LIF

Laboratoire d’'Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS — Université de Provence — Université de la Méditete

A Typed Calculus for Querying
Distributed XML Documents

Lucia Accial, Michele Boreale and Silvano Dal Zilio
Rapport/Report 29-2006

October 2005

Les rapports du laboratoire sont télechargeables #elsseé suivante
Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

A Typed Calculus for Querying
Distributed XML Documents

Lucia Accial, Michele Boreale and Silvano Dal Zilio

LIF — Laboratoire d’Informatique Fondamentale de Marseill
UMR 6166
CNRS - Université de Provence — Université de la Médchreze

dalzilio@if.univ-nrs.fr

Abstract/Résume

We study the problems related to querying large, distritbX&IL documents. Our proposal
takes the form of a new process calculus in which XML data avegsses that can be queried by
means of concurrent pattern-matching expressions. Whatchieve is a functional, strongly-
typed programming model based on three main ingredientsisgnchronous process calculus
that draws features from-calculus and concurrent-ML; a model where both documends a
expressions are represented as processes, and wherdiemakieepresented as a parallel com-
position of the two; a static type system based on regularesspn types.

Keywords: Process calculi; XML; types.

Ce rapport s’intéresse aux problemes liés a la maniipulat a I'interrogation de documents
XML de tres grande taille, distribués sur un réseau. Nprggosons un nouveau calcul de
processus dans lequel les données sont des processusugenpétre interrogés par le biais
d’expressions de filtrage concurrentes. Un des résuliatsedtravail est un modele de pro-
grammation fonctionnel, fortement typé, basé sur trogrédients principaux: un calcul de
processus asynchrone qui emprunte certaines de sesecestigpies aur-calcul et au langage
CONCURRENFML,; un modele dans lequel documents et requétes soréseptés par des pro-
cessus et ou I'evaluation d’'une requéte est représgpeir la composition parallele de ces deux
processus; un systeme de typage statique basé sur lessixms régulieres de types.

Mots-clefs: Calcul de processus; XML, types.
Relecteurs/ReviewersDenis Lugiez and Solange Coupet-Grimal

Notes: This work was partly supported by ACI Masses de Donnéege@rd RALALA.

1 Introduction

There is by now little doubt that XML will succeed as a linguarfca of data interchange on
the Web. As a matter of fact, XML is a building block in the dieyment of new models of
concurrent applications, often referred to as Servicended Architecture (SOA), where com-
putational resources are made available on a network asd keisely-coupled, independent
services.

The SOA model is characterized by the need to exchange ang ¥l documents. In
this paper, we concentrate on the specific problems relatedéryinglarge, distributed XML
documentsThis is the case, for example, of applications interactuitty distributed heteroge-
neous databases or that process data acquired dynanscalyas those originating from arrays
of sensors (in this case, we can assume that the documemfiedninfinite). For another exam-
ple, consider the programs involved in the maintenanceebtf Web indexes used by search
engines [14]. A typical example is the computation ¢éam vectorthat is a list of words found
on some documents of the index together with their frequelagtribution, concurrency and
dynamic acquisition of data must be explicitly taken intc@amt when designing an effective
computational model for this kind of applications.

We most particularly pay attention to the processing mo@eir proposal takes the form of
a process calculus in which XML data are processes that cgndrged by means of concurrent
pattern-matching expressions. In this model, the evalnabi patterns is distributed among
locations, in the sense that the evaluation of a pattern atla triggers concurrent evaluation of
sub-patterns at other nodes, and actions can be carriecbontauccess or failure of patterns.
The calculus also provides primitives for storing and aggtieg the results of intermediate
computations and for orchestrating the evaluation of pagtdn this respect, we radically depart
from previous works on XML-centered process calculi, sge[@, 9, 17], where queries would
be programmed as operations invoked on (servers hosting)S&evices and XML documents
would be exchanged in messages. In contrast, we view quasiesde being dispatched to the
locations “hosting” a document. This shift of view is motied by our target application domain.
In particular, our model is partly inspired by tiMapReducearadigm described in [14] that
is used to write programs to be executed on Google’s largetartsl of computers in a simple
functional style. Continuing with the “term vector examipddove, assume that the documents
of interest are cached on different (maybe replicated)essrvA query that accomplishes the
aforementioned task would dispatch sub-queries to evevgsand create a dedicated reference
cell to aggregate the partial results from each server. gagies sifts the local documents and
transmit to the central reference cell a sequence of paosl(frequency produced locally. The
task of the aggregating function is to collect the frequestor identical keywords as they arrive,
so as to eventually produce the global term vector. To aehieNability, sub-queries may have
to report back periodically with status updates while thester query” may decide to abort or
reinstate queries in case of servers failure.

