
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

From Automata to Semilinear Sets: a Solution
for Polyhedra and Even More General Sets

Denis Lugiez

Rapport/Report 21-2004

20 april 2004

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

From Automata to Semilinear Sets: a Solution
for Polyhedra and Even More General Sets

Denis Lugiez

LIF – Laboratoire d’Informatique Fondamentale de Marseille

UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

Laboratoire d’Informatique Fondamentale (LIF) de Marseille
Université de Provence – CMI

39, rue Joliot-Curie F-13453 Marseille Cedex 13

lugiez@cmi.univ-mrs.fr

Abstract/Résumé

Following Semenov, Muchnik [Muc03] solves the problem of deciding whether
an automaton working on the representation of tuples of numbers in some basis
is definable in Presburger arithmetic, or equivalently is a semilinear set. His
solution yields a formula characterizing the semilinear sets, that can be decided
in elementary time if dynamic programming techniques are used. But there is
no easy way to extract from this formula the representation of semilinear sets
with bases and periods, which is useful in applications to program verification.
We give a solution to this problem when the semilinear sets corresponds to a
conjunction of equalities, inequalities and moduli equations which corresponds
to semilinears sets that have the same periods. Our approach relies on a logical
characterization of these sets and yields doubly exponential bounds.

Keywords: Automata, Presburger Arithmetic, Semilinear Set

Après Semenov, Muchnik [Muc03] résoud le problème de décider si le langage re-
connu par un automate qui fonctionne sur les représentations (dans une certaine
base) de n-uplet d’entiers est définissable dans l’arithmétique de Presburger, ou
de manière équivalente si c’est un ensemble semilinéaire. Sa solution donne une
formule logique qui caractérise les ensembles semilinéaires, qui peut être décidée
en temps élémentaire si on utilise la programmation dynamique. Mais il n’y a
pas de technique simple permettant d’extraire de la formule la représentation
des semilinéaires sous la forme base, périodes, ce qui est utile dans certaines
applications pour la vérification de programmes. Nous donnons une solution à
ce problème quand les semilinéaires correspondent à une conjonction d’égalités,
d’inégalités et d’équations modulo, ce qui correspond à des semilinéaires qui ont
les mêmes périodes. Notre solution utilise une caractérisation logique de ces
semilinéaires et donne une borne doublement exponentielle.

Mots-clés : Automates, Arithmétique de Presburger, Ensembles Semilinéaires.

Relecteurs/Reviewers: Roberto Amadio and Silvano DalZilio.

1 Introduction

The connection between automata working on representations of integers (in
some basis) Presburger arithmetic (the first-order theory of addition over the
integers) and semilinear sets has been extensively studied by logicians. Since
few years, computer scientists have realized that the representation of solutions
of Presburger formula with automata deserves more investigations and can be
used successfully, especially in the area of verification. This representation is
now used in several model-checkers like LASH ([WB95]) or FAST ([BFLP03])
and has been extended in many ways (see [BW02] for a survey). Most of these
works focuss on the automata representation and on the formula representation
but few consider semilinear sets. However, this representation is also interest-
ing and it has been used recently in the BRAIN model-checker (combined with
formulas see [RV02]). This raises the problem of changing one representation
for another one and of computing one representation from another one. This is
easy in some cases (from a formula to an automaton, or from a semilinear set to
a formula) but much more difficult in other cases. The most difficult problem
is to go from an automaton to a formula or a semilinear set: the automata are
more powerful than Presburger arithmetic, and the structure of the automaton
and the structure of the formula seem to be weakly related. Muchnik ([Muc03])
achieved a breakthrough by characterizing the automata corresponding to Pres-
burger formulas, but its solution suffers two weaknesses: the complexity is high
and it doesn’t give a straighforward way to recover a semilinear representation.
Therefore some researchers have tried to improve his results. Two results have
been obtained recently: one characterizes the automata accepting quantifier free
formulas [Ler03] and the other one characterizes the automata accepting convex
polyhedras [Lat04]. Both works study in detail the structure of the automaton
and try to extract the Presburger formula from it. In this work we present a
completely different approach that relies on a logical characterization of semi-
linear sets of a particular form. This means that, given an automaton, we solve
a logical formula to decide if it corresponds to a finite union of linear sets with
the same periods, and we compute at the same time an explicit representation
of these sets. The class of semilinear sets that we accept is more general than
the class defining convex polyhedra, since we can recognize semilinear sets that
are defined by conjunction of equalities, disequalities, and moduli equations.
On the other hand we can’t get the class of unquantified formulas.

The paper is as follows: we recall the basic notions in section 2, and we
briefly state the problem in section 3. Then we describe the expressive power
of the semilinear sets that we consider in section 4 and we state by solving the
linear case in section 5. The more complex case is explained in section 6.

2 Basic Notions

For more informations on automata, logic and Presburger arithmetic, the reader
is refered to [BHMV94].

3

2.1 Semilinear Sets

We denote the set of natural numbers1 by N and we consider subsets of N p. We

use the vector notation
→
x,

→
y , . . . to distinguish tuples of integers from integers.

