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Abstract/Résumé

The contribution of this paper is an effective proof of the well-foundedness of MPO, as a term of
the Calculus of Inductive Constructions. This proof is direct, short and simple. It is a sequence of
nested inductions and it only requires as preliminary results the transitivity of MPO and the fact
that finite multisets whose elements are accessible for the basic relation are themselves accessible
for the multiset order. The terms we consider are not supposed to be ground nor the signature to
be finite. All the proofs have been carried out in the Coq proof-assistant.
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La contribution de cet article est une preuve effective de la bonne fondation de l’ordre récursif
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1 Introduction

Termination is an important property of term rewriting systems (TRS), that is undecidable in
general as shown by Huet and Lankford [HL78]. A standard method to prove the termination of
a particular TRS consists in finding a well-founded order > such that s > t for each rewrite step
s → t. Recursive Path Orders (RPO), introduced by Dershowitz [Der82], are simplification orders,
closed both under context and under substitutions. So, for such orders, it is sufficient to prove
that the left hand sides of rewrite rules are greater than their right hand sides. They have some
other interesting features. For example, it is decidable whether the termination of a finite TRS
with a finite signature can be proved with RPO (see [BN98] for an overview of these properties).
These orders compare terms by first comparing their head symbol, and then the lists of their
immediate arguments. These lists can be compared either as multisets in the case of the Multiset
Path Order (MPO), or lexicographically in the case of the Lexicographic Path Order (LPO), or
by combining both approaches (RPO with status).
The contribution of this paper is an effective proof of the well-foundedness of MPO, as a term of
the Calculus of Inductive Constructions (CIC). It has been carried out in the Coq proof-assistant
[Tea04] [The] to be part of CoLoR, the Coq library on rewriting and termination [CoL]. This
proof is direct in the sense that it is not obtained as an application of general theorems that have
been produced recently ([GL01] [DG04] see section 5). It is short (30 lines of Coq), simple and
exclusively relies on nested inductions. It only requires as preliminary results the transitivity of
MPO and the fact that a finite multiset the elements of which are accessible for the basic relation
is itself accessible for the multiset order. Our specification of MPO is general since the terms are
not supposed to be ground nor the signature to be finite.
The paper is self-contained and organized as follows. Section 2 is devoted to the rules that
specify in the CIC the key notions of this paper: accessibility, well-foundedness and well-founded
induction. Section 3 treats the finite multisets and the multiset ordering. In section 4, MPO is
defined and its well-foundedness is proved. We present related work and we conclude in section 5.

2 Well-Foundedness

Let (A, <) be a set equipped with a binary relation. The key notion for expressing the well-
foundedness of < is accessibility. Intuitively, an element a of A is accessible for the relation <,
and this is denoted by (acc< x), if and only if all descending chains starting with x are finite. In
the CIC, this is expressed by a generalized inductive definition (1), associated with the induction
principle (2) below:

∀y : A, y < x → (acc< y)
(acc< x)

(1)

(acc< x) (∀y : A, y < x → (P y)) → (P x)
(P x)

(2)

Clearly, minimal elements are accessible, and this is the base case of the recursive definition (1).
As far as the induction principle is concerned, it makes it possible to conclude that an accessible
element x satisfies predicate P by using as induction hypothesis the fact that P is satisfied by all
elements y less than x.

Now, the relation < is well-founded if and only if all descending chains are finite, that is if and
only if all elements are accessible. Therefore, the predicate WF is defined by:

(WF <) := ∀x : A, (acc< x) (3)

Consequently, the following principle of well founded induction holds for all well-founded rela-
tions <:
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(∀x : A) (∀y : A, y < x → (P y)) → (P x)
∀x : A, (P x)

(4)

3 Multiset Order

3.1 Finite Multisets

Let us consider a setöıd (A,∼A), that is a set A equipped with an equivalence relation ∼A. Let
us assume that ∼A is decidable :

∀a, b : A, (a ∼A b) ∨ ¬(a ∼A b)

A multiset M of A is an application from A to the set IN of natural numbers, compatible with
∼A. For all elements a of A, M(a) is called multiplicity of a in M . By definition, an element a

belongs to M if and only if its multiplicity is greater than 0. Finite multisets are those that have
only finitely many elements modulo ∼A. We represent finite multisets by listing their elements
modulo ∼A in double curly brackets. Each element occurs as many times as its multiplicity. For
instance, M = {{1, 1, 5, 5, 5, 6, 6, 7}} is the multiset on the setöıd (IN, =) defined by M(1) = 2,
M(5) = 3, M(6) = 2, M(7) = 1, and null elsewhere.

