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A Typed Calculus for Querying
Distributed XML Documents

Lucia Acciai, Michele Boreale and Silvano Dal Zilio

Rapport/Report 29-2006

October 2005

Les rapports du laboratoire sont téléchargeables à l’adresse suivante
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Abstract/Résuḿe

We study the problems related to querying large, distributed XML documents. Our proposal
takes the form of a new process calculus in which XML data are processes that can be queried by
means of concurrent pattern-matching expressions. What weachieve is a functional, strongly-
typed programming model based on three main ingredients: anasynchronous process calculus
that draws features fromπ-calculus and concurrent-ML; a model where both documents and
expressions are represented as processes, and where evaluation is represented as a parallel com-
position of the two; a static type system based on regular expression types.
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Ce rapport s’intéresse aux problèmes liés à la manipulation et à l’interrogation de documents
XML de très grande taille, distribués sur un réseau. Nousproposons un nouveau calcul de
processus dans lequel les données sont des processus qui peuvent être interrogés par le biais
d’expressions de filtrage concurrentes. Un des résultats de ce travail est un modèle de pro-
grammation fonctionnel, fortement typé, basé sur trois ingrédients principaux: un calcul de
processus asynchrone qui emprunte certaines de ses caract´eristiques auπ-calcul et au langage
CONCURRENT-ML; un modèle dans lequel documents et requêtes sont représentés par des pro-
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1 Introduction

There is by now little doubt that XML will succeed as a lingua franca of data interchange on
the Web. As a matter of fact, XML is a building block in the development of new models of
concurrent applications, often referred to as Service-Oriented Architecture (SOA), where com-
putational resources are made available on a network as a setof loosely-coupled, independent
services.

The SOA model is characterized by the need to exchange and query XML documents. In
this paper, we concentrate on the specific problems related to queryinglarge, distributed XML
documents. This is the case, for example, of applications interactingwith distributed heteroge-
neous databases or that process data acquired dynamically,such as those originating from arrays
of sensors (in this case, we can assume that the document is ineffect infinite). For another exam-
ple, consider the programs involved in the maintenance of the big Web indexes used by search
engines [14]. A typical example is the computation of aterm vector, that is a list of words found
on some documents of the index together with their frequency. Distribution, concurrency and
dynamic acquisition of data must be explicitly taken into account when designing an effective
computational model for this kind of applications.

We most particularly pay attention to the processing model.Our proposal takes the form of
a process calculus in which XML data are processes that can bequeried by means of concurrent
pattern-matching expressions. In this model, the evaluation of patterns is distributed among
locations, in the sense that the evaluation of a pattern at a node triggers concurrent evaluation of
sub-patterns at other nodes, and actions can be carried out upon success or failure of patterns.
The calculus also provides primitives for storing and aggregating the results of intermediate
computations and for orchestrating the evaluation of patterns. In this respect, we radically depart
from previous works on XML-centered process calculi, see e.g. [2, 9, 17], where queries would
be programmed as operations invoked on (servers hosting) Web Services and XML documents
would be exchanged in messages. In contrast, we view queriesas code being dispatched to the
locations “hosting” a document. This shift of view is motivated by our target application domain.
In particular, our model is partly inspired by theMapReduceparadigm described in [14] that
is used to write programs to be executed on Google’s large clusters of computers in a simple
functional style. Continuing with the “term vector example” above, assume that the documents
of interest are cached on different (maybe replicated) servers. A query that accomplishes the
aforementioned task would dispatch sub-queries to every server and create a dedicated reference
cell to aggregate the partial results from each server. Sub-queries sifts the local documents and
transmit to the central reference cell a sequence of pairs (word, frequency) produced locally. The
task of the aggregating function is to collect the frequencies for identical keywords as they arrive,
so as to eventually produce the global term vector. To achieve reliability, sub-queries may have
to report back periodically with status updates while the “master query” may decide to abort or
reinstate queries in case of servers failure.

Another important feature of our model is the definition of a static type system based
on regular expression typesthat is compatible with Document Type Definitions (DTD) and
other XML schema languages. What we achieve is a functional,strongly-typed programming
model for computing over distributed XML documents based onthree main ingredients: a
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semantics defined by an asynchronous process calculus in thestyle of theπ-calculus [23] and
proposed semantics for concurrent-ML [16]; a model where documents and expressions are
both represented as processes, and where evaluation is represented as a parallel composition of
the two; a type system based on regular expression types (thesoundness of the static semantics
is proved via a subject reduction property, Theorem 1). Eachof these choices is motivated by a
feature of the problem: the study of service-oriented applications calls for including concurrency
and explicit locations; the need to manipulate large, possibly dynamically generated, documents
calls for a streamed model of processing; the documents handled by a service should often obey
a predefined schema, hence the need to check that queries are well-typed, preferably before they
are executed or “shipped”.

The rest of the paper is organized as follows. Section 2 presents the core components of
the calculus — documents, types and patterns — and Section 3 gives the formal semantics of
the calculus. In Section 4 we define a first-order type system with subtyping based on regular
expression types and prove the soundness of our type discipline. Before concluding with a review
of related works, we study possible extensions of our model in Section 5.

2 Documents, Types and Patterns

We consider a simple language of first-order functional expressions, denotede, e′, . . . , enriched
with references and recursive pattern definitions that are used to extract values from documents.
Patterns are built on top of a syntax for defining regular treegrammars [13], which is also at the
basis of our type system.

2.1 Documents

An XML document may be seen as a simple textual representation for nested sequences of ele-
ments<a>. . .</a>. In this paper, we follow notations similar to [21] and choose a simplified
version of documents by leaving aside attributes among other things. We assume an infinite set
of tag names, ranged over bya, b, . . . (we will often choose the symbolo for the tag of the root
element of a document). A document is an ordered sequence of elementsa1[v1] . . . an[vn], where
v1, . . . , vn are documents. Documents may be empty, denoted(), and can be concatenated,
denotedv, v′. The composition operation is associative with identity().

In the following we consider distributed documents, meaning that each elementaj[vj ] is
placed in a given location, sayıj . Locations are visible only at the level of the operational
semantics, in which the contents of a document is represented by the indexı1 . . . ın (the list of
locations) of its elements. For the sake of simplicity, locations and indexes are the only values
handled in our calculus and we leave aside atomic data valuessuch as strings or integers.
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2.2 Document Types

Applications that exchange and process XML documents rely on type information, such as
DTDs, to describe structural constraints on the occurrences of elements. In our model, types
take the form of regular tree expressions, which are a set of recursive definitions of the form
A := Reg(ai[Ai])i∈1..n, whereReg is a regular expression andA, A1, . . . , An are type variables.
This is essentially a syntax for defining regular tree grammar. A regular expressionReg(αi)i∈1..n

can be an atomαi with i ∈ 1..n; it can be the constantAll, which matches everything, orEmpty,
which matches the empty sequence; it can be a choiceReg1 Reg2, a sequential composition
Reg1,Reg2, or an iterationReg∗. For instance, the declaration below defines the typeL of fam-
ily trees, which are sequences of male or female person such that each person has aname element,
and two elements,d ands, for the list of his daughters and sons.

L := (man[P ] woman[P ])∗ P := name[All], d[WL], s[ML]
WL := woman[P ]∗ ML := man[P ] ∗ .

There is a natural notion of subtypingA <: B between regular expression types, meaning
that every document inA is also inB. The type system is close to what is defined in functional
languages for manipulating XML, see e.g. XDuce [19, 20, 21] or the review in [10], hence we
stay consistent with actual frameworks used in sequential languages for processing XML data.

2.3 Selectors and Patterns

The core of our programming model is a system of distributed pattern matching expressions
that concurrently sift through documents to extract information. Basically, patterns are types
enhanced with parameters and capture variables. However, like functions, patterns are declared
and have a name.

We assume a countable set ofnames, partitioned intolocations ı, , ℓ, . . . and variables
x, y, . . . We use the vector notation~x for tuples of names. The declarationp(~x) :=
(

Reg(ai[pi(~yi)])i∈1..n

)

as y defines a pattern calledp, with parameters~x, that will collect
matched documents in the referencey (wherey is a variable in~x). For instance, the patterns
defined below can be used to extract the names of persons occurring in a document of typeL.

names(x, y) :=

(

man[p(x, y, x)] woman[p(x, y, y)]
)

∗
p(x, y, z) := name[all(z)], d[names(x, y)],s[names(x, y)]

all(z) := All as z.

A call to names(ı, ℓ) stores in (the reference located at)ı the name of men and inℓ the
name of women. A call tonames(ℓ, ℓ) will store the names of all persons inℓ. Actually, the
most general form of pattern declaration allowslet definitions and setting continuations to be
evaluated upon success or failure of the pattern, i.e. a pattern declaration is of the form, whereS
is a selectorReg(ai[pi(~yi)])i∈1..n:

p(~x) := let
(

z1 = e′1, . . . , zm = e′m
)

in
(

S as y
)

then e1 else e2 ,
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An important feature of our model is that patterns may extract multiple sets of values from
documents in one pass, which contrasts with the monadic queries expressible with technologies
such as XPath. In the next section, we give a formal definitionof the calculus, which embeds
an operatortry v p(~u) for applying the patternp to the valuev. During reduction, the indexv
is matched againstS after all the expressionse′1, . . . , e

′

m have been evaluated. If the matching
succeeds, thenv is added to the values stored iny ande1 is evaluated. Otherwise, the compen-
satione2 is evaluated. These optional continuations allow to add basic exception and transaction
mechanisms to the calculus.

Clearly, types are particular kind of patterns: a pattern declaration without parameters,let
definitions, capture variables and continuations is a type declaration. Moreover, every patternp
can be associated with the typeA obtained by erasing these extra information:A is the type of
all documents that are matched byp.

In the following, we assume that functions and patterns are typed explicitly. For instance,
we assume that the patternnames is declared with the type(All, All) → L. More generally, a
reference that merges values of typeB will have a typeA such thatA,B <: A.

2.4 Witness and Unambiguous Patterns

Next, we define what it means for a pattern to match an index anddefine a notion ofun-
ambiguouspatterns. AssumeS is the selectorReg(ai[pi(~vi)])i∈1..m. The sequenceai1 . . . ain
matchesS if and only if it is a “word” in the language ofReg(ai)i∈1..m. This relation is de-
notedai1 . . . ain ⊢S pi1(~vi1) . . . pin(~vin) and we call(pij(~vij ))j∈1..n a witnessfor S of ai1 . . . ain .
We write ai1 . . . ain 6⊢S if the sequence has no witness forS. More formally, the relation
a1 . . . an ⊢S c1 . . . cn, with ci ::= p(~v) | All, is defined in the following table:

Witness

(W-All)

a1 . . . an ⊢All All . . . All

(W-Empty)

() ⊢Empty ()

(W-Choice)
∃i ∈ {1, 2} : a1 . . . an ⊢Regi

c1 . . . cn

a1 . . . an ⊢
Reg

1
Reg

2

c1 . . . cn

(W-Atom)

a ⊢a[c] c

(W-Seq)
∃i ∈ {0 . . . n} : a1 . . . ai ⊢Reg

1
c1 . . . ci ai+1 . . . an ⊢Reg

2
ci+1 . . . cn

a1 . . . an ⊢Reg
1
,Reg

2
c1 . . . cn

(W-Star-Empty)

() ⊢Reg∗ ()

(W-Star)
∃i ∈ {1 . . . n} : a1 . . . ai ⊢Reg c1 . . . ci ai+1 . . . an ⊢Reg∗ ci+1 . . . cn

a1 . . . an ⊢Reg∗ c1 . . . cn

It is standard in XML to restrict to expressions that denote sequences of elements unequiv-
ocally. We say that a pattern with selectorS is unambiguousif each sequence of tags has at
most one witness forS. Assume that(pij(~vij ))j∈1..m is “the witness” ofS for b1 . . . bm. When a
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documentb1[v1] . . . bm[vm] is matched against a pattern with selectorS, each sub-documentvj is
matched againstpij (~vij ). If b1 . . . bm has no witness then the pattern-matching fails.