A set L of N p is a linear set iff there exists
→
b∈ N p (the basis), a finite subset

P = {→p 1, . . . ,
→
p n} ⊆ N p (the periods) such that L = {→x | →

x=
→
b +Σi=k

i=1λi

→
p i

, λi ∈ N} and we shall denote L by L(
→
b ,P) A semilinear set is a finite union

of linear sets. Given a finite set C = {→c 1, . . . ,
→
c m} ⊆ N p, we denote by L(C,P)

the semilinear set L(
→
c 1,P)∪ . . .∪L(

→
c m,P). This paper will focus on such sets.

Presburger arithmetic is the first-order theory of (N , +,≥) and it is well-
known that semilinear sets are the models of Presburger arithmetic formulas.
More precisely, for any formula φ(x1, . . . , xp) of Presburger arithmetic the set
{(x1, . . . , xp) | |= φ(x1, . . . , xp)} is a semilinear set of N p.

2.2 Automata

When we write natural numbers in some basis r (usually r = 2), a number is
a word on the alphabet Σ = {0, . . . , r − 1}. Similarly a tuple of p numbers
can be represented as a word on Σp. Finite state automata on this alphabet
recognize sets of tuples of integers, and it is well-known that semilinear sets are
recognizable (i.e. for each semilinear set L there is some automaton such that
L = L(A)2). But there exist recognizable sets which are not semilinear (for
instance the set of rn for n ≥ 0). To match naturals that have representation
of different size, it is necessary to add trailing 0’s in the representation. For
instance the natural 4 in basis 2 is represented by 0010∗ (to be read from left
to right).

A more concise representation is to use automata such that the alphabet is
{0, .., r − 1} (so-called binary automata for r = 2). In this case, the language
that we consider is the set of words with length l = kp. It is straightforward
to transform an automaton on tuples into an automaton on {0, . . . , r − 1} (just
unfold the automaton and add new states). The size of the alphabet for these
automata doesn’t depend on p the number of variables.

The size of an automaton A, denoted by |A|, is the size of the transition
relation and depends on the number of states and of the size of the alphabet.
This explains why the size of a minimal binary automaton associated to some
set of tuples of numbers can be smaller than the size of an automaton defined
on the alphabet {0, 1}p accepting the same set of tuples.

Our results are independent of the kind of automata that we use, except
when we are concerned with complexity issues (in this case, we precise which
automata are considered).

2.3 Logic

To each formula of Presburger arithmetic, one can associate an automaton ac-
cepting the models of the formula. Moreover, if L ⊆ N p is a set such that
L = L(A) for some automaton A, the extension of Presburger arithmetic by
→
x∈ L is still decidable. For readability we introduce some abbreviations:

1therefore we consider positive numbers only, not negative ones
2actually, L(A) is the set of representations in the basis r of elements of L

4

• We write
→
y≤→

x iff
∧i=p

i=1 xi ≤ yi (where
→
x= (x1, . . . , xp),

→
y = (y1, . . . , yp)).

Similarly, we write
→
x≤ C for

∧i=p

i=1 xi ≤ C (where C ∈ N) and we write
→
x> C for ¬(

→
x≤ C).

• min(L) denotes the set of minimal elements of a set L. It can be expressed
as

→
x∈ L ∧ ∀ →

y (
→
y∈ L =⇒ ¬(

→
y≤→

x))

This set always exists and is always finite (even for sets that are not
recognizable) by Dickson’s lemma ([Dic13] that states that there is no
infinite sequence of incomparable tuples of integers). We can express that

there is only one minimal element by
→
x∈ L∧∀ →

y (
→
y∈ L =⇒ →

x≤→
y), that

we denote by
→
x= min(L).

• finite(φ) states that the set of
→
z∈ N p satisfying some formula φ of Pres-

burger arithmetic is finite. It can be expressed as

∃M ∀ →
z φ(

→
z) =⇒ →

z≤ M

3 The Problem

We are interested in the following question:

Problem: Given an automaton A, decide if L(A) = L(C,P) and in this
case, compute C and P.

Remark 3.1 To get a Presburger formula equivalent to L(C,P) is obvious.

4 Sets Represented by a Semilinear Set L(C,P)

We show that many sets can be represented as a semilinear set of the form
L(C,P). In particular all integer polyhedra belong to this class. Let x1, . . . , xp

be variables ranging over N , and let us consider the set of N p defined by a
conjunction (C) of inequalities

Σi=p
i=1ai,jxi ≥ dj j ∈ J

and moduli equations

Σi=p
i=1bi,kxi ≡ ck mod mk k ∈ K

where ai,j , bi,k, dj are integers (possibly negative ones), ck, mk are positive in-
tegers.

We don’t mention equations since an equation can be replaced by the con-
junction of two inequalities. We prove that these sets are representable by a
semilinear set L(C,P). Firstly, we introduce new variables (also ranging over
N) to get the system of diophantine equations (S):

∧

j∈J

Σi=p
i=1ai,jxi + yj = dj ∧

∧

k∈K

Σi=p
i=1bi,kxi = ck + mkzk

5

In what follows, solution stands for positive solution (i.e. all components of
a solution are ≥ 0).

