but not xi

j+1, ym is adjacent

to xi
j+1 but not xi

j and all the intermediate neighbors of Q are adjacent to both xi
j and xi

j+1. If j > 1,

then xi
j and xi

j+1 are not adjacent to x, hence (x, xi
j+1, y1, Q, ym, xi

j , x) is a big anti-hole. Therefore

j = 1, and Q′ = x, xi
2, y1, Q, ym, xi

1 is a co-path of length at least 4. Let S = (Si−1 ∪V (P i))\{xi
1, x

i
2}. S

is connected and neither x nor xi
1 have neighbors in S, while, by construction, every intermediate node

of Q′ has a neighbor in S. Now Q′ and S contradict Lemma 14. This completes the proof of Claim 2.

We will prove Lemma 11 by induction on k. If k = 0, then we are done by Lemma 13. Let us now
assume, by induction, that the statement is satisfied for every big cap (H, x), and for every sequence
P0, ..., Pj satisfying properties 1 and 2, whenever j ≤ k − 1. Note that P must contain a node that is
universal for Ak−1, otherwise (V (P ) ∪ V (P k)) \ ak contains a direct connection P ′ from x to Sk−1 and
no node in P ′ is universal for Ak−1 so, by induction, the first node of P ′, which is x1, is adjacent to b
and we are done. Let us assume, by contradiction, that x1 is not adjacent to b.

Claim 3: No node of P is adjacent to ak.

Proof of Claim 3: Assume, by contradiction, that ak has a neighbor in P . Then, since by the
argument above P contains a node universal for Ak−1, every node in Ak has a neighbor in P . For every
0 ≤ i ≤ k, let h(i) be the minimum index such that ai is adjacent to xh(i) and let h = max0≤i≤k h(i).
Since no node of P is universal for Ak, h ≥ 2. If h = 2, then every node in Ak is adjacent to x1 or x2

but neither x1 or x2 are universal for Ak, hence Ak contains a chordless co-path Q = y1, . . . , ym such
that y1 is adjacent to x1 but not to x2, ym is adjacent to x2 but not x1 and every intermediate node of
Q is adjacent to both x1 and x2. Therefore Q′ = x, x2, y1, Q, ym, x1 is a co-path of length at least 4. Let
S = Sk ∪ (V (P ) \ {x1, x2}). S is a connected set and neither x1 nor x has a neighbor in S, while every
intermediate node of Q′ has a neighbor in S. Therefore Q′ and S contradict Lemma 14. Hence we can
assume h ≥ 3. Let aj ∈ Ak be such that h(j) = h. Then C = (aj , x, x1, Px1xh

, xh, aj) is a big hole. Since
b is adjacent to both x and aj , then (C, b) is either a cap or a twin wheel. If (C, b) is a cap, let F be a
shortest path between xh and b in Sk ∪ V (Pxhxn

) ∪ b, then C ′ = (x, x1, Px1xh
, xh, F, b, x) is a hole and

aj is adjacent to x, b and xh in C ′, therefore (C ′, ah) is a big wheel that is neither a triangle-free wheel
nor a twin wheel. Hence (C, b) must be a twin wheel so b is adjacent either to x1 or to xh. In the former
case we are done. Now assume that b is adjacent to xh. C ′ = (x, x1, Px1xh

, xh, b, x) is a big hole. Since
every node in Ak has a neighbor in Px1xh

, then (C ′, ai) must be a twin wheel for every ai ∈ Ak , hence
every node in Ak is adjacent to x1 or xh. Since no node in P is universal for Ak and Ak is co-connected,
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there exists two nonadjacent nodes as and at in Ak such that as is adjacent to x1 and not to xh, and at

is adjacent to xh and not to x1. C ′′ = (x, x1, Px1xh
, xh, at, x) is a big hole and (C ′′, as) is a cap where

x, x1 are the attachments of as in C ′′. By construction Sk contains a direct connection F form as to
C ′′ \{x1, x}, but no node in Sk is adjacent to x or to x1, hence F contradicts Lemma 13. This completes
the proof of Claim 3.

Claim 4: b does not have any neighbor in P .