Some schema languages, like DTD for example [7], use a stronger notion which requires
that the witness can be computed incrementally, reading from a sequence of tags with only one
symbol look-ahead. While this notion is suitable when working with streamed data (of ordered
documents) it may impose needless performance penalties when working in a truly concurrent
way. For instance, we want to be able to start the evaluation on an element without necessarily
matching all its preceding siblings beforehand (while still providing a minimal support for “set-
at-a-time” operations). For this reason, we require an evenstronger notion of unambiguity and
say that a selectorReg(ai[pi(~vi)])i∈1..n isconsistently unambiguousif every tag specifies a unique
pattern, i.e. wheneverai = aj thenpi(~vi) andpj(~vj) are the same.

Another (more flexible but also more complex) solution wouldbe to require that, for every
sequence of tags and every integeri, theith component of a witness can be computed only from
the value of theith tag.

3 The Calculus

The presentation of the calculus can be naturally divided into two fragments: a language of
functional expressions, orprograms, that are used in the body of pattern and function declara-
tions; and a language of processes, orconfigurations, that models distributed documents and the
concurrent execution of programs.

3.1 Programs

The calculus embeds a first-order functional language with references, pattern-matching and
constructs for building documents. In the following, we assume that every function identifier
f has associated arityn > 0 and a unique definitionf(~x) := e where the variables in~x are
distinct and include the free variables ofe. We take similar hypotheses for patterns. The syntax
of expressionse, e′, . . . is given below:

Syntax of Expressions

u, v ::= results
x name: variable or location
ı1 . . . ın index (withn > 0)

e ::= expressions
u result
a[u] element creation
u, v result composition
f(u1, . . . , un) function call
let x = e1 in e2 let
newref u new reference (with initial valueu)
!u dereferencing
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u += v update (addsv to the values stored inu)
try u p(u1, . . . , un) pattern matching call
wait u(x) then e1 else e2 wait matching

A result is either a name or an index, i.e. an expression that immediately returns itself. Ex-
pressions include results, operators for creating new elementsa[u], for concatenating indexes
u, v, and for creating and accessing references. Reference update has a slightly unusual seman-
tics since the effect ofı += v is to appendv to the value stored in the referenceı. Actually,
we could imagine that each reference is associated with an “aggregating function” that specifies
how the sequence of values stored in the reference has to be combined. For example, assume
ℓ is an “integer reference” that increments its value by one onevery assignment. Then a call
to names(ℓ, ℓ) counts the number of people in a document of typeL. We only consider index
composition in this work.

The expressiontry v p(~u) is used to apply the patternp to the indexv = ı1 . . . ın. A
try expression returns at once with the location of a fresh node where the matching oc-
curs. Moreover, evaluation of patterns is carried out concurrently: the effect of evaluating
let z =

(

try v p(~u)
)

in P is to filter v by p concurrently with the evaluation ofP . In this
example,z is bound to the location of the “thread” that executes thetry expression, sayℓ. The
locationℓ can be tested inP to check whether the pattern-matching has ended using the expres-
sionwait ℓ(x) then e1 else e2. Thewait statement blocks until the pattern evaluating atℓ
stops. Then the continuatione1 is evaluated if the matching succeeds, otherwisee2 is evaluated.
In each case the variablex is bound tov.

3.2 Configurations

The syntax of processesP, Q, . . . is as follows:

Syntax of Processes

P, Q, R ::= processes
e expression
let x = P in Q let
〈 ı 7→ d 〉 location
P � Q parallel composition
(νı)P restriction

d ::= resources
ref u reference with valueu
node a(u) node, element taggeda with indexu
try ı p(u1, . . . , un) try matching
test ı u test matching
ok ı successful match
fail ı failed match
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The calculus features operators from theπ-calculus: restriction(νı)P specifies the scope of
a nameı local toP ; parallel compositionP �Q represents the concurrent evaluation ofP andQ.
Overall, a process is a multiset oflet expressions, describing threads execution, and locations
〈 ı 7→ d 〉, that describes aresourced located inı.

The calculus is based on an abstract notion of location that is, at the same time, the minimal
unit of interaction and the minimal unit of storage. Failures are not part of this model (they can
be viewed as an orthogonal feature) but could be added, e.g. in the style of [5]. Locations store
resources. The main resources areref u, to store the current state of a reference, andnode a(u),
to describe an element of the forma[u]. The calculus explicitly takes into account the distribution
of document nodes and, for example, the documenta[b[ ] c[ ]] can be represented (at runtime) by
the parallel composition:

(νı1ı2)
(

〈 ı 7→node a(ı1 ı2) 〉 �〈 ı1 7→ node b( ) 〉 �〈 ı2 7→ node c( ) 〉
)

.

The other resources arise in the evaluation of pattern-matching and correspond to different
phases in its execution: scheduling a “pattern call” (try); waiting for the result of sub-patterns
(test); stopping and reporting success (ok) or failure (fail).

Syntactic conventions:the operatorslet, wait and ν are name binders. Notions ofα-
equivalence and of free and bound names arise as expected: wedenotefv(P ) the set of variables
that occur free inP andfn(P ) the set of free names. We identify expressions and terms up-to
α-equivalence. Substitutions are finite partial maps from variables to results: we writeP{x←u}
for the simultaneous, capture-avoiding substitution of all free occurrences ofx in P with u. As-
sumeσ is the substitution{x1←u1} . . .{xn←un} and~u = (u1, . . . , un). We writef(~u) := e′ if
f(~x) := e ande′ = σ(e) and we writep(~u) := S ′ if the selector ofp(~x) is S andS ′ = σ(S).
Finally, we make use of the following abbreviations: ifu = ı1 . . . ın then(νu)P is a shorthand
for (νı1) . . . (νın)P ; the term(νℓ)P �Q stands for((νℓ)P ) �Q; the termlet x = P in Q �R
stands for(let x = P inQ) �R; andwait ℓ(x) then e1 stands forwait ℓ(x) then e1 else ()
(and similarly for omittedthen clause).

3.3 Reduction Semantics

The semantics of our calculus follows the chemical style found in theπ-calculus [23]: it is based
on structural congruence and a reduction relation. Reduction represents individual computation
steps and is defined in terms of structural congruence and evaluation contexts.

Structural congruence≡ allows the rearrangement of terms so that reduction rules may be ap-
plied. It is the least congruence on processes to satisfy thefollowing axioms:

Structural Congruence: P ≡ Q

(Struct Par Assoc)

(P �Q) �R ≡ P �(Q �R)

(Struct Par Let)
x /∈ fn(P )

P � let x = Q in R ≡ let x = (P �Q) in R
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(Struct Par Com)

(P �Q) �R ≡ (Q � P ) �R

(Struct Res Let)
ℓ /∈ fn(Q)

(νℓ)let x = P in Q ≡ let x = (νℓ)P in Q

(Struct Res Res)

(νı)(νℓ)P ≡ (νℓ)(νı)P

(Struct Res Par R)
ı /∈ fn(P )

(νı)(P �Q) ≡ P �(νı)Q

(Struct Res Par L)
ı /∈ fn(Q)

(νı)(P �Q) ≡ ((νı)P ) �Q

(Struct Let Assoc)
x /∈ fn(R)

let y = (let x = P in Q) in R ≡ let x = P in (let y = Q in R)

Since a process may return a value, we take the convention that the result of a composition
P1 � . . . � Pn is the result of its rightmost termPn. The values returned by the other processes
are discarded. This entails that the order of parallel components is relevant. For this reason,
unlike the situation in most process calculi, parallel composition is not a commutative operator.
Actually, composition is “left commutative”, which means that (P � Q) �R is equivalent to
(Q �P ) �R but that we do not necessarily haveP �Q equivalent toQ � P . This choice is
similar to what is found in calculi introduced for defining the semantics of concurrent-ML [16]
and for concurrent extension of object calculi [18]. An advantage is that we directly include
sequential composition of processes: the sequential compositionP ; Q can be interpreted by the
termlet x = P in Q, wherex /∈ fv(Q). Moreover it relieves us from the need to encode the
operation of returning a result using continuations and sending a message on a result channel, as
in theπ-calculus.

Reduction→ is the least binary relation on closed terms to satisfy the following rules.

Reduction: P → Q

(Red Fun)
f declared asf(~x) := e

f(u1, . . . , un)→ e{x1←u1} . . .{xn←un}

(Red Let)

let x = u in P → P{x←u}

(Red Struct)
P ≡ Q, Q→ Q′, Q′ ≡ P ′

P → P ′

(Red Context)(⋆)

P → P ′

E[P ]→ E[P ′]

(Red Ref)
u = ı1 . . . ın ℓ fresh name

newref u→ (νℓ)(〈 ℓ 7→ref u 〉 � ℓ)

(Red Read)

〈 ℓ 7→ref u 〉 �!ℓ→ 〈 ℓ 7→ref u 〉 �u

(Red Write)(⋆⋆)

w = u, v

〈 ℓ 7→ref u 〉 � ℓ += v → 〈 ℓ 7→ref w 〉 �()
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(Red Node)
u = ı1 . . . ın ı fresh name

a[u]→ (νı)(〈 ı 7→node a(u) 〉 � ı)

(Red Comp)
u1 = ı1 . . . ık u2 = ık+1 . . . ın

u1,u2 → ı1 . . . ın

(Red Try)
u = ı1 . . . ın ı, ℓ distinct fresh names

try u p(~v)→ (νı)(νℓ)(〈 ı 7→ node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ )

(Red Try Match)
P = 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1..n〈 ık 7→ node ak(wk) 〉
p(~v) := S a1 . . . an ⊢S p1(~v1) . . . pn(~vn) w = 1 . . . n distinct fresh names

P �〈 ℓ 7→try ı p(~v) 〉 → P � (νw)
(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı w 〉
)

(Red Try All)

〈 ℓ 7→try ı All 〉 → 〈 ℓ 7→ok ı 〉

(Red Try Error)
P = 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1..n〈 ık 7→ node ak(wk) 〉
p(~v) := S a1 . . . an 6⊢S

P �〈 ℓ 7→try ı p(~v) 〉 → P �〈 ℓ 7→fail ı 〉

(Red Try Error)
P = 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1..n〈 ık 7→ node ak(wk) 〉 p(~v) := S a1 . . . an 6⊢S