Finite multisets have been implemented in the CIC by Koprowski [CoL, Kop04]. Both subsections
3.1 and 3.2 refer to these Coq libraries, that we have slightly modified and complemented for our
purpose.

The author gives an axiomatization for the finite multisets and proves its consistency by showing
that it can be modelled by the set of the finite lists of elements of A. The axiomatization includes
in particular the union and the difference operations, a special element ∅, and an equivalence
relation ∼mul.
The finiteness of the multisets is expressed by means of the following reasoning principle:

(P ∅) (∀M : (Multiset A))(∀a : A) (P M) → (P M ∪ {{a}})
∀M : (Multiset A) (P M)

(5)

Note that type Multiset is parameterized by the base set A. All throughout the paper the mul-
tisets we consider are finite and this precision will be omitted in the sequel.

Then, from these axiomatic definitions, several other operations are introduced. In particular,
and this is of interest for our purpose, from a function insert that adds an element to a multiset,
a function list2multiset transforms recursively each list in a multiset by inserting its head in the
multiset resulting of the transformation of its tail.

We have added a function multiset2list which builds a list from a multiset M by induction on M

(principle 5), and we have proved that for all multisets M , (list2multiset (multiset2list M)) ∼mul

M .

3.2 Order on Finite Multisets

Let us now consider a new binary relation >A on the setöıd (A,∼A). This relation induces a
relation >mul,>A

on the multisets of A. A multiset N is less than a multiset M if it is obtained
by replacing finitely many elements of M by smaller elements. This relation is precisely defined
by induction as follows:

M ∼mul Z ∪ X N ∼mul Z ∪ Y ¬(X ∼mul ∅)
(∀y : A, y ∈ Y → ∃x : A, x ∈ X ∧ x >A y)

M >mul,>A
N
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Let <A and <mul,>A
denote the transposed relations of >A and >mul,>A

, respectively.

Lemma 1 If >A is transitive, then >mul,>A
is transitive.

In fact, in order to establish transitivity results by structural induction on the elements of the
base set, we shall need a more general result, that we have added to the existing Coq libraries.

Lemma 2 Let M be a multiset of elements of A. Let us assume that :
∀a : A, a ∈ M → (∀a1, a2 : A, a2 >A a1 → a1 >A a → a2 >A a)

Then for all multisets M1 and M2 :
M2 >mul,>A

M1 → M1 >mul,>A
M → M2 >mul,>A

M .

If one assumes that the relation >A is transitive, it can be shown that the relation >mul,<A
on

the multisets is the transitive closure of a reduction relation >red,>A
defined by:

M ∼mul Z ∪ {{a}} N ∼mul Z ∪ Y (∀y : A, y ∈ Y → a >A y)
M >red,>A

N

Lemma 3 If the relation>A is transitive, then for all multisets M and N

M >mul,>A
N ↔ M(>red,>A

)+ N

Proof. The proof in the existing Coq libraries uses the additional decidability hypothesis : ∀a, b :
A, (a >A b) ∨ ¬ (a >A b) that is not trivial to prove in case of the relation MPO on first order
terms. But in fact, this hypothesis can be weakened by using only the decidability of ∼A that is
mandatory all throughout the development. So we have modified this proof in this way. �

Lemma 4 For all multisets M of A, if all elements of M are accessible for the relation <A, then
M is accessible for the relation (<red,>A

)+.

An inductive proof of this lemma has been performed by Buchholtz, presented by Nipkow in
[Nip98], and carried out in Coq by Koprowski. We have added to the Coq libraries the reciprocal
property :

Lemma 5 For all multisets M on A, if M is accessible for the relation (<red,>A
)+, then all

elements of M are accessible for the relation <A.

Proof. The proof is performed by induction on the accessibility hypothesis, following principle
(2). So, we have to prove that all the elements of a multiset M are accessible under the induction
hypothesis:

∀N : (MultisetA), N(<red,<A
)+M → ∀n : A, n ∈ N → (acc<A

n) .