A minimal solution
→
s µ of a system of diophantine equations (S) is a solution

such that there is no solution
→
s 6=→

s µ of (S) such that
→
s≤→

s µ.
We use some well-known facts on solutions of diophantine equations: a solu-

tion (x1, . . . , xp, y1, . . . , ym, z1, . . . , zn) of (S) is the sum of a minimal solution of
(S) (and there are finitely many of them) and of a solution of the homogeneous
system (H)

∧

j∈J

Σi=p
i=1ai,jxi + yj = 0 ∧

∧

k∈K

Σi=p
i=1bixi − mkzk = 0

Moreover a solution of the homogeneous system is a linear combination of the
minimal non-zero solutions3 of the homogeneous system, again in finite number.
If Cµ denotes the finite set of the minimal solutions of (S) and Pµ denote the

minimal solutions of the homogeneous system, we get that (
→
x ,

→
y ,

→
z) is a solution

iff (
→
x ,

→
y ,

→
z) ∈ L(Cµ,Pµ).

Let π be the projection defined by π((
→
x ,

→
y ,

→
z)) =

→
x .

Proposition 4.1
→
x is a solution of (C) iff

→
x∈ L(π(Cµ), π(Pµ))

Proof: ⇒ direction.
Assume

→
x is a solution.

By definition there exists
→
y ,

→
z such that (

→
x,

→
y ,

→
z) is a solution of (S).

Therefore (
→
x ,

→
y ,

→
z) ∈ L(Cµ,Pµ) which proves that

→
x∈ π(L(Cµ,Pµ)).

Since projection is a linear mapping, we get π(L(Cµ,Pµ)) = L(π(Cµ), π(Pµ)).

Therefore
→
x∈ L(π(Cµ), π(Pµ)).

⇐ direction.
Assume that

→
x∈ L(π(Cµ), π(Pµ)). By definition

→
x=

→
xµ +Σi∈Iλi

→
x i where

→
xµ∈ π(Cµ),

→
x i∈ π(Pµ) for i ∈ I .

By definition of projection,
→
xµ= π((

→
x ,

→
y ,

→
z)µ) for some (

→
x ,

→
y ,

→
z)µ ∈ Cµ and

and for each i ∈ I ,
→
x i= π((

→
x i,

→
y i,

→
z i)µ) for some (

→
x i,

→
y i,

→
z i)µ ∈ Pµ.

Therefore, by linearity of projection, we get that
→
x= π((

→
x ,

→
y ,

→
z)) where (

→
x,

→
y

,
→
z) ∈ L(Cµ,Pµ).

Therefore there exists
→
y ,

→
z such that (

→
x,

→
y ,

→
z) is a solution of (S) which

yields that
→
x is a solution of (C).

This proves that the set of solutions of (C) is exactly L(π(Cµ), π(Pµ)). �

Remark 4.2 The same proof works also for union of conjunctions that differ
only in the constant terms (dj ’s or cj ’s): for instance, this allows sets that are
union of a poyhedra and some translations of this polyhedra.

5 Recovering a Linear Set from its Automaton

Firstly, we consider the particular case of a linear set and we start the process
by providing a canonical way to describe linear sets.

3hence minimal means minimal in the set of solutions 6=
→

0

6

5.1 A Canonical Representation for Linear Sets.

Let L ⊆ N p, an element
→
x∈ L is reducible in L iff either

→
x= 0 or there exist

→
x 1∈ L,

→
x 2∈ L such that

→
x=

→
x 1 +

→
x 2 and

→
x 1,

→
x 2 6= 0. A element

→
x 6= 0 is

irreducible iff it is not reducible. We denote by Ir(L) the set of irreducible
elements of L. This set can be infinite: if L = {2i | i ∈ N}, then Ir(L) = L,
but for linear sets we have:

Proposition 5.1 If L is a linear set then L has a unique minimal element
→
b ,

Ir(L−
→
b) is finite and L = L(

→
b , Ir(L−

→
b)) where L−

→
b = {→x | →

x +
→
b∈ L}.

This proposition yields a canonical representation of a linear set:
→
b and

Ir(L−
→
b) are uniquely defined. Moreover any other representation of L in the

form L(
→
b ,P) contains superfluous information. The reader should remark that

the elements of Ir(L−
→
b) may be dependent (in the meaning of dependent

vectors, with Q as the set of scalars), see L = L(0, {(2), (3)}) in N .

Proof: By definition the basis of a linear set is its minimal element
→
b .

Let M = L−
→
b = L(

→
0 ,P).

(i) We prove that Ir(M) ⊆ P .

Let
→
x∈ Ir(M). By definition

→
x is a linear combination of elements of P .

Since each element of P is in M , we get that the linear combination is neces-

sarily reduced to only one element, therefore
→
x∈ P .

(ii) We prove that M = L(
→
0 , Ir(M)).

Let
→
p∈ P with

→
p 6∈ Ir(M). We show that M = L(

→
0 ,P −{→p}), that we can

eliminate all reducible elements of P . Combined with (i), this yields the desired
result (since P is finite, we can eliminate all reducible elements of P to end with
a set of irreducible elements).

By definition
→
p=

→
x 1 +

→
x 2 with

→
x 1,

→
x2 6=

→
0∈ M .

Therefore each xi is a linear combination (with positive coefficients) of ele-
ments of P .

Moreover
→
p can’t occur in

→
x 1 nor

→
x 2 (otherwise

→
x 1 or

→
x 2=

→
p).