Another important feature of our model is the definition of tatis type system based
on regular expression typethat is compatible with Document Type Definitions (DTD) and
other XML schema languages. What we achieve is a functi@tingly-typed programming
model for computing over distributed XML documents basedtltmee main ingredients: a

3

semantics defined by an asynchronous process calculus styfleeof ther-calculus [23] and
proposed semantics for concurrent-ML [16]; a model whereudments and expressions are
both represented as processes, and where evaluationeseaped as a parallel composition of
the two; a type system based on regular expression typesdth@ness of the static semantics
is proved via a subject reduction property, Theorem 1). Edi¢hese choices is motivated by a
feature of the problem: the study of service-oriented &apitbns calls for including concurrency
and explicit locations; the need to manipulate large, pbgsiynamically generated, documents
calls for a streamed model of processing; the documentddxdbg a service should often obey
a predefined schema, hence the need to check that querieslatgped, preferably before they
are executed or “shipped”.

The rest of the paper is organized as follows. Section 2 ptesbe core components of
the calculus — documents, types and patterns — and Sectiore8 the formal semantics of
the calculus. In Section 4 we define a first-order type systdim subtyping based on regular
expression types and prove the soundness of our type diszilefore concluding with a review
of related works, we study possible extensions of our mod8kction 5.

2 Documents, Types and Patterns

We consider a simple language of first-order functional esgions, denoted ¢’, . . ., enriched
with references and recursive pattern definitions that seel to extract values from documents.
Patterns are built on top of a syntax for defining regular ¢g@@nmars [13], which is also at the
basis of our type system.

2.1 Documents

An XML document may be seen as a simple textual representfdronested sequences of ele-
ments<a>...</ a>. In this paper, we follow notations similar to [21] and che@ssimplified
version of documents by leaving aside attributes among olliregs. We assume an infinite set
of tag namesranged over by, b, ... (we will often choose the symbael for the tag of the root
element of a document). A document is an ordered sequenéenoéptsa; [v:] . . . ay[v,], where
v1,...,v, are documents. Documents may be empty, denp)edand can be concatenated,
denotedv, v'. The composition operation is associative with identixy

In the following we consider distributed documents, megrtimat each elemend;[v;] is
placed in a given location, say. Locations are visible only at the level of the operational
semantics, in which the contents of a document is repreddaytehe index; . . .1, (the list of
locations) of its elements. For the sake of simplicity, lomas and indexes are the only values
handled in our calculus and we leave aside atomic data valudsas strings or integers.

2.2 Document Types

Applications that exchange and process XML documents ralytype information, such as
DTDs, to describe structural constraints on the occurreéeslements. In our model, types
take the form of regular tree expressions, which are a setafrsive definitions of the form
A := Reg(ai[A;])ic1.n, WhereReg is a regular expression antd A4, ..., A, are type variables.
This is essentially a syntax for defining regular tree gramaegular expressioReg(;)ic1.»
can be an atom; with 7 € 1..n; it can be the constani 1, which matches everything, @mpty,
which matches the empty sequence; it can be a chBige | Reg,, a sequential composition
Reg,, Reg,, Or an iterationReg=. For instance, the declaration below defines the tod fam-
ily trees, which are sequences of male or female person katkach person hasame element,
and two elements} ands, for the list of his daughters and sons.