Let m be an element of M . Proving that m is accessible for <A, by definition 1, amounts to
prove that all n such that n <A m are accessible. This is obtained by applying the induction
hypothesis with N = M − {{m}} + {{n}}. �

Moreover, let us mention that an immediate consequence of lemma 4 is that the relation (<red,>A
)+

on multisets is well-founded as soon as the relation <A on the base set A is well-founded.

3.3 Multiset Order on the Lists

Since we aim at studying first order terms, and since such terms are encoded as functional sym-
bols applied to the list of their arguments (see section 4.1), we are led to convert the order on the
multisets to a relation on the lists.

Let us consider a setöıd A equipped with a relation >A and let us define a relation ≪>A
as

the inverse image of <mul, >A
by the function list2multiset:
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≪>A
:= λ l, l′ : (list A). (list2multiset l) <mul, >A

(list2multiset l′)

We first establish a result slightly more general than the transitivity of ≪>A
under an hypothesis

weaker than the transitivity of the relation >A.

Lemma 6 Let l be a list of elements of A. Let us assume that :

∀a : A, a ∈ l → (∀a1, a2 : A, a <A a1 → a1 <A a2 → a <A a2)
Then :

∀l1, l2 : (list A), l ≪>A
l1 → l1 ≪>A

l2 → l ≪>A
l2.

Proof This lemma is a reformulation of lemma 2. �

The following lemmas are the key results for proving the well-foundedness of MPO.

Lemma 7 Let us assume that the relation >A is transitive. For all lists l of elements of A, if
(list2multiset l) is accessible for the relation (<red,<A

)+, then l is accessible for the relation ≪>A
.

Proof As <A is transitive, the relations (<red,<A
)+ and <mul, >A

are equivalent (see lemma 3).
Thus, it is sufficient to prove the result for the latter. It follows from the fact that for any function
f and relation <, if (f x) is accessible for <, then x is accessible for (f−1 <) (this is proved in the
standard Coq libraries). �

The converse is in the next lemma.

Lemma 8 Let us assume that the relation >A is transitive. For all lists l of elements of A, if l

is accessible for the relation ≪>A
, then (list2multiset l) is accessible for the relation (<red,<A

)+.

Proof As <mul, >A
is the inverse image of ≪>A

, using the same approach as in the previous lemma,
we would obtain that for all multiset M , if (multiset2list M) is accessible for ≪>A

, then M is
accessible for <mul, >A

, and thus for (<red,<A
)+. Unfortunately, this does not allow to conclude,

since list l is not equal, in general, to (multiset2list (list2multiset l))). Function list2multiset

being not injective, its inverse is a non functional relation. Therefore, we must use the following
lemma.

Lemma 9 Let (L,≪) and (M, <) be two sets equipped with binary relations. Let r : L → M →
Prop a relation such that:

(∀l : L) (∀M, M ′ : M) (r l M) → M ′ < M → (∃l′ : L) (r l′ M ′) ∧ l′ ≪ l

then
(∀l : L) (∀M : M) (r l M) → (acc≪ l) → (acc< M)

Proof The proof is performed by induction on hypothesis (acc≪ s). �

The proof of lemma 8 is done by applying lemma 9 with L = (list A), M = (Multiset A),
and r = λl, M. M ∼mul (list2multiset l). The hypothesis of lemma 9 is fulfilled by choosing
l′ = (multiset2list M ′). �

Lemma 10 Let us assume that the relation >A is transitive. For all lists l of elements of A, if
all elements of l are accessible for the relation <A, then l is accessible for the relation ≪>A

.

Proof From the transitivity of the relation >A, we deduce the equivalence of the relation <mul,>A

on the multisets and the transitive closure of the reduction relation <red,>A
. Therefore, using

lemma 4, we deduce that (list2multiset l) is accessible for (<red,<A
)+. The result follows from

lemma 7. �

Lemma 11 Let us assume that the relation >A is transitive. For all lists l of elements of A, if l

is accessible for the relation ≪>A
, then all elements of l are accessible for the relation <A.

Proof It is similar to the previous one, but it relies on lemmas 5 and 8 . �

The following lemma will be instrumental in many proofs in the sequel.