Proof of Claim 4: Assume by contradiction that xj , for some 1 ≤ j ≤ n, is adjacent to b. Let F be
a chordless path between ak and x1 in Sk ∪ V (P ). Since ak has no neighbor in P , then P is a subpath
of F and C = (x, x1, F, ak, x) is a hole, b is adjacent to x, ak and xj in P but xj is not adjacent to x
(otherwise j = 1 and b is adjacent to x1) and xj is not adjacent to ak (because, by Claim 3, ak has
no neighbors in P ), hence (C, b) is a big wheel that is neither a twin wheel nor a triangle-free wheel, a
contradiction.

Claim 5: Sk ∪ V (P ) contains a chordless path F = y1, . . . , ym+1 between x1 and b such that ak is
adjacent to ym and no other node in F and y1 is universal for Ak−1.

Proof of Claim 5: Let F = y1, . . . , ym+1 be a chordless path between x1 and b in Sk ∪ V (P ), where
y1 = x1 and ym+1 = b. Note that, since b is not adjacent to x1, then C = (x, x1, F, b, x) is a hole. Since
b has no neighbor in P , then P is a subpath of F and ym is in Sk. By Claim 1, ym is not universal for
Ak−1 since ym is adjacent to b.

Since P contains a node xj universal for Ak−1 and (C, ai) is a wheel that is not triangle-free for each
ai ∈ Ak−1, every node in Ak−1 must be adjacent to x1. If ym is adjacent to ak we are done. Otherwise
(C, ak) is a cap where x, b are the attachments of ak in C. Let Z = z1, . . . , zl be a direct connection form
ak to V (C) \ {x, b}, contained in Sk \ V (F ). Since no node in Z is adjacent to x, then by Lemma 13
z1 is adjacent to b and no node in Z \ z1 is adjacent to b. Hence, given y the closest neighbor of zl

to x1 in F , F ′ = x1, Fx1y, zl, Z, z1, b is a chordless path between x1 and b in Sk ∪ V (P ). Note that
F ′ = y′

1, . . . , y
′
m′+1, where y′

1 = x1 and y′
m′+1 = b and ak is adjacent to y′

m′ and no other node in F ′.
Thus F ′ satisfies the statement of Claim 5.

Let j, 0 ≤ j ≤ k, be the index such that ym ∈ V (P j). Note that, since ym and b are adjacent to ak,
then, by Claim 2, ym 6= xk

2 , hence j < k. This implies that P k consist of only one node, namely ak.

Claim 6: ak is universal for Ak−2 and ak is not adjacent to ak−1.

Proof of Claim 6: If ak is universal for Ak−2, then by construction ak is not adjacent to ak−1.
Assume, by contradiction, that ak is not universal for Ak−2. Then (V (P k)∪V (P k−1))\{ak−1} contains
a direct connection P̃ k−1 = x̃k−1

1 , . . . , x̃k−1
l′
k−1

from x to Sk−2 such that no node in P̃ k−1 is universal for

Ak−2 (obviously, P̃ k−1 contains P k = ak and x̃k−1
1 = ak). Let ãk−1 = x̃k−1

1 , Ãk−1 = Ak−2 ∪ {ãk−1} and
S̃k−1 = Sk−2 ∪ V (P̃ k−1). Let P̃ = x̃1, . . . , x̃n′ be a direct connection contained in (V (P ) ∪ V (P k−1)) \
(S̃k−1 ∪{ak−1}) from x to S̃k−1. By Claim 3 and by construction of P k−1, P̃ does not contain any node
universal for Ãk−1. But x̃1 = x1, x1 is not adjacent to b, contradicting the inductive hypothesis. This
proves Claim 6.

Let h be the lowest index such that 2 ≤ h ≤ lj such that xj
h is adjacent to b (one such index exists

since ym ∈ V (P j) \ aj ).

Claim 7: h ≥ 5 and every node in Aj−1 has a neighbor in P j

x
j
2
x

j

h

.

Proof of Claim 7: By Claim 2, h ≥ 3, hence H̃ = (b, xj
1, P

j

x
j
1
x

j

h

, xj
h, b) is a hole. We first show that

every node in Aj−1 has a neighbor in P j

x
j
2
x

j

h

. Assume not, then there exists q, 0 ≤ q ≤ j − 1, such that

aq has no neighbor in P j

x
j
2
x

j

h

. Let Z be a shortest path between aq and xj
h in Sj−1 ∪ V (P j

x
j

h
x

j

lj

). Then

by construction no node in P j

x
j
2
x

j

h−1

has a neighbor in Z and xj
1 has no neighbor in Z \ aq . If aq is not

adjacent to aj , then C = (x, aj , P
j

x
j
1
x

j

h

, xj
h, Z, aq , x) is a big hole, otherwise C ′ = (aj , P

j

x
j
1
x

j

h

, xj
h, Z, aq, aj)

is a big hole. In both cases, either (C, b) or (C ′, b) is a big wheel that is neither a twin wheel nor a
triangle-free wheel, a contradiction. To conclude the proof of Claim 6, we have only to show that h ≥ 5.
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Note that h must be odd, otherwise H̃ is an odd hole. Assume then, by contradiction, that h = 3. Then,
since every node in Aj−1 is adjacent to xj