P �〈 ℓ 7→try ı p(~v) 〉 → P �〈 ℓ 7→fail ı 〉

(Red Test Ok)
P = 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1..n〈 k 7→ ok ık 〉 w = 1 . . . n

P �〈 ℓ 7→test ı w 〉 → P �〈 ℓ 7→ok ı 〉

(Red Test Fail)
P = 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1..n〈 k 7→ dk 〉 w = 1 . . . n

∀k ∈ 1..n : dk ∈ {ok ık, fail ık} ∃j ∈ 1..n : dj = fail ıj

P �〈 ℓ 7→test ı w 〉 → P �〈 ℓ 7→fail ı 〉

(Red Wait Ok)
P = 〈 ı 7→node a(u) 〉 �〈 ℓ 7→ok ı 〉

P � wait ℓ(x) then e1 else e2 → P � e1{x←u}

(Red Wait Fail)
P = 〈 ı 7→node a(u) 〉 �〈 ℓ 7→fail ı 〉

P � wait ℓ(x) then e1 else e2 → P � e2{x←u}

(⋆) where E ::= Q � E | E � P | [.] | (νℓ)E | let x = E in P

(⋆⋆) in the general case we havew = op(u, v), whereop is some “aggregating” function
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The rules for expressions are similar to traditional semantics for first-order languages, with
the difference that the resources in a configuration play therole of the store. Likewise, the
rules for operators that return new values (the operatorsnewref, a[ ] andtry) yields reductions
of the form e → (νℓ)(〈 ℓ 7→ d 〉 � ℓ), which means that new values are always allocated in a
fresh location. Actually a quick inspection of the rules shows that resources are created in fresh
locations and are always used in a linear way: an expression cannot discard a resource or create
two different resources at the same location.

The remaining rules are related to the evaluation of pattern-matching expressions. Atry
expression on the patternp generates a freshtry resource, rule (Red Try). Assume thatS is the
selector ofp, thetry resource will trigger evaluation of sub-patterns selectedfrom a witness of
S, rule (Red Try Match). For the sake of simplicity, we only consider selector patterns in rule
(Red Try Match). In the general case, for patterns with locallet definitions, capture variable
and continuation, we can use the following rule:

P ≡ 〈 ı 7→node a(ı1 . . . ın) 〉 �
∏

k∈1..n〈 ık 7→ node ak(wk) 〉
p(~v) := let D in

(

S as vk

)

then e1 else e2

a1 . . . an ⊢S p1(~v1) . . . pn( ~vn) w = 1 . . . n fresh names
e′1 = let z = (vk += (ı1 . . . ın)) in e1 z fresh variable

P �〈 ℓ 7→try ı p(~v) 〉 → P �
(

let D in (νw)
(
∏

l∈1..n〈 l 7→ try ıl pl(~vl) 〉
�〈 ℓ 7→test ı w e′1 e2 〉

))

A try resource spawns newtry resource and turns into atest, waiting for the results of
these evaluations. Upon termination of all the sub-patterns, atest resource turns intook or
fail, rules (Red Test Ok) and (Red Test Fail). Theok andfail resources are immutable. The
status of a pattern evaluation can be checked with the expressionwait ℓ(x) then e1 else e2,
see rules (Red Wait Ok) and (Red Wait Fail). If the resource atℓ is ok ı then thewait
expression evaluates toe1{x←v}, wherev is the index of the node located atı. If the resource
isfailı then the expression evaluates toe2{x←v}. In all the other cases the expression is stalled.

Remark: in rule (Red Try Match), we compute the witness for all the children of an element
in one go. This is not always realistic since the size of the children’s index can be very large
(actually, in real applications, big documents are generally shallow and have a large number
of children). It is possible to refine the operational semantics so that each sub-pattern is fired
separately, not necessarily following the order of the document, and we can imagine that indexes
are implemented using streams or linked lists. We have chosen this presentation for sake of
simplicity (it is one of the simplifications used in this paper so that we can concentrate on the
innovative features of the calculus and its type system).

4 Static Semantics

The types of document indexes are the same than the types for documents defined in Section 2.
Apart from regular expressions typesA, the typet of a process can also be the resource type⋆

12



(a constant type for terms that return no values); a reference typeref A; a node typenode a(u)
for the type of a location holding an elementa[u]; or a try typeloc a(A), that is the type of a
location hosting the evaluation of a pattern of typeA on the contents of an element taggeda.

Types

t ::= type
⋆ no value
A regular expression type
ref A reference
node a(u) node location
loc a(A) try location

We can easily adapt the definition of witness to types (a type is some sort of selector). Assume
A is declared asA := Reg(ai[Ai])i∈1..n. We say that there is a witness forA of ai1 . . . aim ,
denotedai1 . . . aim ⊢A Ai1 . . . Aim , if and only if the sequence of tagsai1 . . . aim is in the language
of the regular expressionReg(ai)i∈1..n. We can define the language of a typeA as the set of
documents that are matched by the patternReg(ai[Ai])i∈1..n. Based on this definition, we obtain
a natural notion of subtypingA <: B, meaning that the language ofA is included in the language
of B. We writeA

.
= B if the languages ofA andB are equal. We writeA for some chosen

regular expression type whose language is the complement ofA. (The typeA is unnecessary
whenA

.
= All, which means that we do not need to introduce a type with an empty language.)

In the case of type witness, we haveai1 . . . aim 6⊢A if and only if there is a witness forA of
ai1 . . . aim .

The type system is given in the following table. A type environmentE is a finite mappingx1 :
t1, . . . , xn : tn between names and types. The type system is based on a single type judgment,
E ⊢ P : t, meaning that the processP has typet under the hypothesisE. We assume that there
is a given, fixed set of type declarations of the formA := Reg(ai[Ai])i∈1..n. We assume that
functions and patterns are well-typed, which is denotedf : ~t → t0 andp : ~t → A. The types
t1, . . . , tn in ~t are the types of the parameters, whilet0 is the type of the body off andA is the
type of the selector ofp. The type of a selectorS = Reg(ai[pi(~xi)])i∈1..n is obtained fromS by
substituting to every patternpi in the selector its corresponding typeAi. Hence the type ofS is
equivalent to some type variableA such thatA := Reg(ai[Ai])i∈1..n.

Typing Rules: E ⊢ P : t

(Typex)

E, x : t, E ′ ⊢ x : t

(Type Sub)
A <: B

E ⊢ P : A

E ⊢ P : B

(Type Fun)
f : (t1, . . . , tn)→ t0
E ⊢ ui : ti i ∈ 1..n

E ⊢ f(~u) : t0

(Type Let)

E ⊢ P : t E, x:t ⊢ Q : t′

E ⊢ let x = P in Q : t′

(Type Doc)
E ⊢ ık : node ak(uk) E ⊢ uk : Bk k ∈ 1..n

E ⊢ ı1 . . . ın : a1[B1], . . . , an[Bn]

(Type Node)
E ⊢ u : A

E ⊢ a[u] : a[A]

(Type Comp)
E ⊢ ui : Ai i ∈ {1, 2}

E ⊢ u1, u2 : A1,A2
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(Type Ref)
E ⊢ u : A

E ⊢ newref u : ref A

(Type Read)
E ⊢ u : ref A

E ⊢ !u : A

(Type Write)
E ⊢ u : ref A E ⊢ v : B A, B <: A

E ⊢ u += v : Empty

(Type Res)
E, ℓ1 : t1, . . . , ℓn : tn ⊢ P : t

u = (ℓ1 . . . ℓn) u ∩ fn(E) = ∅

E ⊢ (νu)P : t

(Type Par)

E ⊢ P : t′ E ⊢ Q : t

E ⊢ P � Q : t

(Type Try Doc)
p : (t1, . . . , tn)→ A

E ⊢ vi : ti i ∈ 1..n E ⊢ u : B

E ⊢ try u p(v1, . . . , vn) : loc o(A)

(Type Wait)
E ⊢ u : loc a(A)

E, x : A ⊢ e1 : t E, x : A ⊢ e2 : t

E ⊢ wait u(x) then e1 else e2 : t

(Type Loc Ref)
E ⊢ ℓ : ref A E ⊢ u : A

E ⊢ 〈 ℓ 7→ref u 〉 : ⋆

(Type Loc Node)
E ⊢ ℓ : node a(ı1 . . . ın)

E ⊢ 〈 ℓ 7→node a(ı1 . . . ın) 〉 : ⋆

(Type Loc Ok)
E ⊢ ℓ : loc a(A) E ⊢ ı : node a(u)

u = ı1 . . . ın E ⊢ u : A

E ⊢ 〈 ℓ 7→ok ı 〉 : ⋆

(Type Loc Fail)
E ⊢ ℓ : loc a(A) E ⊢ ı : node a(u)

u = ı1 . . . ın E ⊢ u : A

E ⊢ 〈 ℓ 7→fail ı 〉 : ⋆

(Type Try Loc)
E ⊢ ℓ : loc a(A) E ⊢ ı : node a(ı1 . . . ın) p : (t1, . . . , tn)→ A E ⊢ vi : ti i ∈ 1..n

E ⊢ 〈 ℓ 7→try ı p(~v) 〉 : ⋆

(Type Test Loc)
E ⊢ ℓ : loc a(A) E ⊢ ı : node a(u) E ⊢ k : loc ak(Ak)

w = (1 . . . n) a1 . . . an ⊢A A1 . . . An

E ⊢ 〈 ℓ 7→test ı w 〉 : ⋆

The typing rules for the functional part of the calculus are standard. In what follows, we
consider that references can only hold document values: a reference is of typeref A and not
ref t. Moreover, since a reference collects the sequence of values that are assigned to it, we
check for every assignment of a value of typeB into a reference of typeref A that the relation
A, B <: A holds, see rule (Type Write). This check allows us to enforcestatically the type of
references.

The remaining typing rules are for resources and pattern-matching operators. The type of an
expressiontry u p(~v) is loc o(A) if the patternp matches documents of typeA, see rule (Type
Try Doc). Indeed the effect of this expression is to return a fresh location hosting the evaluation
of p on an element of the formo[u]. Correspondingly, await expression is well typed only if it is
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blocking on a location of typeloca(A), that is the location of a resource that can eventually turn
into ok or fail. The important aspect of this rule is that, while the continuationse1 ande2 of
thewait expression must have the same type, they are typed under different typing environment:
the expressione1 is typed with the hypothesisx : A while e2 is typed with the hypothesisx : A.
This leads to more precise types for filtering expressions (see below).

The typing rules for locations are straightforward. Since aresource returns no value it has
type⋆. By rule (Type Try Loc), a locationℓ containing atry resource, evaluating a patternp
of typeA, is well typed ifℓ is of typeloc a(A) and the root tag of the evaluated document is
a. Note that no assumption is made on(ı1, . . . , ın), which might well not be of typeA. Finally,
the rule for node location, (Type Loc Node), states that a location containingnode a(u) has
only one possible type, namelynode a(u) itself. Hence this rule avoids the presence of two
node resources with the same location but containing different elements. Actually, we could
extend our type system in a simpler way to ensure that a well-typed configuration cannot have
two resources at the same location: we say that the configuration is well-formed(for a formal
definition see Appendix A).