Lemma 12 Let l1 and l2 be two lists of elements of A, such that l1 ≪>A
l2. Then, for all

elements a1 in l1, there exists an element a2 in l2 such that a2 >A a1.
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4 Multiset Path Ordering (MPO)

MPO is a binary relation on the first order terms. It has been introduced by Dershowitz [Der82]
for proving termination of rewriting systems.

4.1 First order terms

Let us consider a set F of functional symbols, equipped with a well-founded transitive relation <F

and X a set of variable names. The type term of first order terms on signature F can be defined
inductively as follows:

term : Set :=
V ar : X → term |
App : F → (list term) → term.

where type list is classically defined by:

(list term) : Set :=
nil : (list term) |
cons : term → (list term) → (list term).

In the sequel, we shall use the usual simplified notations:

• (s1, . . . , sn) for (cons s1(. . . (cons sn nil) . . . ))

• {{s1, . . . , sn}} for (list2multiset (cons s1(. . . (cons sn nil) . . . ))).

• f(s1, . . . , sn) for (App f (cons s1(. . . (cons sn nil) . . . ))

• x for (V ar x)

• V ars(s) for the set of the variables that occur in term s.

• s ∈ ss to express that s is an element of list ss.

An induction principle associated with type term can be stated by the following rule, in which P

is a predicate on term.

∀x : X, P (V ar x)
∀f : F, ∀ss : (list term), (∀s : term, s ∈ ss → (P s)) → (P f(ss))

∀s : term, (P s)
(6)

This principle is an immediate consequence of the following lemma:

Lemma 13 Let P be a predicate on term. Under the two hypotheses

(i) ∀x : X, P (V ar x)

(ii) ∀f : F, ∀ss : (list term), (∀s : term, s ∈ ss → (P s)) → (P f(ss))

one can prove that ∀n : nat, ∀s : term, |s| = n → (P s) where |s| denotes the size of term s,
that is the number of functional symbols in s.

Proof Following principle (4) for the strict order on the natural numbers, we proceed by well-
founded induction on the size n of term s. If s is a variable, one applies hypothesis (i). If s is of
the form s = f(ss), the result follows from hypothesis (ii) and from the fact that the size of all
the immediate subterms of s is less than n. �
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4.2 Definition of MPO

The Multiset Recursive Ordering MPO (denoted here by <MPO) is a relation on terms defined
inductively by the 3 rules below:

g <F f ∀i ∈ {1, . . . , m}, ti <MPO f(s1, . . . , sn)
g(t1, . . . , tm) <MPO f(s1, . . . , sn)

(MPO1)

{{t1, . . . , tm}} <mul,<MPO
{{s1, . . . , sn}}

f(t1, . . . , tm) <MPO f(s1, . . . , sn)
(MPO2)

∃i ∈ {1, . . . , n}, t 6MPO si

t <MPO f(s1, . . . , sn)
(MPO3)

Let us point out that the premise of rule (MPO2) is recursive, since the relation <mul,<MPO
on the

multisets of terms depends on the relation <MPO on terms. In the sequel, we will use a simplified
notation <mul instead of <mul,<MPO

. Moreover we define ≤MPO:= λs, t : term, s <MPO t ∨s =
t.

4.3 Variables Behavior in MPO

The section is dedicated to some results related on the behavior of variables with respect to the
relation <MPO.

Lemma 14 Variables are minimal terms for the relation <MPO.

Proof This is immediate from the definition of <MPO, since no rule makes it possible to derive
s <MPO x, where s is a term and x is a variable. �

Lemma 15 For all terms s and all variables x, if x <MPO s then x ∈ V ars(s).

Proof By induction on s. �

Lemma 16 For all terms s and all variables x, if x ∈ V ars(s) and x 6= s, then x <MPO s.

Proof By induction on s. �

Lemma 17 Let s and t be two terms. If t ≤MPO s then V ars(t) ⊂ V ars(s).

Proof The case where s = t is trivial. We have thus to establish that ∀t : term, (P t) where:

P := λt : term. ∀s : term, t <MPO s → V ars(t) ⊂ V ars(s) .

We proceed by induction on term t, following principle (6) in section 4.1.