2 or xj
3 but no node in P j is universal for Aj−1, Aj−1 contains

a chordless co-path Q = q1, . . . , qs such that q1 is adjacent to xj
2 but not xj

3, qs is adjacent to xj
3 but not

xj
2, and every intermediate node of Q is adjacent to both xj

2 and xj
3. But then (x, xj

3, q1, Q, qs, x
j
2, x) is

a big anti-hole, a contradiction. This completes the proof of Claim 7.

Let H̃ = (b, xj
1, P

j

x
j
1
x

j

h

, xj
h, b). By Claim 7, H̃ is a big hole.

Claim 8: j < k − 1.

Proof of Claim 8: We already observed that j < k. Assume, by contradiction, that j = k − 1. Let
P̃ 0 = H̃ \ b and ã0 = xj

1. Let P̃ 1 = x̃1
1, . . . , x̃

1
l be a direct connection between x and V (P̃ 0) \ {ã0}

contained in {ak}∪V (P j

x
j

h
ym

). By construction, ã0 has no neighbors in P̃ 1. Let ã1 = x̃1
1 = ak. Therefore

the sequence P̃ 0, P̃ 1 satisfies properties 1 and 2 at the beginning of the proof. Let P̃ = x̃1, . . . , x̃n′ be
a direct connection between x and (V (P̃ 0) ∪ V (P̃ 1)) \ {ã0, ã1} contained in V (F ) ∪ V (P j

x
j

h
ym

), where F

is the path found in Claim 5. Obviously, x̃1 = x1, no node in P̃ is universal for {ã0, ã1} and x̃1 is not
adjacent to b. If k > 1, then x̃1 not adjacent to b contradicts the inductive hypothesis on k. So k = 1
and ã0 = a0, H̃ = H , P̃ 0 = P 0, ã1 = a1, P̃ 1 = P 1 = a1 and P̃ = P . Then, by Claims 3 and 4, a1 and b
have no neighbors in P , by Claim 5 S2 ∪ V (P ) contains a chordless path F = y1, . . . , ym+1 between x1

and b such that a1 is adjacent to ym and no other node in F , y1 = x1 is adjacent to a0 and no node other
node in F \ y1. Hence ym must be the neighbor of b in H \ a0, so a1 is adjacent in H to b and ym but
not to a0. If a1 has no further neighbors in H , then (x, a0, P

0, ym, a1, x) is an odd hole, therefore (H, a1)
must be a twin wheel and a1 is adjacent to the neighbor c of ym in H \ b. Since ym is the only neighbor
of a1 in F , then c is not a node of F , hence xn is adjacent to ym. H ′ = (x, x1, P, xn, ym, a1, x) is a hole
and (H ′, a0) is a cap where x, x1 are the attachments of a0 in H ′. H \{a, b} contains a direct connection
P ′ from x to V (H ′) \ {x, x1} whose first node, that is the neighbor of a in H \ b, is not adjacent to x.
By Lemma 13 the first node of P ′ must be adjacent to x1, hence n = 1 and x1 is adjacent in H to a, ym

and the neighbor of a in H \ b. Therefore (H, x1) is a big wheel that is neither a triangle-free wheel nor
a twin wheel, a contradiction. This completes the proof of Claim 8.

Claim 9: j > 0.

Proof of Claim 9: Assume j = 0, then ym is the neighbor of b in H \ a. By Claim 8, j < k − 1, so
by Claim 6 ak is adjacent to a0. Hence, in H , ak is adjacent to a0, b and ym, so (H, ak) is a twin wheel.
Let b′ = ak, H ′ = H ∪ b′ \ b is a big hole. (H ′, x) is a cap where the attachments of x in H ′ are a and b′.
Note that P 0 = H ′ \ b′ and, by Claim 6, for every i, 0 ≤ i ≤ k − 2, ai is adjacent to b′. Now P k−1 is a
direct connection from x to Sk−2 in G \ (Ak−2 ∪ {b′}) such that no node in P k−1 is universal for Ak−2,
but ak−1 = xk−1

1 is not adjacent to b′, contradicting the inductive hypothesis. This completes the proof
of Claim 9.