An important feature of our calculus is that every pattern isstrongly typed: its type is the
regular expression obtained by erasing capture variables.Likewise we can type locations, ex-
pressions and processes using a combination of regular expression types andref types. As
it is often the case with typed languages, the first importantproperty we need to prove is that
well-typedness of processes is preserved by reduction.

Theorem 1 (subject reduction) Suppose thatP is well formed and contains only unambiguous
patterns andt contains only unambiguous types. IfE ⊢ P : t andP → Q thenE ⊢ Q : t.

Proof. See Appendix B. �

The proof of Theorem 1 is by induction on the derivation of therelationP → Q. The proof
is quite involved since it is not possible to reason on a wholedocument at once: its content is
scattered across distinct resource locations. This complexity reflects actual restrictions imposed
when working with distributed documents, e.g. that they cannever be checked locally.

We do not state aprogress theoremin connection with Theorem 1. Indeed, there exists
no notion of errors in our calculus (like e.g. the notion of “message not understood” in
object-oriented languages) as it is perfectly acceptable for a pattern matching to fail or to get
blocked on await statement. Nonetheless the subject reduction theorem is still useful. For
instance, we can use it for optimizations purposes, like detecting that a specific matching will
always fail.

Well-Formed Environments and Well-Typed Patterns.The typing judgmentE ⊢ P : t defined in
page 13 relies on several auxiliary judgments that we describe in this section. The first judgment
is for stating that an environment is well-formed,E ⊢ ⋄, that is essentially that no variable is
declared more than once in an environment.
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Good environments

(Env∅)

∅ ⊢ ⋄

(Envx)
E ⊢ ⋄ x /∈ dom(E)

E, x:t ⊢ ⋄

The remaining judgments are for defining well-typed patternand function definitions. Indeed,
we assume in the typing rules (Type Fun), (Type Try Doc) and (Type Try Loc) that function and
pattern declarations are well typed, meaning that the functional type (globally) associated to
function or pattern identifiers is correct with respect to their definitions.

Well-Typed Declarations

(Type Selector)
S = Reg(ai[pi(~xi)])iin1..n E ⊢ pi(~xi) : (~ti)→ Ai i = 1, . . . , n

Reg(ai[Ai])i∈1..n
.
= A

E ⊢ S : A

(Type Pat)
p(x1, . . . , xn) := let z1 = e′1, . . . , zm = e′m in S as xk then e1 else e2

fn(p(~x)) ∩ dom(E) = ∅ E, x1:t1, . . . , xn:tn ⊢ e′i : t′i i ∈ 1..m
E, x1:t1, . . . , xn:tn, z1:t

′

1, . . . , zm:t′m ⊢ S : A A compatible withtk
E, x1:t1, . . . , xn:tn, z1:t

′

1, . . . , zm:t′m ⊢ e1 : te1

E, x1:t1, . . . , xn:tn, z1:t
′

1, . . . , zm:t′m ⊢ e2 : te2

E ⊢ p(x1, . . . , xn) : (t1, . . . , tn)→ A

(Type Fun dec)
f := e E, x1 : t1, . . . , xn : tn ⊢ e : t0

E ⊢ f(x1, . . . , xn) : (t1, . . . , tn)→ t0

Rule (Type Selector) state that the type of a selectorS is obtained fromS by substituting
every pattern identifierpi with the corresponding typeAi. Rule (Type Pat) checks if the definition
p(x1, . . . , xn) := let z1 = e′1, . . . , zm = e′m in S as xk then e1 else e2 respects the declared
type (t1, . . . , tn) → A. Therefore, that upon receiving its actual parameters of type t1, . . . , tn
and evaluating the expressions in thelet part, patternp actually matches documents of typeA.
In particular it is checked that the type of the selectorS is A, that continuationse1 ande2 are
well typed, and that the typetk associated to the capture variablexk is compatible withA, that
is tk is of the formref B andB, A <: B. Rule (Type Fun dec) verifies if the definitionf := e
complies with the type(t1, . . . , tn) → t0 by checking if the type of the expressione is t0 when
evaluated in a context where the formal parameter off have associated typest1, . . . , tn.

16



5 Examples and Possible Extensions

We study examples that show how to interpret interesting programming idioms in our model,
like spawning an expression in a new thread or handling user-defined exceptions.

5.1 Types and Pattern-Matching

We can encode a “traditional”match operator, as found in XDuce for example, that matches
the patternp againstu and conditionally proceeds withe1 or e2. Assumey is a fresh variable
(y /∈ fv(e1) ∪ fv(e2)), we define:

match u with p(~v) then e1 else e2 =def

{

let x =
(

try u p(~v)
)

in
(

wait x(y) then e1 else e2

) .

This example allows us to emphasize the role of the variabley when typing await statement.
Let e =def

(

match z with Empty then a[z] else z
)

be the expression that returnsz if it is not
empty else returnsa[z]. Assumez is a variable of typeAll, then the most precise type fore is
alsoAll. In contrast, if we consider the expressionlet x =

(

try z Empty
)

in
(

wait x(y) then
a[y] else y

)

, which is equivalent toe, we obtain the more precise typeEmpty, that is, we prove
that the returned value cannot be empty. Indeedy plays the role of an alias for the value ofz
that is used with typeEmpty in the continuationa[y] and with typeEmpty in y (and we have
a[Empty] <: Empty).

5.2 Concurrency

We show how to model simple threads, that is, we want to encodean operatorspawn such that
the effect ofspawn e1; e2 is to evaluatee1 in parallel withe2, yielding the value ofe2 as a result.
The simplest solution is to interpretspawn e1; e2 by the configuratione1 � e2. A disadvantage of
this solution is that it is not possible to test ine2 whether the evaluation ofe1 has ended.

Another simple approach to encodespawn is to rely on the pattern-matching mechanism. Let
p be the patternp( ) := (Empty then e1). We can interpret the statementspawn e1; e2 with the
expressionlet x = (try () p( )) in e2. Indeed we have:

let x = (try () p( )) in e2 →
∗ (νıℓ)

(

〈 ı 7→ node o( ) 〉 �
(

let z = e1 in 〈 ℓ 7→ok ı 〉
)

� e2{x←ℓ}
)

.

In the resulting process,e1 ande2 are evaluated concurrently and the resource〈 ℓ 7→ok ı 〉 cannot
interact withe2 until the evaluation ofe1 ends (see rule (Struct Par Let) for example). Hence an
occurrence of the expression(waitx(y) then e) in e2 acts as an operator blocking the execution
of e until e1 returns a value. We can in fact improve our encoding so that the result ofe1 is bound
to z in e as follows:

spawn e1; e2 =def (νıℓ)

(

let z = e1 in
(

〈 ı 7→node o(z) 〉 �〈 ℓ 7→ok ı 〉
)

� e2{x←ℓ}

)

.
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It emerges from this example that atry location can be viewed as afuture, that is a reference
to the “future result” of an asynchronous computation. Moregenerally, we can liken a process
(〈 ı 7→node a(u) 〉 �〈 ℓ 7→ok ı 〉) to an (asynchronous) output actionℓ!〈ok, u〉 as found in process
calculi such as theπ-calculus. Similarly, we can compare an expressionwait ℓ(x) then e1 else

e2 with a combination of input action and matching,ℓ?(x).{ok ⇒ e1 | fail ⇒ e2}, with the
following synchronization rules:

ℓ!〈ok, u〉 ‖ ℓ?(x).{ok⇒ e1 | fail⇒ e2} → ℓ!〈ok, u〉 ‖ e1{x←u}
ℓ!〈fail, u〉 ‖ ℓ?(x).{ok⇒ e2 | fail⇒ e2} → ℓ!〈ok, u〉 ‖ e2{x←u}

The main distinction with “traditional process calculi” isthat we are in a situation where inputs
are replicated. For this reason, we can have multiplewait operators synchronizing on the same
locationℓ without the need for global consensus (or a lock) on the resource atℓ. Nonetheless,
since the calculus can express atomic reads and writes on a shared memory, it could be useful to
rely on a standard mutual exclusion algorithm for accessingreferences. We could also interpret
high-level primitives for mutexes directly in our calculus(see e.g. [18] for an example). Note also
that there is no need for replication in our calculus since resources are persistent and recursive
behaviors can be encoded using recursive function declarations.

5.3 Exceptions

We show how to model a simple exception mechanism in our calculus. Suppose we need to check
that a documentu of typeL (the type of family trees) contains only women. This can be achieved
using the pattern declarationsp( ) := woman[q( )]∗ and q( ) := name[All], d[p( )], s[Empty]
and a matching expressiontry u p( ). A drawback of this approach is that we need to wait
for the completion of all sub-patterns to terminate before completing the computation, even if
the matching trivially fails because we find an element tagged man early in the matching. A
natural optimization is to use an explicit handling of failures, e.g. to add primitives to kill and
“ping” (the location of) atry resource in the style of [5]. Another solution is to encode a basic
mechanism for handling exceptions using the following derived operators, whereıe is a default
name associated to the location〈 ıe 7→ node o( ) 〉:

exception = (νℓ)ℓ creates a fresh (location) exception
throw ℓ = 〈 ℓ 7→ ok ıe 〉 �() raises an exception atℓ

catch ℓ e = wait ℓ(x) then e catches exceptionℓ and runse (x /∈ fv(e))

A simple example is to raise the exception at the end of a computation, like in the expression
letx = exception in

(

(. . . ; throw x) � catch x e
)

. If and when thethrow expression is eval-
uated, we obtain a configuration of the form(νl)

(

. . . �〈 ℓ 7→ok ıe 〉 � wait ℓ(x) then e
)

, which
starts the execution ofe. For instance, it is possible to raise the exception in the compensation
part of a pattern declaration and to redefine the patternp above in:p(x) := woman[q( )]∗ else
throw x.

With our encoding, it is not possible to abort the execution of a whole “program block” using
exceptions. Using a more involved encoding, e.g. based on CPS transforms, we could interpret
this more general exception model.
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6 Future and related work

We study a formal model for computing over large, perhaps dynamically generated, distributed
XML documents. We define a typed process calculus and show that it supports a first-order
type system with subtyping based on regular expression types, a system compatible with DTD
and other schema languages for XML. Our work may be compared with recent proposals for
integrating XML data intoπ-calculus. It can also be compared with proposals for filtering and
querying XML streams (or so-calledXML pipeliningframeworks) for which there exists almost
no formal foundations.

6.1 Related Work

There are a few works mixing XML with process calculi: Iota [6] is a concurrent XML script-
ing language with channel-based communications that relies on types to guarantee the well-
formedness (not the validity) of documents; XPi [2] is a typed π-calculus extended with XML
values in which documents are exchanged during communications; PiDuce [9] features asyn-
chronous communications and code mobility and includes pattern matching expressions with
built-in type checks. In all these proposals, documents arefirst class values exchanged in mes-
sages, which make these approaches inappropriate in the case of very large or dynamically gen-
erated data. At the opposite, we consider documents as special kind of processes that can be
randomly accessed through the use of distributed indexes.