• Base Case Let us prove (P x) for any variable x. Let s be a term and let us assume that
x <MPO s. By lemma 15, x is a variable of s and then the result is immediate.

• Induction Step Let g be a functional symbol and ts a list of terms. Under the induction
hypothesis

HInd1: ∀t : term, t ∈ ts → (P t)

we have to prove (P g(ts)), that is ∀s : term, (Q s) where:

Q := λs : term. g(ts) <MPO s → V ars(g(ts)) ⊂ V ars(s).

By induction on term s, we have now two cases to consider:
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– Base Case Let us prove (Q x) for any variable x. Let us assume that g(ts) <MPO x.
This is impossible from lemma (14). Therefore, the goal is proved by contradiction.

– Induction Step Let f be a functional symbol and ss a list of terms. We have to
establish that (Q f(ss)) holds, under the induction hypothesis:

HInd2: ∀s ∈ ss, (Q s).

Let us assume g(ts) <MPO f(ss). In this case, the proof is done by cases on the
definition of the relation <MPO.

∗ From (MPO1), we have H: ∀t ∈ ts, t <MPO f(ss). Let x ∈ V ars(g(ts)). Necessar-
ily, there exists an element t of list ts such that x ∈ V ars(t). But, from HInd1
we know that (P t) holds and from H we can deduce that V ars(t) ⊂ V ars(f(ss)).
Therefore, x ∈ V ars(f(ss))

∗ From (MPO2), we have ts ≪>MPO
ss. As in the previous case, a variable x in

V ars(g(ts)) is in V ars(t) for some t in ts. But, from lemma 12, there exists s in
ss such that t 6mpo s. If s = t, V ars(t) = V ars(s). If t <MPO s, from Hind1
V ars(t) ⊂ V ars(s). In both cases, we can deduce that x is in V ar(s), and thus in
V ars(f(ss)).

∗ From (MPO3), there exists a term s in list ss such that g(ts) ≤MPO s. From
Hind2, (Q s) is satisfied. Therefore, all variables of g(ts) belong to V ars(s) and
thus to V ars(f(ss)). �

4.4 Transitivity

The transitivity of the relation <MPO is proved by three nested inductions on terms following
principle (6) in section 4.1. It requires lemma 17 above.

Lemma 18 For all terms u, t, s, if u <MPO t and t <MPO s then u <MPO s

Proof The proof proceeds by inductions on terms u, t, and s successively. First, we have to
establish that ∀u : term, (P u) where:

P := λu : term. ∀t : term, ∀s : term, u <MPO t ∧ t <MPO s → u <MPO s .

• Base Case Term u is a variable x. From lemma 15, x is in V ars(t) and from lemma 17
below, V ars(t) ⊂ V ars(s). Therefore, x is a variable of term s. Moreover s is not a variable
since s is not minimal. Thus, from lemma 16, x <MPO s.

• Induction Step Let h be a functional symbol and us a list of terms. We have to prove
(P h(us)) under the induction hypothesis

HInd1 : ∀u : term, u ∈ us → (P u).

In fact, we have to establish that ∀t : term, (Q t) where :

Q := λt : term, ∀s : term, h(us) <MPO t ∧ t <MPO s → h(us) <MPO s.

– Base Case Term t is a variable. This is impossible since variables are minimal elements.

– Induction Step Let g be a functional symbol and ts be a list of terms we have to
prove (Q g(ts)) under the induction hypothesis

HInd2: ∀t : term, t ∈ ts → (Q t).

The goal is of the form ∀s : term, (R s) where:

9



R := λs : term, h(us) <MPO g(ts) ∧ g(ts) <MPO s → h(us) <MPO s.

∗ Base Case Term s is a variable. This is impossible since variables are minimal
elements.

∗ Induction Step Let f be a functional symbol and ss be a list of terms we have
to prove (R f(ss)) under the induction hypothesis

HInd3: ∀s : term, s ∈ ss → (R s).

By the definition of R, we have to prove that
G: h(us) <MPO f(ss)

under the two hypotheses
H1: h(us) <MPO g(ts)
H2: g(ts) <MPO f(ss).

Each of these hypotheses leads to consider three cases. Thus, we have to examine
nine cases. We only detail some of them that illustrate the need of various lemmas
introduced previously. The others are routine.