Assume that (H, x), P 0, . . . , P k, P and F are chosen so that j is largest possible, where the sequence
P 0, . . . , P k satisfies properties 1 and 2, P is a direct connection between x and Sk contained in G\(Ak∪b)
such that no node in P is universal for Ak and x1 is not adjacent to b, and F satisfies Claim 5.

By Claim 7, the hole H̃ has length at least 6 and every node in Aj−1 has a neighbor in H̃ \ {aj , b}.

Let ã0 = aj , P̃ 0 = H̃ \ b, S̃0 = V (P̃ 0) \ b and Ã0 = {a0}. Since Aj−1 is co-connected, there exists a
bijection σ between {1, . . . , j} and {0, . . . , j − 1} such that, if we define ãi = aσ(i) for every i, 1 ≤ i ≤ j,

and, for every 1 ≤ q ≤ j, Ãq = {ãi | 0 ≤ i ≤ q}, then for every q, 1 ≤ q ≤ j, ãq is not universal for Ãq−1.

Note that Ãj = Aj and every node in Ãj has a neighbor in S̃0. For every i such that 1 ≤ i ≤ j, we

define S̃i = S̃0 and P̃ i = ãi.
For every i such that j < i ≤ k, let ãi = ai, Ãi = Ai and define recursively, for i = j + 1 to k, the

path P̃ i and the set S̃i has follows: P̃ i = x̃i
1, . . . , x̃

i
l′
i
is a direct connection between x and S̃i−1 contained

in V (P i) ∪ Si−1, while S̃i = (S̃i−1 ∪ V (P̃ i)) \ {x̃i
1}. By construction, S̃i ⊆ Si, P i is a subpath of P̃ i and

x̃i
1 = ãi is adjacent to b. Moreover, since P̃ i is contained in V (P i)∪ Si−1, no node in P̃ i is universal for

Ãi−1. Let P̃ = x̃1, . . . , x̃n′ be a direct connection from x to S̃k contained in V (P ) ∪ Sk. Since S̃k ⊆ Sk,
P is a subpath of P̃ . Therefore x̃1 = x1 is not adjacent to b. Finally, since P̃ is contained in V (P )∪ Sk,
no node in P̃ is universal for Ãk. By Claims 3 and 4, ãk and b have no neighbors in P̃ and by Claim
5 S̃k ∪ V (P̃ ) contains a chordless path F̃ = ỹ1, . . . , ỹm′+1 between x̃1 and b such that ãk is adjacent to

14



ỹm′ and no other node in F̃ and ỹ1 is universal for Ak−1. Let j′, 0 ≤ j′ ≤ k, be the index such that
ỹm′ ∈ V (P̃ j′ ). By Claims 6-9, 1 ≤ j ′ ≤ k − 2. On the other hand, since S̃j = S̃0, j′ > j contradicting
our choice of (H, x), P 0, . . . , P k, P and F so that j is largest possible. 2

By Lemmas 8-11, we can assume that G does not contain any big cap, any big anti-hole or any big
wheel except twin wheels and triangle-free wheels. We say that a cap is small if it is not big.

Lemma 15 If G contains a small cap, then G has a T-cutset.

Proof:
Claim 1: Let (H, x) be a small cap where a, b denote the attachments of x in H , and let P = x1, . . . , xn

be a direct connection from x to V (H) \ {a, b} in G \ (V (H) ∪ {x}). If a has no neighbors in P , then
n = 1 and x1 is adjacent to both neighbors of a in H .

Proof of Claim 1: By Lemma 13 x1 is adjacent to b and no other node in P is adjacent to b. Let a′

and b′ be, respectively, the neighbors of a in H \ b and the neighbor of b in H \a. If xn is not adjacent to
a′, then H ′ = (x, x1, P, xn, b′, a′, a, x) is a big hole and (H ′, b) is a proper wheel. So a′ is adjacent to xn.
If n = 1 we are done, hence we may assume n > 1. If xn is adjacent to b′, then H ′′ = (x, x1, P, xn, a′, a, x)
is a big hole and (H ′′, b′) is a big cap. So xn is not adjacent to b′, C = (b, x1, P, xn, a′, b′, b) is a big hole
and (C, x) is a big cap, a contradiction. This proves Claim 1.