Works on querying XML streams can be roughly divided in two approaches. The first is
to provide efficient single-pass evaluator, working with one query at a time (generally XPath
queries) on multiple documents. The second approach, in relation to peer-to-peer and event-
notification systems, is to filter XML streams by a large number of queries. We look more
closely at some examples of such systems. SPEX, XSQ and XSM [8, 12, 22] are single-pass
evaluators of XPath queries in which queries are compiled into networks of independent, deter-
ministic pushdown transducers with buffers. The query language in XSM is severely restricted
and only streams with non-recursive structure definitions can be processed (this is akin to non-
recursive types in our framework). XFilter, YFilter and XTrie [4, 15, 11] follow the second
approach. XFilter is a filtering system based on finite state machines (FSM). It uses one FSM per
path query and an indexing mechanism to allow all FSMs to be executed simultaneously during
the processing of a document. YFilter extends XFilter usinga lazy NFA-based representation in
which state transitions for simultaneous queries are precomputed (hence exploiting commonali-
ties among path queries). Likewise, XTrie is based on decomposing tree patterns into collection
of substrings and indexing them using a trie with the purposeto share the processing of “common
sub-queries”.

Our work follows the first approach with some differences (patterns extend XPath queries and
try-statements apply one pattern to one document at a time). Most notably, we take a strongly
typed approach and, instead of using XPath or XQuery, we extend the functional approach taken
in e.g. XDuce and define distributedregular expression pattern. As a byproduct, we also provide
a possible semantics for a concurrent extensions of languages based on XDuce. Nonetheless,
since our operational semantics does not dictate how regular patterns should be implemented, we
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can take inspiration from these systems to implement efficient and scalable filtering primitives in
our calculus. Conversely, we could use our calculus to give aformal semantics to these systems.

6.2 Future Work

The goal of this paper is not to define a new programming language. We rather try to provide
formal tools for the study of concurrent computation modelsbased on service composition and
streamed XML data. However our calculus could be a basis for developing concurrent extensions
of strongly typed languages for XML, such as XDuce. It could also be used to provide the
semantics of systems in which XML documents contain active code that can be executed on
distributed sites (i.e. processes and document text are mixed), like in the Active XML system for
example [1]. To this end, it will be necessary to add an “eval/quote” mechanisms, as in LISP or
multi-stage programming languages [24], and to fundamentally revise our static type checking
approach.

Our work raises questions concerning observational equivalences that we intend to study in
future work. Another avenue to investigate is the encoding of other concurrency related prim-
itives, like channel-based synchronization and distributed transactions, or the possibility to dy-
namically update documents.
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A Well-formedness

A well-formed process is a configuration where every location is defined once. In the style of [18]
we add simple linearity constraints to the type system to ensure well-formedness and we show
some properties of well-formed terms.

Definition 1 (well formed configuration) A configurationP iswell formedif for every location
ℓ it contains at most one definition〈 ℓ 7→ d 〉.

It is convenient to define thedomainof a configurationP , dom(P ), to be the set of the names
of the free location definitions inP :

Domain of a configuration

dom(e) , ∅

dom(let x = P in Q) , dom(P ) ∪ dom(Q)

dom(〈 ℓ 7→ d 〉) , {ℓ}

dom(P � Q) , dom(P ) ∪ dom(Q)

dom((νℓ)P ) , dom(P ) \ {ℓ}

The well-formed configurations are given by the judgementP : wf defined in the following
table:

Well-Formed configurations

(WF-Exp)

e : wf

(WF-Let)
P : wf Q : wf dom(P ) ∩ dom(Q) = ∅

let x = P in Q : wf

(WF-Resource)

〈 ℓ 7→ d 〉 : wf

(WF Par)
P : wf Q : wf dom(P ) ∩ dom(Q) = ∅

P �Q : wf

(WF-Res)
P : wf ℓ ∈ dom(P )

(νℓ)P : wf

In what follows we show that well-formedness is preserved bystructural congruence and
reductions.

Proposition 2 (well formed subject congruence)If P : wf and P ≡ Q then Q : wf and
dom(P ) = dom(Q).

Proof. By induction on structural congruence rules:

(Struct Par Assoc) if (P1 �P2) �P3 : wf then, by (WF-Par),P1 �P2 : wf, P3 : wf and
dom(P1 �P2) ∩ dom(P3) = ∅. Again by (WF-Par),P1 : wf, P2 : wf and dom(P1) ∩
dom(P2) = ∅. dom(P2) ∩ dom(P3) = ∅, thus, by (WF-Par),P2 � P3 : wf and
dom(P2 �P3) ∩ dom(P1) = ∅, thusP1 �(P2 �P3) : wf. dom((P1 � P2) �P3) = dom(P1) ∪
dom(P2) ∪ dom(P3) = dom((P1 � P2) �P3);
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(Struct Par Let) if P1 � letx = P2in P3 : wf then by (WF-Par)P1 : wf, letx = P2in P3 : wf
anddom(P1)∩dom(letx = P2 in P3) = ∅. By (WF-Let) ,letx = P2 in P3 : wf implies
P2 : wf, P3 : wf anddom(P2) ∩ dom(P3) = ∅. Thusdom(P1) ∩ dom(P2) = ∅ and rule
(WF-Par) implyP1 � P2 : wf and by (WF-Let) anddom(P1 �P2) ∩ dom(P3) = ∅ we have
letx = P1 �P2in P3 : wf. dom(P1 � letx = P2in P3) = dom(P1)∪dom(P2)∪dom(P3) =
dom(let x = P1 � P2 in P3);

(Struct Par Com) it is similar to the (Struct Par Assoc);

(Struct Res Let) by rule (WF-Res)(νℓ)let x = P1 in P2 : wf implies ℓ ∈ dom(let x =
P1 in P2) andlet x = P1 in P2 : wf. By (WF-Let) P1 : wf, P2 : wf anddom(P1) ∩
dom(P2) = ∅. ℓ ∈ dom(let x = P1 in P2) andℓ /∈ fn(P2) (thusℓ /∈ dom(P2)) implies
ℓ ∈ dom(P1), thus by (WF-Res)(νℓ)P1 : wf and by (WF-Let)let x = (νℓ)P1 in P2 : wf.
dom((νℓ)letx = P1 in P2) = (dom(P1)∪dom(P2)) \ {ℓ} = dom(letx = (νℓ)P1 in P2);

(Struct Res Res)by (WF-Res)(ν ı)(ν ℓ)R impliesR : wf andı, ℓ ∈ dom(R), and by (WF-Res)
(ν ℓ)(ν ı)R : wf. dom((ν ı)(ν ℓ)R) = dom(R) \ {ı, ℓ} = dom((ν ℓ)(ν ı)R);

(Struct Res Par R) (Struct Res Par L) by (WF-Res)(ν ℓ)(P1 �P2) : wf impliesP1 � P2 : wf
andℓ ∈ dom(P1 � P2). By (WF-Par)P1 : wf, P2 : wf anddom(P1) ∩ dom(P2) = ∅ and
by (Struct Res Par R)ℓ ∈ dom(P2) (resp. (Struct Res Par L) impliesℓ ∈ dom(P1)). By
rule (WF-Res)(ν ℓ)P2 : wf (resp. (ν ℓ)P1 : wf); so by rule (WF-Par)P1 �((ν ℓ)P2) :
wf (resp. ((ν ℓ)P1) �P2 : wf). dom((ν ℓ)(P1 �P2)) = (dom(P1) ∪ dom(P2)) \ {ℓ} =
dom(P1 �((ν ℓ)P2)) becauseℓ ∈ dom(P2) andℓ /∈ dom(P1);

(Struct Let Assoc) by rule (WF-Let)let x = (let y = P1 in P2) in P3 : wf implieslet y =
P1 in P2 : wf, P3 : wf anddom(let y = P1 in P2) ∩ dom(P3) = ∅. Again, by rule
(WF Let), P1 : wf, P2 : wf anddom(P1) ∩ dom(P2) : wf. dom(P2) ∩ dom(P3) = ∅, so
by (WF-Let)let x = P2 in P3 : wf anddom(let y = P2 in P3) ∩ dom(P1) = ∅ thus
let y = P1 in (let x = P2 in P3) : wf. dom(let x = (let y = P1 in P2) in P3) =
dom(P1) ∪ dom(P2) ∪ dom(P3) = dom(let y = P1 in (let x = P2 in P3)).

�

Proposition 3 (well formed substitution) R : wf implies R{x←ℓ} : wf and dom(R) =
dom(R{x←ℓ}).

Proof. By induction on the depth of the derivation ofR : wf; we consider the last rule applied:

(WF-Exp) e{x←ℓ} : wf by (WF-Exp) anddom(e) = dom(e{x←ℓ}) = ∅;

(WF-Let) lety = P inQ : wf impliesP : wf, Q : wf anddom(P )∩dom(Q) = ∅. By induction
P{x←ℓ} : wf, dom(P ) = dom(P{x←ℓ}), Q{x←ℓ} : wf anddom(Q) = dom(Q{x←ℓ}).
By (WF-Let) let y = P{x←ℓ} in Q{x←ℓ} = (let y = P in Q){x←ℓ} : wf and
dom(lety = P inQ) = dom(P )∪dom(Q) = dom(P{x←ℓ})∪dom(Q{x←ℓ}) = (lety =
P in Q){x←ℓ};
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(WF-Resource) 〈 ℓ′ 7→ d 〉 : wf; (〈 ℓ′ 7→ d 〉){x←ℓ} = 〈 ℓ′ 7→ d{x←ℓ} 〉 : wf. dom(〈 ℓ′ 7→ d 〉) =
dom(〈 ℓ′ 7→ d{x←ℓ} 〉) = {ℓ′};

(WF-Par) P1 �P2 : wf implies P1 : wf, P2 : wf and dom(P1) ∩ dom(P2) = ∅.
By induction P1{x←ℓ} : wf, P2{x←ℓ} : wf, dom(P1) = dom(P1{x←ℓ}) and
dom(P2) = dom(P2{x←ℓ}). By (WF-Par)P1{x←ℓ} �P2{x←ℓ} = (P1 �P2){x←ℓ} :
wf and dom(P1 � P2) = dom(P1) ∪ dom(P2) = dom(P1{x←ℓ}) ∪ dom(P2{x←ℓ}) =
dom((P1 � P2){x←ℓ});

(WF-Res) (νℓ)′P : wf implies P : wf and ℓ′ ∈ dom(P ). By inductionP{x←ℓ} : wf and
dom(P ) = dom(P{x←ℓ}), thus by (WF-Res)(νℓ)′P{x←ℓ} : wf anddom((νℓ)′P ) =
dom(P ) \ {ℓ′} = dom(P{x←ℓ}) \ {ℓ′} = dom(((νℓ)′P ){x←ℓ}).

�

Theorem 4 (well formed subject reduction) SupposeP : wf, if P → Q then Q : wf and
dom(P ) = dom(Q).