L := (man[P]|woman[P])* P := name[All],d[WL],s[ML]
WL := woman[P]x ML := man[P]x*.

There is a natural notion of subtyping <: B between regular expression types, meaning
that every document id is also inB. The type system is close to what is defined in functional
languages for manipulating XML, see e.g. XDuce [19, 20, 2lthe review in [10], hence we
stay consistent with actual frameworks used in sequeiatiguages for processing XML data.

2.3 Selectors and Patterns

The core of our programming model is a system of distributetiepn matching expressions
that concurrently sift through documents to extract infation. Basically, patterns are types
enhanced with parameters and capture variables. Howéeefuhctions, patterns are declared
and have a name.

We assume a countable set mdmes partitioned intolocations, 7,7, ... and variables
z,y,... We use the vector notatio for tuples of names. The declaratigz) :=
(Reg(as[pi(i)])ic1.n) as y defines a pattern called, with parametersz, that will collect
matched documents in the referencéwherey is a variable inr). For instance, the patterns
defined below can be used to extract the names of persongiogcinra document of typé.

names(x,y) = (man[p(:p, y,)] | woman[p(z, y, y)])*
p(z,y,z) := namelall(z)],d[names(x,y)], s[names(x,y)]
all(z) := All asz.

A call to names(1,¢) stores in (the reference located athe name of men and if the
name of women. A call tamames(¢, ¢) will store the names of all persons fn Actually, the
most general form of pattern declaration allows definitions and setting continuations to be
evaluated upon success or failure of the pattern, i.e. anpatieclaration is of the form, whefe
is a selectoReg(a; [pi(¥i)])ic1.n:

p(Z) := let (21 =¢),...,2m =€,,) in (S as y) then ¢; else e; ,

An important feature of our model is that patterns may extnadltiple sets of values from
documents in one pass, which contrasts with the monadiceguexpressible with technologies
such as XPath. In the next section, we give a formal definibbtihe calculus, which embeds
an operatotry v p(u) for applying the patterp to the valuev. During reduction, the index
is matched against after all the expressiong, ..., e/ have been evaluated. If the matching
succeeds, thenis added to the values storedyrande; is evaluated. Otherwise, the compen-
satione, is evaluated. These optional continuations allow to adecleaseption and transaction
mechanisms to the calculus.

Clearly, types are particular kind of patterns: a patterciatation without parameterset
definitions, capture variables and continuations is a tygmadlation. Moreover, every pattepn
can be associated with the typeobtained by erasing these extra informatiehis the type of
all documents that are matched jay

In the following, we assume that functions and patterns yred explicitly. For instance,
we assume that the pattemames is declared with the typ&11,A11) — L. More generally, a
reference that merges values of typevill have a typeA such thatd, B <: A.

2.4 Witness and Unambiguous Patterns

Next, we define what it means for a pattern to match an indexdaifche a notion ofun-
ambiguouspatterns. Assumé§' is the selectoReg(a;[p:(v;)])ic1.m- The sequence;, ... a;,
matchesS if and only if it is a “word” in the language oReg(a;);c1..,- This relation is de-
notedas, ...as, g p;, (T;,) - - . pi, (U;,) @and we call(p;; () je1.. awitnessfor S of ay, ... a;, .
We write a;, ...a;, /s if the sequence has no witness {6r More formally, the relation
aj...a, g cp...cn, With ¢; -:= p(v) | A11, is defined in the following table:

Witness
(W-Ally (W-Empty) (W-Choice)
Fie{1,2}: a;...antRey, 1. .0y
aj...a, Fpp A1L.. AL () Feapey () B L, €L Cn

(W-Atom) (W-Seq)

Fice{0...n}:as...a; e, C1... ¢ Aig1...8n FReg, Ciy1.-.C

akb,pc ar...an FReg,, Reg, C1--.Cn

(W-Star-Empty) (W-Star)

Fe{l...n}:