Therefore
→
p is a linear combination of elements of P − {→p}) which proves

that M = L(
→
0 ,P − {→p}). �

Moreover the set of irreducible terms can be defined by the formula:

→
x∈ L∧∀ →

x 1,
→
x 2 (

→
x 6= 0∧ →

x=
→
x 1 +

→
x2 ∧ →

x 1∈ L∧ →
x 2∈ L =⇒ →

x1=
→
x ∨ →

x 2=
→
x)

We may have an exponential number of elements in Ir(L−
→
b) with respect

to the size of the Presburger formula defining L: for a system of homogeneous
linear diophantine equation, the number of minimal solutions can be exponential
in the size of the system and the irreducible elements of the set of solutions are
exactly these minimal solutions.

7

5.2 A Logical Characterization of Linear Sets.

Let us define:

(i) there is a unique minimal element
→
b in L.

→
b = min(L)

(ii) Ir(L−
→
b) is finite.

Finite(Ir(L−
→
b))

(iii) Ir(L−
→
b) is stable under addition:

∀x,
→
y

→
x∈ L−

→
b ,

→
y∈ L−

→
b =⇒ →

x +
→
y∈ L−

→
b

The conjunction of these formulas (and the definition of Ir(L−
→
b)) yields

the formula DEFLIN(L) which is true iff L is a linear set. Moreover, in this

case, we have L = L(
→
b , Ir(L−

→
b)).

Proposition 5.2 A set L satisfies DEFLIN(L) iff L is linear.

Proof: ⇒ direction.
Assume that L satisfies DEFLIN(L). We show that L = L(

→
b , Ir(L−

→
b)).

By (ii) Ir(L−
→
b) is finite and

→
b is the unique minimal element of L by (i).

By (iii) L−
→
b is stable under + and Ir(L−

→
b) ⊆ L−

→
b yields that

L(
→
b , Ir(L−

→
b)) ⊆ L.

To prove the reverse inclusion, we assume that L 6⊆ L(
→
b , Ir(L−

→
b)).

Let
→
x be the minimal element (6= 0) of L−

→
b which is not in L(0, Ir(L−

→
b)).

By definition
→
x is reducible (otherwise

→
x∈ Ir(L−

→
b)), then

→
x=

→
x 1 +

→
x 2

with
→
x 1,

→
x 2∈ L−

→
b .

By minimality of
→
x ,

→
x 1,

→
x 2∈ L(0, Ir(L−

→
b)), therefore

→
x∈ L(0, Ir(L−

→
b)),

which yields a contradiction.
⇐ direction.

Assume that L is linear.
By proposition 5.1, L = L(

→
b , Ir(L−

→
b)) with

→
b the minimal element of L,

and IRR(L−
→
b) the (finite) set of irreducible elements, therefore L satisfyies

(i), (ii), (iii).
�

Remark 5.3 There exists a semilinear set which is not linear but which has a
with a unique minimal element and is stable under addition (hence condition (i)
is necessary). Take L as {(0, 0)}∪L((1, 0), {(1, 1), (1, 0)}) which has an infinite
set of irreducible elements of the form (1, 0) + λ(1, 1).

5.3 Complexity Issues for Linear Sets

In that section we consider automata on alphabets of the form {0, 1}p.

8

Basics Results: Firstly, we recall some basic definitions and results.
An automaton is complete iff each word reaches at least one state. De-

terminization of an automaton A yields an automaton of size 0(2|A|) and re-

quires time 0(2|A|). Given an automaton A accepting the models of φ(
→
x 1

, . . . ,
→
xm), automata A1, . . . ,Am accepting the sets L1, . . . , Lm, one can con-

struct an automaton accepting the models of φ(
→
x 1, . . . ,

→
xm) ∧ ∧i=m

i=1

→
x i∈ Li of

size 0(|A||A1| . . . |Am|) and the construction is done in time 0(|A||A1| . . . |Am|).
Moreover the automaton is complete and deterministic if the automata A,A1, . . . ,Am

are complete and deterministic.

Given an automaton A accepting the models of φ(
→
x ,

→
y), one can construct

a complete (but usually not deterministic) automaton accepting the models

of ∃ →
x φ(

→
x ,

→
y) of size 0(|A|). Similarly, one can construct a complete and

deterministic automaton accepting the models of ∀ →
x φ(

→
x ,

→
y) of size 0(2|A|)

and the construction is done in time 0(2|A|).
Given a deterministic complete automaton A, (resp. A′) accepting the

models of φ(
→
x), (resp. φ′(

→
x)), a complete deterministic for ¬φ(

→
x) can be ob-

tained in constant time, and complete deterministic automata for φ(
→
x)∧φ′(

→
x),

φ(
→
x) ∨ φ′(

→
x), φ(

→
x) =⇒ φ′(

→
x) can be computed in time O(|A||A′|) and have

size O(|A||A′|).

The Complexity of Constructions. We assume that L = L(A) with A
a complete deterministic automaton. We assume that complete deterministic

automata have been constructed for the following languages {(
→
x,

→
y) | →

x≤→
y } ,

{(
→
x,

→
y ,

→
z) | →

z =
→
x +

→
y } and these automata are considered as constants.

Proposition 5.4 The existence of a minimal element of L can be decided in
time O(|A|2|A|) and the size of the minimal element is O(|A|).

Proof: The minimal element is defined by

→
b∈ L ∧ ∀ →

x (
→
x∈ L =⇒

→
b≤→

x)

which yields an automaton of size O(|A|2|A|) that is computable in time O(|A|2|A|).
The emptiness of this automaton is decided in linear time.