Let Q = y1, . . . , ym be the longest chordless path in G. Note that the complement of a small cap is
a chordless path on 5 nodes, so, if G contains a small cap, then Q has at least 5 nodes (i.e. m ≥ 5). Let
(H, y3) be the cap induced by {yi | 1 ≤ i ≤ 5}, where H = (y1, y5, y2, y4) and y1, y5 are the attachments
of y3 in H . Define A to be a maximal co-connected set contained in G \ {yi | 2 ≤ i ≤ 5} such that
y1 ∈ A with the property that every node in A is adjacent to y3, y4, y5 but not y2. Note that, for every
y ∈ A, Q \ y1 ∪ y is a chordless co-path. Otherwise, there exists j, 6 ≤ j ≤ m, such that yj is not
adjacent to y. Assume j is the lowest such index. Then C = (y, y2, Qx2xj

, yj , y) is a big anti hole, a
contradiction. Let B be the set of all nodes in V (G) \ {y3, y4} that are universal for A. If A ∪ B is a
cutset separating y3 and {y2, y4}, then let C be the connected component of G \ (A ∪ B) containing y3

and let D = V (G) \ (A ∪ B ∪ C). Then (A, B, C, D) is a skew-partition, y3 ∈ C is universal for A and
y4 ∈ D is universal for A, hence A ∪ B is a T-cutset.

Next we will show that A ∪B is a cutset separating y3 and {y2, y4}. Assume not. Then there exists
a direct connection P = x1, . . . , xn in G \ (A ∪ B) between y3 and {y2, y4}. If there exists a node y ∈ A
with no neighbors in P , then consider H ′ = H ∪ y \ y1. H ′ is a hole of length 4 and (H ′, y3) is a small
cap. By Claim 1, n = 1 and x1 is adjacent to y4 and y5. If x1 is adjacent to y2, then x1, y, y2, Qy2y5

, y5

is a path in G. Since Q is the longest path in G, then Q \ y1 ∪ {x1, y} is not a chordless path. Therefore
x1 has a neighbor (in G) in Q \ y1. Let j be the lowest index such that x1 is adjacent to yj in G. Then
6 ≤ j and C = (x1, y, y2, Qy2yj

, yj , x1) is a big anti-hole in G, a contradiction. Hence x1 is not adjacent
to y2, so A ∪ x1 is a co-connected set, x1 is adjacent to y3, y4 and y5 but not y2, contradicting the
maximality of A.
So every node in A must have a neighbor in P . For every y ∈ A let h(y) be the minimum index such
that y is adjacent to xh(y), and let h = maxy∈A h(y). If h > 2, then let x ∈ A be such that h = h(x)
and let H ′ = (x, y3, x1, Px1xh

, xh, x). H ′ is a big hole and y5 is adjacent to x and y3 in H ′. Since
(H ′, y5) is not a big cap, then (H ′, y5) must be a twin wheel, hence y5 is adjacent to either x1 or xh.
If y5 is adjacent to x1, then let F be a shortest path from y5 to xh in V (Pxhxn

) ∪ {y2, y4, y5}, then
H ′′ = (y5, x1, Px1xh

, xh, F, y5) is a big hole and (H ′′, y3) is a big cap. If y5 is adjacent to xh, then let
H ′′ = H ′∪y5 \x. Since, by definition of h, every node of A has a neighbor in Px1xh

and every node in A
is adjacent to y3 and y5, then (H ′′, y) is a twin wheel for every y ∈ A. Since no node in P is universal for
A and A is co-connected, then there exists two nonadjacent nodes u and v in A such that u is adjacent
to x1 and not to xh, and v is adjacent to xh and not to x1. Therefore V (H) ∪ {u, v} \ {y5} induces a
big cap, a contradiction. Therefore h ≤ 2 and, since no node in P is universal for A, h = 2 and every
node in A is adjacent to x1 or x2. Since x1 and x2 are not universal for A and A is co-connected, there
exists a chordless co-path Z = z1, . . . , zk contained in A such that z1 is adjacent to x1 but not x2, zk

is adjacent to x2 but not x1 and all the intermediate nodes of Z are adjacent to both x1 and x2. If
x2 is not adjacent to y4, then (y4, x2, z1, Z, zk, x1, y4) is a big anti-hole. Then x2 is adjacent to y4, so
(y4, y3, x2, z1, Z, zk, x1, y4) is a big anti-hole, a contradiction. 2
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2.5 Meyniel graphs