Proof.By induction on the depth of the derivation ofP → Q; we distinguish the last rule applied:

(Red Fun) f(~u) : wf (WF-Exp) anddom(f(~u)) = ∅. f(~u) → e{~x←~u}, e{~x←~u} : wf by
(WF-Exp) anddom(e{~x←~u}) = ∅;

(Red Let) let x = u in P : wf implies u : wf andP : wf; moreoverdom(u) = ∅ because
u is an expression.let x = u in P → P{x←u}; by Proposition 3P{x←u} : wf and
dom(P ) = dom(P{x←u});

(Red Struct) P : wf andP ≡ Q imply Q : wf anddom(P ) = dom(Q) by Proposition 2. By
induction,Q → Q′ implies Q′ : wf anddom(Q) = dom(Q′); finally, by Proposition 2,
Q′ ≡ P ′ impliesP ′ : wf anddom(P ′) = dom(Q′) = dom(Q) = dom(P );

(Red Context) by a straightforward induction on the derivation ofP : wf, distinguishing the
contextE;

(Red Ref) newref u : wf anddom(newref u) = ∅, because it is an expression.newref u →
(νℓ)(〈 ℓ 7→ref u 〉 � ℓ); by (WF-Exp) ℓ : wf and dom(ℓ) = ∅, by (WF-Resource)
〈 ℓ 7→ref u 〉 : wf anddom(〈 ℓ 7→ref u 〉) = {ℓ}, by (WF-Par)〈 ℓ 7→ref u 〉 � ℓ : wf and
dom(〈 ℓ 7→ref u 〉 � ℓ) = {ℓ} and finally, by (WF-Res)(νℓ)(〈 ℓ 7→ref u 〉 � ℓ) : wf and
dom((νℓ)(〈 ℓ 7→ref u 〉 � ℓ)) = ∅ = dom(newref u);

(Red Read) 〈 ℓ 7→ref u 〉 �!ℓ : wf implies, by rule (WF-Par),〈 ℓ 7→ref u 〉 : wf and !ℓ : wf;
moreoverdom(!ℓ) = ∅ because it is an expression.〈 ℓ 7→ref u 〉 �!ℓ → 〈 ℓ 7→ref u 〉 �u,
u : wf by rule (WF-Exp), anddom(u) = ∅. In conclusion,〈 ℓ 7→ref u 〉 �u : wf and
dom(〈 ℓ 7→ref u 〉 �u) = dom(〈 ℓ 7→ref u 〉 �!ℓ) = {ℓ};
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(Red Write) 〈 ℓ 7→ref u 〉 � ℓ += v : wf implies, by rule (WF-Par),〈 ℓ 7→ref u 〉 : wf andℓ +=
v : wf; moreoverdom(ℓ += v) = ∅ because it is an expression.〈 ℓ 7→ref u 〉 � ℓ +=
v → 〈 ℓ 7→ref u 〉 �(); () : wf by rule (WF-Exp), anddom(()) = ∅. In conclusion,
〈 ℓ 7→ref u 〉 �() : wf anddom(〈 ℓ 7→ref u 〉 �()) = dom(〈 ℓ 7→ref u 〉 � ℓ += v) = {ℓ};

(Red Node) a[u] : wf and dom(a[u]) = ∅ because it is an expression.a[u] →
(νı)(〈 ı 7→ node a(u) 〉 � ı); by rule (WF-Exp)ı : wf anddom(ı) = ∅ because it is an ex-
pression, by (WF-Resource)〈 ı 7→ node a(u) 〉 : wf anddom(〈 ı 7→node a(u) 〉) = {ı},
by (WF-Par) 〈 ı 7→node a(u) 〉 � ı : wf and dom(〈 ı 7→ node a(u) 〉 � ı) = {ı}, finally,
by (WF-Res), (νı)(〈 ı 7→node a(u) 〉 � ı) : wf and dom((νı)(〈 ı 7→node a(u) 〉 � ı)) =
dom(〈 ı 7→node a(u) 〉 � ı) \ {ı} = ∅ = dom(a[u]);

(Red Comp) u1,u2 : wf anddom(u1,u2) = ∅. u1,u2 → ı1 . . . ın; by (WF-Exp) ı1 . . . ın : wf
anddom(ı1 . . . ın) = dom(u1,u2) = ∅;

(Red Try) try u p(~v) : wf and dom(try u p(~v)) = ∅ because it is an expres-
sion. try u p(~v) → (νı, ℓ)(〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ); by (WF-
Exp) ℓ : wf and dom(ℓ) = ∅ because it is an expression, by (WF-Resource)
〈 ı 7→node o(u) 〉 : wf, 〈 ℓ 7→try ı p(~u) 〉 : wf, dom(〈 ı 7→ node o(u) 〉) = {ı} and
dom(〈 ℓ 7→try ı p(~u) 〉) = ℓ. By (WF-Par) 〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ :
wf and dom(〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ) = {ı, ℓ} and by
(WF-Res) (νı, ℓ)(〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ) : wf and
dom((νı, ℓ)(〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ)) = ∅;

(Red Try Match) P �〈 ℓ 7→try ı p(~v) 〉 : wf implies, by (WF-Par), P : wf,
〈 ℓ 7→try ı p(~v) 〉 : wf, anddom(P )∩dom(〈 ℓ 7→try ı p(~v) 〉) = ∅. P �〈 ℓ 7→ try ı p(~v) 〉 →
P �(ν1 . . . n)

(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉
)

; by (WF-
Resource)〈 ℓ 7→test ı 1 . . . n 〉 : wf and ∀k ∈ 1 . . . n 〈 k 7→ try ık pk(~vk) 〉 : wf.
dom(

∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉) = {1, . . . , n} anddom(〈 ℓ 7→test ı 1 . . . n 〉) = ℓ,
thus dom(

∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉) ∩ dom(〈 ℓ 7→test ı 1 . . . n 〉) = ∅ and by
(WF-Par)

∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉 : wf. By (WF-Res)
(ν1, . . . , n)

(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉
)

: wf and by (WF-
Par) P �(ν1 . . . n)

(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉
)

: wf because
dom(P ) ∩ dom((ν1 . . . n)

(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉
)

) =
∅. Moreover dom(P �〈 ℓ 7→try ı p(~v) 〉) = dom(P ) ∪ {ℓ} =
dom(P �(ν1 . . . n)

(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı 1 . . . n 〉
)

)

(Red Try All) 〈 ℓ 7→try ı All 〉 : wf anddom(〈 ℓ 7→try ı All 〉) = {ℓ}. 〈 ℓ 7→try ı All 〉 →
〈 ℓ 7→ok ı 〉; 〈 ℓ 7→ok ı 〉 : wf by (WF-Resource) anddom(〈 ℓ 7→ok ı 〉) = {ℓ} =
dom(〈 ℓ 7→try ı All 〉);

(Red Try Error) P �〈 ℓ 7→try ı p(~v) 〉 : wf implies, by (WF-Par),P : wf, 〈 ℓ 7→ try ı p(~v) 〉 :
wf and dom(P ) ∩ dom(〈 ℓ 7→ try ı p(~v) 〉) = ∅. P �〈 ℓ 7→try ı p(~v) 〉 →
P �〈 ℓ 7→fail ı 〉; by (WF-Resource)〈 ℓ 7→fail ı 〉 : wf, moreoverdom(〈 ℓ 7→fail ı 〉) =

26



dom(〈 ℓ 7→try ı p(~v) 〉) = {ℓ}, thusdom(P ) ∩ dom(〈 ℓ 7→ fail ı 〉) = ∅ and by (WF-Par)
P �〈 ℓ 7→fail ı 〉 : wf;

(Red Test Ok) P �〈 ℓ 7→test ı w 〉 : wf implies, by (WF-Par),P : wf, 〈 ℓ 7→test ı w 〉 : wf
anddom(P )∩dom(〈 ℓ 7→test ı w 〉) = ∅. P �〈 ℓ 7→test ı w 〉 → P �〈 ℓ 7→ok ı 〉; by (WF-
Resource)〈 ℓ 7→ok ı 〉 : wf, moreoverdom(〈 ℓ 7→ok ı 〉) = dom(〈 ℓ 7→test ı w 〉) = {ℓ},
thusdom(P ) ∩ dom(〈 ℓ 7→ok ı 〉) = ∅ and by (WF-Par)P �〈 ℓ 7→ok ı 〉 : wf;

(Red Test Fail) P �〈 ℓ 7→test ı w 〉 : wf implies, by (WF-Par),P : wf, 〈 ℓ 7→test ı w 〉 : wf
and dom(P ) ∩ dom(〈 ℓ 7→test ı w 〉) = ∅. P �〈 ℓ 7→test ı w 〉 → P �〈 ℓ 7→fail ı 〉;
by (WF-Resource) 〈 ℓ 7→fail ı 〉 : wf, moreover dom(〈 ℓ 7→fail ı 〉) =
dom(〈 ℓ 7→test ı w 〉) = {ℓ}, thus dom(P ) ∩ dom(〈 ℓ 7→fail ı 〉) = ∅ and by (WF-
Par)P �〈 ℓ 7→fail ı 〉 : wf;

(Red Wait Ok) P � wait ℓ(x) then e1 else e2 : wf implies, by (WF-Par),P : wf,
wait ℓ(x) then e1 else e2 and dom(P ) ∩ dom(wait ℓ(x) then e1 else e2) = ∅.
P � wait ℓ(x) then e1 else e2 → P � e1{x←u}; e1{x←u} : wf becausee1 : wf

(WF-Exp) and by Proposition 3, moreoverdom(e1{x←u}) = ∅, thus, by rule (WF-Par),
P � e1{x←u} : wf;

(Red Wait Fail) P � wait ℓ(x) then e1 else e2 : wf implies, by (WF-Par),P : wf,
wait ℓ(x) then e1 else e2 and dom(P ) ∩ dom(wait ℓ(x) then e1 else e2) = ∅.
P � wait ℓ(x) then e1 else e2 → P � e2{x←u}; e2{x←u} : wf becausee2 : wf

(WF-Exp) and by Proposition 3, moreoverdom(e2{x←u}) = ∅, thus, by rule (WF-Par),
P � e2{x←u} : wf.

�

B Proof of Theorem 1

We are set to prove the main result of the paper, the subject reduction theorem; but we need a
few preliminary results.

Proposition 5 (substitution) If E, x:t ⊢ P : t′ andE ⊢ u : t thenE ⊢ P{x← u} : t′.

Proof. By a straightforward induction on the derivation ofE, x:t ⊢ P : t′. �

Proposition 6 (weakening) If E, x:t ⊢ P : t′ andx /∈ fn(P ) thenE ⊢ P : t′ and vice versa.