Since
→
b is the minimal element,

→
b is accepted by A with a cycle free path

(non-cycle free paths are also accepted because of the trailing 0’s used in the

representation of natural numbers). This yields that
→
b has size O(|A|).

Therefore we can get an automaton of size O(|A|2) for L−
→
b .

Proposition 5.5 Let L be accepted by a complete deterministic automaton A,
then there exists an automaton accepting Ir(L) of size O(2|A|3).

Proof: The set {(
→
x,

→
y ,

→
z) | →

x∈ L − {→0},
→
y∈ L,

→
z =

→
x +

→
y∈ L} is accepted

by a deterministic automaton of size O(|A|3). The set of reducible elements

is the set {→z | ∃ →
x,

→
y

→
x∈ L − {→0},

→
y∈ L,

→
z =

→
x +

→
y∈ L} and Ir(L) is the

complement of this set.

9

Proposition 5.6 Given a set L accepted by a deterministic complete automa-
ton A, the finiteness of L can be tested in O(|A|2).

Here finiteness means finiteness of the set of tuples of naturals associated to
L, which is not the same as finiteness of the language accepted by A, since we
add trailing 0’s to representations of natural numbers.
Proof: To get rid of trailing 0’s we intersect L with the language of words not
ending by the letter (0, . . . , 0), which is done in constant time.

Therefore we have to test for finiteness the language accepted by an au-
tomaton of size 0(|A|). For each state, we test if it is accessible which is done in
O(|A|). Then for each accessible state, we test if there is a loop on this state,
which can be done in 0(|A|). Therefore finiteness can be tested in O(|A|2) (we
take |A| to bound the number of states, a more accurate bound is O(|A||Q|)
where Q is the set of states of A). �

Combining all results together, we get a doubly exponential bound (in a
polynomial of |A|) to decide the linearity of L = L(A).

In the next section we give a linear set which has exponentially many irre-
ducible periods in the size of the binary automaton accepting this set. Therefore
an exponential blowup can’t be avoided if we want to compute explicitely the
set of periods.

5.4 An Exponential Blowup between the Binary Automa-
ton and the Linear Set

We give a formula such that the size of the corresponding binary automaton is
polynomial but such that the set of solutions is a linear set with an exponential
number of irreducible periods. Let us consider the formula

(∗) Σi=p
i=1xi = 0 mod α

where α = 2m for some m, p = α and the xi are variables ranging over N .
It is known that the set of solutions of the equation Σi=p

i=1xi = α has Cα
p+α−1

solutions (see the appendix for a direct proof). Let Sα denote the set of solutions

of Σi=p
i=1xi = α different from

→
0 .

For α = p we get Cα
p+α−1 = (2p−1)!

p!(p−1)! = 1
2

2p!
p!p! . By Stirling formula n! =

O(
√

2πn(n
e

)n), therefore C
p
2p−1 = 0(2p

√
p
) for p large enough.

Claim 1 Each solution of (∗) is a linear combination of elements of Sα.

Proof: Let
→
y such that Σi=p

i=1yi = kα. The proof is by induction on k.

Base case: k = 0, the nul combination does the work.

Inductive case: assume Σi=p
i=1yi = kα. There exists xi ≤ yi such that

Σi=p
i=1xi = α, and we have Σi=p

i=1(yi − xi) = (k − 1)α. The results follows by
induction hypothesis. �

Claim 2 The elements of Sα are irreducible elements of L(
→
0 , Sα).

10

Proof: Assume that Σi=p
i=1xi = α and

→
x=

→
y +

→
z with Σi=p

i=1yi = k1α and

Σi=p
i=1Zi = k2α. Then Σi=p

i=1xi = (k1 + k2)α = α which means that k1 or k2 is 0,

i.e.
→
y or

→
z is

→
0 . �

We give a deterministic automaton on the alphabet {0, 1} accepting the
solutions of (∗) which has a size polynomial in the size of (∗). A solution of (∗)
instantiates a variable xi by a number bi

0b
i
1b

i
2 . . . i.e. xi = bi

0 + 21bi + 22bi
2 + . . .

(bi
j is say to have rank j) and we simply need to check that the sum of these

numbers is divisible by α. Since α = 2m, it is enough to check that the sum of
the m first bits is divisible by α.

The idea underlying the construction of the automaton is to compute the
sum Σi=p

i=1xi summing all bits of the same rank, keeping in memory the remainder
modulo α (which implies that we also remember the rank). Since the automaton
is binary, we must also remember how many bits we have added modulo p (the
number of variables). Therefore a state of the automaton is:

(nbit, rank, modulus)

where

• nbit ∈ {0, . . . , p} is the number of bits of rank rank that we have already
seen,

• rank ∈ {0, . . . , m} is the rank of the bits that we are summing,

• modulus ∈ {0, . . . , α− 1} is the value of the partial sum corresponding to
Σi=p

i=1xi where the xi’s have been read up to rank rank − 1, and nbit bits
of rank rank have been read.

The transition rules of the automaton are:
(nbit, rank, modulus)

0→ (nbit + 1, rank, modulus)
if nbit < p, rank < m

(p, rank, modulus)
0→ (1, rank + 1, modulus)

if rank < m

(nbit, rank, modulus)
1→ (nbit + 1, rank, modulus + 2rank mod α)

if nbit < p, rank < m

(p, rank, modulus)
1→ (1, rank + 1, modulus + 2rank+1 mod α)

if rank < m

(p, m, modulus)
0,1→ (p, m, modulus)

The final states are the states (p, rank, 0).