Lemmas 9, 10, 11 and 15 imply that, if G and G do not contain a proper wheel or a long prism, then,
if G contains a cap, G has a good skew-partition. Next we have to address the case in which G does
not contain any cap. Note that the class of Berge graphs containing no caps coincide with the class of
Meyniel graphs, that is the class of graphs in which every odd cycle has at least 2 chords. Perfection
of this class was proved by Meyniel [10], while Burlet and Fonlupt [2] showed that Meyniel graphs are
either bipartite or can be decomposed by amalgams and clique cutsets. Hoàng [8], gave a short proof of
a weaker result, namely:

Theorem 16 If G is a Meyniel graph, then either G is bipartite or G contains a star-cutset or a U-
cutset.

For the sake of completeness, we give a proof of Theorem 16, essentially following [8].

Proof: If G is not bipartite, then, since G is Berge, G contains three pairwise adjacent nodes u, v and w.
Let U and V be, respectively, the set of neighbors of u and v in G, and let S be the connected component
of G \ (U ∪ V ) containing w. Let U ′, V ′ and X be, respectively, the set of nodes in U \ V , V \ U and
U ∩ V that are adjacent to some node of S in G. Note that, if U ′ = ∅ or V ′ = ∅, then {v} ∪ V ′ ∪ X
or {u} ∪ U ′ ∪ X , is a star cutset of G centered, respectively, at v or u. Hence we may assume U ′ 6= ∅
and V ′ 6= ∅. Next we show that, in G, every node in U ′ is adjacent to every node in V ′. Assume not
and let u′ ∈ U ′ and v′ ∈ V ′ be nonadjacent in G and let xu and xv be, respectively, neighbors (in G)
of u′ and v′ in S at minimum distance in G[S]. Let Q be a shortest path between xu and xv in G[S].
Then u, u′, xu, Q, xv , v′, v is a chordless path containing at least 5 nodes, hence G[V (Q) ∪ {u, u′, v, v′}]
contains a small cap, a contradiction. If no connected component of G[U ′ ∪ V ′ ∪ X ] intersects both U ′

and V ′, then let A be the union of all connected components of G[U ′ ∪ V ′ ∪ X ] intersecting U ′ and let
B = (U ′ ∪ V ′ ∪ X) \ A. Then A ∪ B is a skew-cutset separating S and {u, v} in G, u is universal for A
while v is universal for B, so A∪B is a U-cutset. Hence we can assume that there are nodes u′ ∈ U ′ and
v′ ∈ V ′ such that there exists a chordless path P between u′ and v′ in G[X ∪ {u′, v′}]. Since, in G, u′ is
not adjacent to v′, P has length at least two, so H = (v, u′, P, v′, u, v) is a big hole. S is a co-connected
set (in G) and, by definition of U ′, V ′ and X , no node in P is universal for S (in G). But then S sees
exactly one edge in H , namely uv. Since G contains no caps, then every node in S has a neighbor in
H \ {u, v}, hence, for every x ∈ S, (H, x) is a wheel which is not triangle-free. Note that every wheel
which is not a twin wheel, a universal wheel or a triangle free wheel contains a cap. Therefore every
node in S is either the center of a twin wheel or of a universal wheel w.r.t. H . Also, there exist two
nodes x and y in S such that (H, x) and (H, y) are twin wheels and the only edge of H that sees both
x and y is uv. Assume x and y is a pair of nodes at minimum distance in G[S] with this property and
let Q be a shortest path in G[S] between x and y. Assume x is a twin of u w.r.t. H and y is a twin
of v w.r.t. H . Let u′ and v′ be, respectively, the neighbors of x and y in H \ {u, v}. If |Q| = 1, then
H ′ = H \ u ∪ x is a hole and (H, y) is a cap. Hence |Q| ≥ 2 and all the intermediate nodes of Q are
universal for H . Q must have odd length, otherwise C = (v′, x, Q, y, u′, v′) is an odd anti-hole. But
then, given w ∈ H \ {u, u′, v, v′}, C ′ = (w, x, Q, y, w) is an odd anti-hole, a contradiction 2
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[6] M. Conforti, G. Cornuéjols and K. Vušković, Square-free perfect graphs (February 2001), to appear
in J. Combin. Theory B .
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