Case 1 Let us assume for example that H1 follows from (MPO1) and H2 from
(MPO2). We have :
(i) h <F g

(ii)∀u : term, u ∈ us → u <MPO g(ts)
(iii) g = f

From (i) and (iii), h <F f . Let be u any element of us. Let us prove that
u <MPO f(ss). This comes from (ii), H2, and HInd1. The goal is proved by
applying (MPO1).

Case 2 If H1 and H2 come from (MPO2), we have h = g = f and us ≪>MP O

ts ≪>MP O
ss. We conclude that us ≪>MPO

ss by applying lemma 6 in section 3.3
and hypothesis Hind1.

Case 3 If H1 comes from (MPO3) and H2 from (MPO2), we have:
(i)∃t : term, t ∈ ts ∧ h(us) 6MPO t

(ii) g = f

(iii) ts ≪>MPO
ss

From lemma 12 and (iii), there exists s in ss such that t 6MPO s. If t = s, from
(i) it results that h(us) 6MPO s. If t <MPO s, from Hind2 and (i) we deduce
h(us) <MPO s. Therefore, in both cases, h(us) 6MPO f(ss) from (MPO3).

Let us point out that the transitivity of the relation <F is required when both
H1 and H2 come from (MPO1).

4.5 Well-Foundedness of the Multiset Path Ordering

We have now at our disposal all the tools instrumental for proving the well-foundedness of MPO.

Theorem 19 Relation <MPO is well-founded.

Proof Let s be a term, let us prove that s is accessible for <MPO. We proceed by induction on s

(principle 6).

• Base Case If s is a variable, from lemma 14 s is a minimal element, and thus it is accessible.
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• Induction Step Let f be a functional symbol and ss a list of terms. We have to prove
(acc<MPO

f(ss)) under the induction hypothesis:

HInd1: (accs ss)

where accs := λss : (list term). ∀s : term, s ∈ ss → (acc<MPO
s).

This amounts to proving that ∀f : F, (P f) where predicate P is defined by:

P := λf : F. ∀ss : (list term), (accs ss) → (acc<MPO
f(ss)).

Let f be a functional symbol. As <F is supposed to be well-founded, f is accessible for
this relation and then, using induction principle 2, we are led to prove (P f) under the
induction hypothesis

Hind2: ∀g : F, g <F f → (P g).

The goal can be written (∀ss : (list term)) (Q ss) where predicate Q is defined by

Q := λss : (list term). (accs ss) → (acc<MPO
f(ss))

Let ss be a list of terms such that (accs ss). From lemma 10 in section 3.3, this im-
plies that ss is accessible for the relation ≪<MP O

. Consequently, we have to prove that ss

satisfies Q under the induction hypothesis

HInd3: ∀ts : (list term), ts ≪<MPO
ss → (Q ts).

By the definition of predicate acc (rule 1), proving the goal (Q ss) amounts to proving
the proposition (accs ss) → ∀t : term, (R t) where R is defined by:

R := λt : term. t <MPO f(ss) → (acc<MPO
t)

So, at this point, we have to prove (R t) under the hypothesis Hind1. Let us do an
induction on term t.

– Base Case If t is a variable, from lemma 14 s is a minimal element, and thus it is
accessible.

– Induction Step Let g be a functional symbol and ts a list of terms. Let us prove
(R g(ts)) under the induction hypothesis:

HInd4 : ∀t : term, t ∈ ts, → (R t).

By the definition of R, we have to establish that (acc<MPO
g(ts)) under the hypothesis

H: g(ts) <MPO f(ss). This assumption leads us to consider three cases, following the
rule (MPOi) from which the inequality is derived.

Case MPO1 We have: (i) g <F f

(ii) ∀t : term, t ∈ ts → t <MPO f(ss)

From (i) and hypothesis Hind2, g satisfies predicate P . Thus, to demonstrate the
accessibility of g(ts), it is sufficient to prove (accs ts). But all elements t of ts are less
than f(ss) by (ii) and thus are accessible from HInd4.