Proposition 5.7 The automaton A has size 0(p2log(p)) and L(A) is the set of
the solutions of (∗).

Proof: The number of states of A is O(p2m) with m = log(p) and the size of
the alphabet is 2, therefore the total size of A is 0(p2log(p)).

Let w ∈ {0, 1}∗ be a word. We can write w = w1w2 . . . wkb1 . . . bnbit where
all wi have length p.

11

We prove that w reaches the state (nbit, rank, modulus) iff either k =
rank − 1 and Σi=p

i=1xi = modulus when k < m, or else k ≥ m and Σi=p
i=1xi =

modulus mod 2m when k ≥ m where x1, . . . , xp is the tuple of integers such
that the binary representation of xi is the sequence of the ith letters of the wj ’s
followed by bi if i ≤ nbit.

The proof is by structural induction on w. Let w′ = wb and let (nbit, rank, modulus)
be the state reached by w. Let x1, . . . , xp be the sequence associated to w.

• Assume rank < m, nbit < p and b = 0. Then the state reached by wb

is (nbit + 1, rank, modulus). The sequence x′
1, . . . , x

′
p obtained from wb is

such that x′
nbit = xnbit0 and x′

j = xj . Therefore Σi=p
i=1x

′
i = modulus.

• Assume rank < m, nbit = p and b = 0. Then the state reached by wb

is (1, rank + 1, modulus). The sequence x′
1, . . . , x

′
p obtained from wb is

x′
1 = x10 and x′

j = xj . Therefore Σi=p
i=1x

′
i = modulus.

• Assume rank < m, nbit < p and b = 1. Then the state reached by wb

is (nbit, rank + 1, modulus + 2rank). The sequence x′
1, . . . , x

′
p obtained

from wb is x′
nbit = xnbit1 (and |xnbit| = rank). Therefore Σi=p

i=1x
′
i =

Σi=p
i=1xi + 2rank = modulus + 2rank.

• Assume rank < m, nbit = p and b = 1. Then the state reached by wb is
(1, rank+1, modulus+2rank). The sequence x′

1, . . . , x
′
p obtained from wb is

x′
nbit = xnbit1 (and |xnbit| = rank). Therefore Σi=p

i=1x
′
i = Σi=p

i=1xi + 2rank =
modulus + 2rank.

• Assume rank ≥ m. By induction hypothesis Σi=p
i=1xi = modulus and

Σi=p
i=1x

′
i = Σi=p

i=1xi + b2m+l = modulus mod 2m

Assuming rank < m, when we read the bit 0, we have read one more bit,
the modulus doesn’t change and the rank is increased only if we have already
read p bits (and we have seen one bit of this rank). This is accounted by the
first two transitions. When we read the bit 1, we increase the sum by 2rank , so
we must adjust the modulus accordingly, and go to next rank if nbit = p (and
we have seen one bit of this rank). The two next transitions account for these
updates. Finally, when we have read more that m bits, we add only multiples
of α therefore the modulus doesn’t change. �

6 Recovering a Semilinear Set L(C,P) from its

Automaton

We extend the previous result to a semilinear set L = L(C,P) with C = {→c 1

, . . . ,
→
c l}.

6.1 A Logical Characterization of L(C,P)

Let Add(L) be the set {→z | ∀ →
x∈ L,

→
x +

→
z∈ L}. Note that we don’t require

now any membership property on
→
z . This set is infinite for (infinite) semilinear

12

sets, but the set of irreducible elements of Add may be finite. The reader may
easily check that all the following formulas are definable in Presburger arithmetic

extended by the predicate
→
x∈ L.

We recall that given C ∈ N ,
→
x= (x1, . . . , xp) ∈ N p, we write

→
x≤ C for∧i=p

i=1 xi ≤ C and we write
→
x> C for ¬(

→
x≤ C) i.e. ∃xi xi > C.

Let us define:

(i) Ir(Add(L)) is finite.

(ii) ∃C ∈ N such that

∀ →
x [

→
x> C =⇒ ∃ →

z ,
→
x
′

(
→
z∈ Add(L)∧ →

x
′
∈ L∧ →

x=
→
x
′

+
→
z)]

Proposition 6.1 If L satisfies (i) and (ii) for some C,

then L = L(C, Ir(Add(L))) for C = {→c∈ L | →c≤ C}.

Proof: By definition C is finite. Firstly, we remark that if
→
z∈ Add(L) then

→
z

is a linear combination of elements of Ir(Add(L)). The proof is by induction on

| →
z |: either

→
z is irreducible and we are done, or

→
z =

→
z 1 +

→
z 2 where

→
z 1,

→
z 2 6=

→
0 ,

and
→
z 1,

→
z 2∈ Add(L). By induction hypothesis, each

→
z i is a linear combination

of irreducible elements of Add(L) and we are done.

We prove now both inclusions.

• L
?
⊆ L(C, Ir(Add(L))).

Let
→
x be a minimal element such that

→
x∈ L and

→
x 6∈ L(C, Ir(Add(L)))

(i.e. there is no
→
y∈ L such that

→
y 6∈ L(C, Ir(Add(L))) and

→
x=

→
y +

→
u).