Proof. By a straightforward induction on the derivation ofE, x:t ⊢ P : t′. �

Proposition 7 (subject congruence)If P ≡ Q andE ⊢ P : t thenE ⊢ Q : t.
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Proof. By induction on the depth of the derivation ofP ≡ Q; we consider the last structural
congruence rule applied:

(Struct Par Assoc) E ⊢ (P1 � P2) �P3 : t3 implies, by rule (Type Par),E ⊢ P3 : t3 and
E ⊢ P1 �P2 : t2. Again,E ⊢ P1 : t1 andE ⊢ P2 : t2. By the same ruleE ⊢ P2 � P3 : t3
andE ⊢ P1 �(P2 �P3) : t3;

(Struct Par Let) E ⊢ P1 � let x = P2 in P3 : t3 implies, by (Type Par) and (Type Let),
E ⊢ P1 : t1, E ⊢ P2 : t2 andE, x:t2 ⊢ P3 : t3. By (Type Par)E ⊢ P1 �P2 : t2 and by
(Type Let)E ⊢ let x = P1 � P2 in P3 : t3;

(Struct Par Comm) this case is similar to (Struct Par Assoc);

(Struct Res Let) E ⊢ (νℓ)let x = P1 in P2 : t2 implies, by (Type Res),E, ℓ:t′ ⊢ let x =
P1 in P2 : t2. By (Type Let) we haveE, ℓ:t′ ⊢ P1 : t1 andE, ℓ:t′, x:t1 ⊢ P2 : t2. By (Type
Res)E ⊢ (νℓ)P1 : t1 and by Proposition 6 (weakening)E, x:t1 ⊢ P2 : t2 and by rule (Type
Let) E ⊢ let x = (νℓ)P1 in P2 : t;

(Struct Res Res)E ⊢ (νℓ)(νı)R : t′ implies, by rule (Type Res),E, ℓ:t1 ⊢ (νı)R : t′, and again
E, ℓ:t1, ı:t2 ⊢ R : t′. By the same ruleE, ı:t2 ⊢ (νℓ)R : t′ andE ⊢ (νı)(νℓ)R : t′;

(Struct Res Par R) E ⊢ (νı)(P1 � P2) : t2 implies, by rule (Type Res),E, ı:t′ ⊢ P1 �P2 : t2
and, by (Type Par),E, ı:t′ ⊢ P1 : t1 andE, ı:t′ ⊢ P2 : t2. By (Type Res)E ⊢ (νı)P2 : t2,
by Proposition 6 (weakening)E ⊢ P1 : t1 and by rule (Type Par)E ⊢ P1 �(νı)P2 : t2;

(Struct Res Par L) this case is similar to the previous;

(Struct Let Assoc) E ⊢ let x = (let y = P1 in P2) in P3 : t implies, by rule (Type Let),
E ⊢ let y = P1 in P2 : t2 andE, x:t2 ⊢ P3 : t3. Again, E ⊢ P1 : t1 andE, y:t1 ⊢
P2 : t2. By (Struct Let Assoc)y /∈ fn(P3) so, by Proposition 6 (weakening), we have
E, y:t1, x:t2 ⊢ P3 : t3, so by (Type Let)E ⊢ let y = P1 in (let x = P2 in P3) : t.

�

Proposition 8 AssumeS = Reg(ai[pi(~vi)])i∈1..k is a unambiguous pattern with typeA. If
a1 . . . an ⊢S p1(~v1) . . . pn( ~vn) then we also havea1 . . . an ⊢A A1 . . . An.

Proof. E ⊢ Reg(ai[pi(~vi)])i=1,...,k : A implies ∀i : pi : (~ti) → Ai, E ⊢ ~vi : ~ti, and
Reg(ai[Ai])i=1,...,k

.
= A. a1 . . . an ⊢S p1(~v1) . . . pn( ~vn) implies thata1 . . . an ∈ Reg(ai)i=1,...,k.

Moreover,S is unambiguous, thus for every tagai we have exactly one patternpi(~vi), s.t.
pi : (~ti) → Ai and E ⊢ ~vi : ~ti thus in A for every tagai we have associated exactly the
typeAi, anda1 . . . an ⊢A A1 . . . An. �

Proposition 9 AssumeA is a an unambiguous type. Ifa1 . . . an ⊢A A1 . . . An then
a1[A1], . . . , an[An] <: A and if a1 . . . an 6⊢A then there is noB1, . . . , Bn such that
a1[B1], . . . , an[Bn] <: A.
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Proof. By definition of (type) witness. �

Proposition 10 SupposeA unambiguous andA 6= All. a1 . . . aj . . . an ⊢A A1 . . . Aj . . . An ⇒
a1[A1], . . . , aj[Aj], . . . , an[An] <: A.

Proof. By Proposition 9, a1 . . . aj . . . an ⊢A A1 . . . Aj . . . An implies
a1[A1], . . . , aj [Aj], . . . , an[An] <: A, that isL(a1[A1], . . . , aj [Aj ], . . . , an[An]) ⊆ L(A).
∀d ∈ (a1[A1], . . . , aj [Aj ], . . . , an[An]) : d /∈ (a1[A1], . . . , aj [Aj], . . . , an[An]) be-

causeL(Aj) = L(Aj), that is L(Aj) ∩ L(Aj) = ∅. Thus, by the unambiguity,∀d ∈
a1[A1], . . . , aj [Aj], . . . , an[An] we haved /∈ A that isL(a1[A1], . . . , aj [Aj ], . . . , an[An]) ∩
L(A) = ∅. In conclusion, L(a1[A1], . . . , aj[Aj ], . . . , an[An]) ⊆ L(A) and
a1[A1], . . . , aj [Aj], . . . , an[An] <: A. �

Proposition 11 If a1[d1] . . . an[dn] ∈ A thenA = a1[d1], . . . , an[dn] A.

Definition 2 ([[u]]E)
[[()]]E = ()
[[ı1 . . . ın]]E = a1[d1] . . . an[dn] if E ⊢ ıi : node ai(ui) and[[ui]]E = di.

Proposition 12 E ⊢ u : A andu = ı1 . . . ın ⇔ [[u]]E ∈ A.

Proof.

(⇒): By induction on the depth ofu:

d = 0: In this caseu = ( ) and[[( )]]E = ( ). E ⊢ ( ) : Empty and( ) ∈ Empty.

d = n + 1: In this caseu = ı1 . . . ın. If the last rule applied for deducing thatE ⊢ u : A
is (Type Doc), we have:

• A = a1[B1], . . . , an[Bn];

• E ⊢ ık : node ak(uk);

• E ⊢ uk : Bk; everyuk has depth less or equal ton, thus by induction[[uk]]E ∈
Bk.

If the last rule applied for deducing thatE ⊢ u : A is (Type Sub), we have:

• E ⊢ u : a1[B1], . . . , an[Bn], that isE ⊢ ık : node ak(uk), andE ⊢ uk : Bk;
everyuk has depth less or equal ton, thus by induction[[uk]]E ∈ Bk.

• a1[B1], . . . , an[Bn] <: A impliesL(a1[B1], . . . , an[Bn]) ⊆ L(A).

In both cases,[[u]]E = a1[[[u1]]E ] . . . an[[[un]]E ] ∈ a1[B1], . . . , an[Bn], thus[[u]]E ∈ A.

(⇐): By induction on the depth ofu:

d = 0: In this caseu = ( ) and[[( )]]E = ( ). ( ) ∈ A impliesL(Empty) ⊆ L(A). E ⊢ ( ) :
Empty and by (Type Sub)Empty <: A impliesE ⊢ ( ) : A.
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d = n + 1: In this caseu = ı1 . . . ın. [[u]]E = a1[d1] . . . an[dn] ∈ A with d1 = [[u1]]E,
. . . , dn = [[un]]E. We can say that∀i : di ∈ di and by inductionE ⊢ di : di.
a1[d1] . . . an[dn] ∈ A implies, by Proposition 11,A = a1[d1], . . . , an[dn] A. In
conclusiona1[d1], . . . , an[dn] <: A and by rules (Type Doc) and (Type Sub)E ⊢ u :
A.

�

Proposition 13 SupposeE ⊢ S : A andu = ı1 . . . ın with E ⊢ ıi : node ai(ui) for i ∈ 1, . . . , n.
If a1 . . . an 6⊢S thenE ⊢ u : A.

Proof. SupposeS = Reg(a′i[pi(~vi)])i∈1,...,k. E ⊢ S : A impliespi : (~ti) → Ai, E ⊢ ~vi : ~ti and
A

.
= Reg(a′i[Ai])i∈1,...,k.

a1 . . . an 6⊢S means thata1 . . . an /∈ Reg(a′i)i∈1,...,k, so by definitiona1 . . . an 6⊢A and by Propo-
sition 9 ∀Bi : a1[B1], . . . , an[Bn] 6<: A. We can not apply rule (Term Sub) for saying that
E ⊢ u : A, soE 6⊢ u : A. By Proposition 12, this means that[[u]]E /∈ A that is[[u]]E ∈ A, and by
Proposition 12E ⊢ u : A. �

Theorem 14 (Theorem 1)Suppose thatP is well formed and contains only unambiguous pat-
terns andt contains only unambiguous types. IfE ⊢ P : t andP → Q thenE ⊢ Q : t.

Proof. By induction on reduction rules. We distinguish the last rule applied (rememebr that at
every step we work with a well formed term):

(Red Fun) by rule (Type Fun)E ⊢ f(u1, . . . , un) : t0 impliesf : (t1, . . . , tn)→ t0 andE ⊢ ui :
ti. f : (t1, . . . , tn) → t0 means thatf(x1, . . . , xn) := e andx1:t1, . . . , xn:tn ⊢ e : t0. By
(Red Fun)f(u1, . . . , un) → e{x1 ← u1} . . .{xn ← un}; in conclusion, by Proposition 5
(substitution),x1:t1, . . . , xn:tn ⊢ e : t0 andE ⊢ ui : ti impliesE ⊢ e{x1 ← u1} . . .{xn ←
un} : t0;

(Red Let) by rule (Type Let)E ⊢ let x = u in P : t′ impliesE ⊢ u : t andE, x : t ⊢ P : t′;
by Proposition 5 (substitution)E ⊢ P{x← u} : t′;

(Red Struct) if P : t andP ≡ Q by Proposition 7 (subject congruence)Q : t. By induction
Q→ Q′ andQ′ : t. Again for Proposition 7 (subject congruence),Q′ ≡ P ′ impliesP ′ : t;

(Red Context) the proof is straightforward distinguishing the contextE;

(Red Ref) by rule (Type Ref)E ⊢ newref u : ref A implies E ⊢ u : A. By (Red Ref)
newref u→ (νℓ)(〈 ℓ 7→ref u 〉 � ℓ). If we considerℓ : refA, and using rules (Type Res),
(Type Par), (Type Loc Ref) and (Typex) E ⊢ (νℓ)(〈 ℓ 7→ref u 〉 � ℓ) : ref A;

(Red Read) by rules (Type Loc Ref) and (Type Read)E ⊢ 〈 ℓ 7→ref u 〉 �!ℓ : A impliesE ⊢
ℓ : ref A, andE ⊢ u : A. Using rules (Type Loc Ref), (Typex) and (Type Par)E ⊢
〈 ℓ 7→ref u 〉 �u : A;
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(Red Write) by rules (Type Loc Ref) and (Type Write)E ⊢ 〈 ℓ 7→ref u 〉 � l += v : Empty

impliesE ⊢ ℓ : ref A, E ⊢ u : A, E ⊢ v : B andA, B <: A. Rule (Red Write) implies
u, v = w and by (Type Comp)E ⊢ w : A,B, thusA,B <: A impliesE ⊢ w : A and
E ⊢ 〈 ℓ 7→ref w 〉 : ⋆, by rules (Type Loc Ref) andE ⊢ 〈 ℓ 7→ ref w 〉 �() : Empty by
rule (Type Par);

(Red Node) E ⊢ a[u] : a[A] implies, by (Type Node),E ⊢ u : A. If we considerı : node a(u),
by (Red Node)a[u]→ (νı)(〈 ı 7→ node a(u) 〉 � ı) impliesu = ı1 . . . ın, and by rules (Type
Res), (Type Par), (Type Loc Node), and (Type Doc)E ⊢ (νı)(〈 ı 7→node a(u) 〉 � ı) : a[A];

(Red Comp) by rule (Type Comp)E ⊢ u1, u2 : A1, A2 impliesE ⊢ ui : Ai for i = 1, 2. By
(Red Comp)u1 = ı1 . . . ık andu2 = ık+1 . . . ın.