Case MPO2 The hypotheses are: (i) f = g

(ii) ts ≪>MPO
ss

11



From (i), the goal is now (acc<MPO
f(ts)). From (ii) and HInd3 we deduce that ts

satisfies Q. Thus, proving the goal amounts to show that all terms t in ts are accessible.
But from HInd4, t is accessible as soon as it is less than f(ss). But t <MPO f(ts) from
(MPO3) and f(ts) <MPO f(ss) by H, thus by transitivity (lemma 18), t <MPO f(ss).

Case MPO3 In this case, g(ts) is less or equal than an element s of ss. Since by
HInd1 s is accessible, so is g(ts). �

5 Related Work and Conclusion

The proof of the well-foundedness of RPO given in [Der82], relies on the fact that all simplifica-
tion orders are well-founded since they contain the homeomorphic embedding that is a well partial
order (and thus well-founded) from Kruskal’s theorem. However, the proof of Kruskal’s theorem
is not constructive and only applies when the signature is finite.
In [Les82], Lescanne introduces a decomposition order (DO) on the terms, that he proves to be
equivalent to MPO. Then, he establishes the well-foundedness of DO assuming that the precedence
relation on the functional symbols is total and well-founded. His proof is elementary although not
really constructive, but it seems that, with some efforts, it could be transformed into a construc-
tive version, more intricate than ours. Moreover, Zorn’s Lemma is required when the signature
is infinite and the precedence non total, to embed it in a total one. However, this approach is
interesting since it does not require the transitivity, and it provides an efficient algorithm for com-
paring two terms.
Ferreira and Zantema in [FZ95] demonstrate several theorems related to the well-foundedness of
first order term orderings. Their results are quite general and even complete with respect to the
termination of the term rewriting systems in the case of finite signatures. They can be applied
straightforwardly to RPO. Although their proofs do not rely on Kruskal’s theorem, they are not
constructive.
In [JR99][JR03] Jouannaud and Rubio propose a constructive proof of termination of higher-order
of recursive path ordering (horpo) by the Tait-Girard technique [GLT88] whose specialization to
the case of first order terms leads to a proof of the well-foundedness of RPO by structural induction
on terms as pointed out in [van01]. Our Coq proof relies on a simplification of this specialization
to MPO, in the sense that it does not require the auxiliary lexicographic order on triples they use.
In [GL01], Goubault-Larrecq establishes a theorem the proof of which has been carried out in the
Coq proof assistant. The result is general since it does not depend on the term structure, and
therefore it applies to other algebras. The proof of the theorem is elementary. However, proving
that it generalizes Ferreira and Zantema’s results involves a non constructive step. Moreover,
applying this theorem to MPO, and in particular, proving that hypothesis (iv) is satisfied is not
simpler than our direct proof. Also, the definition of MPO has to be modified. The condition
∀i ∈ {1, . . . , m}, ti <MPO f(s1, . . . , sn) must be added as a premise to the rule MPO2 (see sec-
tion 4.2), and that is cumbersome. An additional Coq proof that this condition is useless should
be achieved.
Dawson and Goré [DG04] prove a general theorem for establishing the well-foundedness of rela-
tions closed under context. This theorem has been machine-checked in Isabelle. Again, proving
that the hypotheses of the theorem are satisfied may be difficult and requires in particular to find
out an appropriate auxiliary relation to be proved well-founded (that may be non trivial). The
authors apply it to various examples including LPO. The proof obtained in this last case seems
reasonably easy and it would be interesting to compare this approach for MPO with a direct one
as ours.
Let us also mention the work of Leclerc [Lec95] who carries out in Coq a termination proof of term
rewriting systems with MPO. However, the proof is achieved without using the well-foundedness
of MPO, which is not established, but rather an embedding of the rewrite relations into some
well-founded ordering based on the Grzegorzcyk hierarchy of number theoretic functions.
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We have designed a direct proof of the well-foundedness of MPO in the CIC. This proof is par-
ticularly short (30 lines). It only requires elementary preliminary results, and applies to terms
on a (possibly infinite) signature of functional symbols with variable arity, including variables. It
also applies when functional symbols have a fixed arity (algebraic terms). Indeed, Blanqui has
integrated in CoLoR [CoL] a library that includes a conversion from algebraic terms to varyadic
ones, that is proved to be termination-preserving. This work is a first step to be extended to the
cases of LPO and RPO with status.

Acknowledgements The authors wish to thank Frédéric Blanqui for his collaboration, and Pierre
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