We have:

→
x> C (otherwise

→
x∈ C) therefore by (ii), we get

→
x=

→
z +

→
x
′

with
→
z∈ Add(L) and

→
x
′
∈ L.

Moreover
→
z is a linear combination of elements of Ir(Add(L)) by the pre-

liminary remark.

→
x
′
> C otherwise

→
x
′
∈ C and

→
x∈ L(C, Ir(Add(L))),

→
x
′
6∈ L(C, Ir(Add(L))) otherwise

→
x∈ L(C, Ir(Add(L))).

But this contradicts the minimality of
→
x .

• L(C, Ir(Add(L)))
?
⊆ L.

This is obvious: C ⊆ L, and L is stable under addition of any
→
z∈

Ir(Add(L)).

13

�

The converse is stated as:

Proposition 6.2 if L = L(C,P) then L satisfies (i) and (ii) for some C.

Proof: For (i) there is a short proof relying on Dickson’s lemma [Dic13], but we
give a slightly more complex proof because we want a more accurate estimation
of the number of irreducible elements.

L = L(C,P) satisfy (i)?

We must show that Ir(Add(L)) is finite.

By definition P = {→p 1,
→
p 2 . . .} ⊆ Add(L).

Let C = {→c 1, . . . ,
→
c m} and let

→
z∈ Ir(Add(L)). Since adding

→
z to each

→
c i

yields an element of L, we get that
→
z satisfies the conjunction of equations

(E)
→
c i +

→
z =

→
c σ(i) +Σ

j=|P|
j=1 λi

j

→
p j i = 1, . . . , m

for some λi
j ∈ N , where σ is a mapping from 1, ..m onto itself.

There are |C||C| different possible systems (E) since there are |C| possible

values for each
→
c σ(i) (actually |C| − 1 since we can rule out

→
c σ(i)=

→
c i which

yields P as solutions).

Conversely, if
→
z is a solution of (E), for any

→
c i, for any linear combination

Σ
j=|P|
j=1 ρj

→
p j we have

Σ
j=|P|
j=1 ρj

→
p j +

→
c i +

→
z =

→
c σ(i) +Σ

j=|P|
j=1 (λi

j + ρj)
→
p j

for i = 1, . . . , m which proves that
→
z∈ Add(L).

Let us consider (E) as a system of diophantine equations in the unknowns
→
z ,

→
λ . A solution of (E) is the sum of a minimal solution (

→
z ,

→
λ)µ of (E) and of

a solution (
→
z ,

→
λ)h of the homogeneous system (H)

→
z = Σ

j=|P|
j=1 λi

j

→
p j for i = 1, . . . , m

By definition, any solution (
→
z ,

→
λ)h of (H) is such that

→
z is a linear combination

of elements of P .
If π is the projection defined by π(

→
z ,

→
λ) =

→
z , any solution

→
z of (E) is some

π((
→
z
′
,
→
λ
′
)µ + (

→
z
′′
,
→
λ
′′
)h).

Therefore
→
z =

→
z
′

+
→
z
′′

where
→
z
′
∈ Add(L) because it is a solution of (E) and

→
z
′′
∈ Add(L) because it is a linear combination of elements of P .

By definition, if
→
z is irreducible, then

→
z
′′
= 0, hence

→
z is the projection of a

minimal solution of (E).
Since there are finitely many minimal solutions of (E) we have that Ir(Add(L))

is finite.
Since the number of minimal solutions of a system of equations (E) is

bounded by 0(2|E|) and we have at most |C||C| different such systems, we

14

get a bound 0(2|P|+p+|C|+|C|log(|C|)) for the number of irreducible elements of
IRR(Add(L)).

L = L(C,P) satisfy (ii)?

Let C = Max{ci | →
c = (c1, . . . , cn) ∈ C} and let C′ = {→x∈ L | →

x≤ C}.
Then we prove that L = L(C ′, Ir(Add(L)))}.

By construction C ⊆ C ′.
Moreover P ⊆ Add(L) and the previous proof ensures that Ir(Add(L) is

finite.
Therefore for each

→
p∈ P , either

→
p∈ Ir(Add(L)) or

→
p= Σi∈Iαi

→
z i for

→
z i∈

Ir(Add(L)).
This yields L(C,P) ⊆ L(C ′, Ir(Add(L))).

Conversely by definition of Add(L) and C ′, we have L(C′, Ir(Add(L))) ⊆
L(C,P) �

From the proof, we get that the size of Ir(Add(L)) is bounded by an expo-
nential in the size of the description of L with bases and periods.

The next theorem summarizes the two previous propositions.

Theorem 6.3 L = L(C,P) for some finite C,P iff L satisfies (i) and (ii).

6.2 Complexity Issues for Semilinear Sets

In that section we consider automata on alphabets of the form {0, 1}p. We
assume that L = L(A) with A a complete deterministic automaton.

First we give a bound for Add(L).

Proposition 6.4 There exists an automaton accepting Add(L) of size O(2|A|2).

Proof: The complement of Add(L) is the set {→z | ∃ →
x∈ L∧ →

x +
→
z 6∈ L}.

A deterministic complete automaton for M = {(
→
x,

→
y ,

→
z) | →

y =
→
x +

→
z and

→
x∈

L,
→
y 6∈ L} of size 0(|A|2) can be computed in time 0(|A|2).

The complement of Add(L) is {∃ →
x,

→
y | (

→
x ,

→
y ,

→
z) ∈ M}. Therefore a com-

plete deterministic for Add(L) can be computed in 0(2|A|2). �

Proposition 6.5 To test if L(A) is a semilinear set of the form L(C,P) (for

some unknown C,P) can be done in O(22c|A|2

) for some c > 3.

Proof: We compute the complexity of deciding (i) and (ii).

Deciding (i).

By proposition 6.4 an automaton for Add(L) has size 0(2|A|2) and by proposi-

tion 5.5 an automaton accepting Ir(Add(L)) has size O(223|A|2

) and is computed

in time O(223|A|2

).

15

By proposition 5.6, the finiteness of this language can be tested in quadratic

time in the size of the automaton i.e. O(223|A|2+1) that we simplify into O(22c|A|2

)
for some c > 3.

Deciding (ii).

The formula (ii) states that the set

{→x | →
x∈ L ∧ ∀ →

z∈ Add(L),
→
y∈ L,

→
x 6=→

z +
→
y }

is finite. An automaton for

{(
→
x,

→
y ,

→
z) | →

z∈ Add(L),
→
y∈ L,

→
x 6=→

z +
→
y }

has size O(|A|2|A|2). Therefore an automaton for

{→x | →
x∈ L ∧ ∀ →

z∈ Add(L),
→
y∈ L,

→
x 6=→

z +
→
y }

has size O(2|A|2|A|2

).
Therefore the test for emptiness can be done in quadratic time in this size,

i.e. O(22|A|2|A|2

).
The main complexity arises from the computation of Ir(Add(L)) which

yields O(22c|A|2

) for some c > 3. �

7 Conclusion

We have presented a new method that allows to decide if an automaton accepting
tuples of integers recognize a semilinear set of the form L(C,P). Moreover
this method provides an effective construction of C and P . We get doubly
exponential bounds when we use tuples automata. The sets that are dealt with
represent a class which is more general or independent from the other classes
that have been considered until now by studying the structure of the automaton.
Moreover the logical characterizations that we have exhibited for linear sets and
semilinear sets of the form L(C,P) are interesting by themselves and can be
relevant for other purposes. The most natural question is whether the method
can be improved to get the whole class of semilinear sets. That would close the
loop and provide another proof of Muchnik’s result in the semilinear framework
and it would give a complete picture of the relationships between the three
formalisms. The complexity of the problem for our restricted class first, and
then in the general case is also an issue.

References

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast acceleration
of symbolic transition systems. In Proc. 15th Int. Conf. on Com-
puter Aided Verification, volume 2725 of Lecture Notes in Computer
Science, pages 118–121. Springer-Verlag, 2003.

16

[BHMV94] V. Bruyere, G. Hansel, C. Michaux, and R. Villemaire. Logic and
p-recognizable sets of integers. Bull. Bel. Math. Soc., 1:191–238,
1994.

[BW02] B. Boigelot and P. Wolper. Representing arithmetic constraints with
finite automata: An overview. In P.J. Stuckey, editor, Proc. ICLP,
number 2401 in Lecture Notes in Computer Science, pages 1–19.
Springer-Verlag, 2002.

[Dic13] L. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Am. J. Math., 35::113122,
1913.

[Lat04] L. Latour. From automata to formulas: Convex integer polyhedra.
In Proc. 19th Symp. on Logic in Computer Science (LICS 2004).
IEEE, 2004. to appear.

[Ler03] Jerôme Leroux. Algorithmique de la vérification des systèmes
à compteurs. Approximation et accélération. Implémentation de
l’outil FAST. PhD thesis, ENS-Cachan, December 2003.
http://www.lsv.ens-cachan.fr/Publis/PAPERS/Leroux-these.ps.

[Muc03] A. Muchnik. The definable criterion for definability in Presburger
arithmetic and its applications. Theoretical Computer Science,
290:1433–1444, 2003.

[RV02] T. Rybina and A. Voronkov. Using canonical representation of solu-
tions to speed-up infinite-state model-checking. In Computer Aided
Verification, 14th International Conference, CAV, volume 2404 of
Lecture Notes in Computer Science, pages 386–400. Springer-Verlag,
2002.

[WB95] P. Wolper and B. Boigelot. An automata-theoretic approach to pres-
burger arith- metic constraints. In In Proceedings of SAS 95, volume
983 of Lecture Notes in Computer Science, page 2132. Springer-
Verlag, 1995.

Appendix

We give a proof that the equation x1 + . . . + xp = α has Cα
α+p−1 solutions. The

proof is by induction on p.
We decompose the solutions into disjoint sets of solutions such that x1 =

0, x1 = 1, . . . , x1 = α. Each solution such that x1 = i is (i, x2, . . . , xp) where
(x2, . . . , xp) is a solution of x2 + . . . + xp = α − i.

By induction hypothesis we get that the number of solutions is

Cα
α+p−1−1 + Cα−1

α+p−1−2 + . . . + C0
α+p−1−α−1

The identity C l
m = Cl

m−1 + Cl−1
m−1 for 0 ≤ l < m is used repeatedly to prove

that
Cl

m = Cl
m−1 + Cl−1

m−2 + Cl−2
m−3 + . . . + C0

m−l−1

and we replace m, l by α + p − 1, α to get the result.

17