If we have deducedE ⊢ u1 : A1 and E ⊢ u2 : A2 both by using rule (Type Doc),
thenA1 = a1[B1], . . . , ak[Bk] andA2 = ak+1[Bk+1], . . . , an[Bn], and by (Type Doc)
E ⊢ ı1 . . . ıkık+1 . . . ın : A1,A2.

If we have deducedE ⊢ u1 : A1 and E ⊢ u2 : A2 both by using rule (Type
Sub), thena1[B1], . . . , ak[Bk] <: A1 and ak+1[Bk+1], . . . , an[Bn] <: A2, and by
(Type Doc) E ⊢ u1 : a1[B1], . . . , ak[Bk] and E ⊢ u2 : ak+1[Bk+1], . . . , an[Bn].
By (Type Doc) E ⊢ ı1 . . . ıkık+1 . . . ın : a1[B1], . . . , ak[Bk], ak+1[Bk+1], . . . , an[Bn].
Moreover,a1[B1], . . . , ak[Bk], ak+1[Bk+1], . . . , an[Bn] <: A1,A2, and by (Type Sub)
E ⊢ ı1 . . . ıkık+1 . . . ın : A1,A2.

The casesE ⊢ u1 : A1 by (Type Doc) andE ⊢ u2 : A2 by (Type Sub) and vice versa, are
similar to the previous;

(Red Try) by rule (Type Try Doc)E ⊢ try u p(~v) : loc o(A) implies p : (~t) → A, E ⊢
~v : ~t, andE ⊢ u : B; by the reductionu = ı1 . . . ın. If we chooseı : node o(u) and
ℓ : loc o(A) we haveE, ı:node o(u) ⊢ 〈 ı 7→node o(u) 〉 : ⋆, by (Type Loc Node), and
E, ı:node o(u), ℓ:loc o(A) ⊢ 〈 ℓ 7→try ı p(~v) 〉 : ⋆. Finally, by rules (Type Res), (Type
Par), and (Typex) E ⊢ (νı, ℓ)(〈 ı 7→node o(u) 〉 �〈 ℓ 7→try ı p(~v) 〉 � ℓ ) : loc o(A);

(Red Try Match) by rules (Type Par), (Type Try Doc), and (Type Loc Node)E ⊢
∏

k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→node a(ı1 . . . ın) 〉 �〈 ℓ 7→try ı p(~v) 〉 : ⋆ implies:

• E ⊢ ı : node a(ı1 . . . ın);

• E ⊢ ık : node ak(wk) andwk = (ı1k
. . . ınk

);

• E ⊢ ℓ : loc a(A), p : (~t)→ A, andE ⊢ ~v : ~t; thus ifp(~v) := S thenS : A.

By (Red Try Match)
∏

k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→node a(ı1 . . . ın) 〉 �
〈 ℓ 7→try ı p(~v) 〉 →

∏

k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→node a(ı1 . . . ın) 〉 �
(νw)(

∏

〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı w 〉) implies w = 1 . . . n fresh and
a1 . . . an ⊢S p1(~v1) . . . pn( ~vn).
If pk : (~tk) → Ak we choosejk : loc ak(Ak) and E, jk : loc ak(Ak)k=1,...,n ⊢
∏

k〈 k 7→ try ık pk(~vk) 〉 : ⋆.
We have to show that〈 ℓ 7→test ı w 〉 : ⋆. We know that:
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• E ⊢ ℓ : loc a(A);

• E ⊢ ı : node a(ı1 . . . ın);

• jk : loc ak(Ak)k=1,...,n.

We have to prove thata1 . . . an ⊢A A1 . . . An. By the reduction we have
a1 . . . an ⊢S p1(~v1) . . . pn( ~vn); moreoverpi(~vi) : Ai, and S : A, so by Proposi-
tion 8 a1 . . . an ⊢A A1 . . . An, thus E ⊢ 〈 ℓ 7→test ı w 〉 : ⋆. In conclusionE ⊢
(νw)(

∏

〈 k 7→ try ık pk(~vk) 〉 �〈 ℓ 7→test ı w 〉) : ⋆;

(Red Try All) E ⊢ 〈 ℓ 7→ try ı All 〉 : ⋆ impliesE ⊢ ℓ : loc a(All), E ⊢ ı : node a(ı1 . . . ın)
and All : () → All. By (Red Try All) 〈 ℓ 7→try ı All 〉 → 〈 ℓ 7→ok ı 〉 and E ⊢
〈 ℓ 7→ok ı 〉 : ⋆ becauseE ⊢ ı1 . . . ın : A (for any A) and A <: All, thus by (Type
Sub)E ⊢ ı1 . . . ın : All;

(Red Try Error) E ⊢
∏

k∈1,...,n〈 ık 7→ node ak(vk) 〉 �〈 ı 7→ node a(ı1 . . . ın 〉 �
〈 ℓ 7→try ı p(~v) 〉 : ⋆ implies E ⊢ ı : node a(ı1 . . . ın), E ⊢ ık : node ak(vk), vk =
(ı1k

. . . ınk
) E ⊢ ℓ : loc a(A), p : (~t) → A, andE ⊢ ~v : ~t. By the reductionp(~v) := S,

thusE ⊢ S : A. a1 . . . an 6⊢S, thus, by Proposition 13,E ⊢ ı1 . . . ın : A so, by (Type Let)
and (Type Loc Fail),E ⊢ 〈 ℓ 7→fail ı 〉 : ⋆;

(Red Test Ok) by rule (Type Loc Ok), (Type Loc Node), and (Type Test Loc)E ⊢
〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1,...,n〈 k 7→ ok ık 〉 �〈 ℓ 7→test ı w 〉 : ⋆ (where w =
1 . . . n) implies E ⊢ ı : node a(ı1 . . . ın), ∀k ∈ 1, . . . , n : E ⊢ k : loc ak(Ak),
E ⊢ ık : node ak(uk), and E ⊢ uk : Ak. Moreover E ⊢ ℓ : loc a(A) and
a1 . . . an ⊢A A1 . . . An.
a1 . . . an ⊢A A1 . . . An implies a1[A1], . . . , an[An] <: A, by Proposition 9; thus by
(Type Doc) E ⊢ ık : node ak(uk), and E ⊢ uk : Ak we haveE ⊢ ı1 . . . ın :
a1[A1], . . . , an[An] and by (Type Sub)E ⊢ ı1 . . . ın : A. So by (Type Par)E ⊢
〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1,...,n〈 k 7→ ok ık 〉 �〈 ℓ 7→ok ı 〉 : ⋆;

(Red Test Fail) E ⊢ 〈 ı 7→node a(ı1 . . . ın) 〉 �
∏

k∈1,...,n〈 k 7→ dk 〉 �〈 ℓ 7→test ı w 〉 : ⋆ (with
w = 1 . . . n) implies:

• by rule (Type Loc Node)E ⊢ ı : node a(ı1 . . . ın);

• by rule (Type Loc Ok)∀k ∈ 1, . . . , n : s.t. dk = ok ık we haveE ⊢ k : loc ak(Ak),
E ⊢ ık : node ak(vk), andE ⊢ vk : Ak;

• by rule (Type Loc Fail)∀k ∈ 1, . . . , n : s.t. dk = fail ık we haveE ⊢ k :
loc ak(Ak), E ⊢ ık : node ak(vk), andE ⊢ vk : Ak;

• by rule (Type Test Loc)E ⊢ ℓ : loc a(A), E ⊢ ı : node a(ı1 . . . ın), E ⊢ k :
loc ak(Ak), a1 . . . an ⊢A A1 . . . An.

By (Red Test Fail)〈 ı 7→node a(ı1 . . . ın) 〉 �
∏

k∈1,...,n〈 k 7→ dk 〉 �
〈 ℓ 7→test ı w 〉 → 〈 ı 7→node a(ı1 . . . ın) 〉 �

∏

k∈1,...,n〈 k 7→ dk 〉 �〈 ℓ 7→fail ı 〉 if ∃j ∈

32



1, . . . , n : 〈 j 7→ fail ıj 〉 (note that forj we haveE ⊢ vj : Aj). ObviouslyA 6=
All, so by Proposition 10a1[A1], . . . , aj[Aj ], . . . , an[An] <: A. By rule (Type Doc)
E ⊢ ı1 . . . ın : a1[A1], . . . , aj[Aj ], . . . , an[An] and by (Type Sub)E ⊢ ı1 . . . ın : A. In
conclusion, by (Type Loc Fail),E ⊢ 〈 ℓ 7→fail ı 〉 : ⋆;

(Red Wait Ok) by rules (Type Par), (Type Loc Ok), (Type Wait), and (Type LocNode)E ⊢
〈 ℓ 7→ok ı 〉 �〈 ı 7→node a(u) 〉 � wait ℓ(x) then e1 else e2 : t implies u = ı1 . . . ın,
E ⊢ ı : node a(u), E ⊢ ℓ : loc a(A), E ⊢ u : A, E, x:A ⊢ e1 : t, andE, x:A ⊢ e2 : t.
By rule (Red Wait Ok)〈 ℓ 7→ok ı 〉 �〈 ı 7→node a(u) 〉 �wait ℓ(x) then e1 else e2 →
〈 ℓ 7→ok ı 〉 �〈 ı 7→node a(u) 〉 � e1{x ← u}. By Proposition 5 (substitution),E ⊢ u : A
and E, x:A ⊢ e1 : t imply E ⊢ e1{x ← u} : t. Finally, by rule (Type Par),E ⊢
〈 ℓ 7→ok ı 〉 �〈 ı 7→node a(u) 〉 � e1{x← u} : t;

(Red Wait Fail) by rules (Type Par), (Type Loc Fail), (Type Wait), and (Type Loc Node)E ⊢
〈 ℓ 7→fail ı 〉 �〈 ı 7→node a(u) 〉 � wait ℓ(x) then e1 else e2 : t impliesu = ı1 . . . ın,
E ⊢ ı : node a(u), E ⊢ ℓ : loc a(A), E ⊢ u : A, E, x:A ⊢ e1 : t, andE, x:A ⊢ e2 : t.
By rule (Red Wait Fail)〈 ℓ 7→fail ı 〉 �〈 ı 7→ node a(u) 〉 � wait ℓ(x) then e1 else e2 →
〈 ℓ 7→fail ı 〉 �〈 ı 7→node a(u) 〉 � e2{x← u}. By Proposition 5 (substitution),E ⊢ u : A
and E, x:A ⊢ e2 : t imply E ⊢ e2{x ← u} : t. Finally by rule (Type Par),E ⊢
〈 ℓ 7→fail ı 〉 �〈 ı 7→node a(u) 〉 � e2{x← u} : t.

�
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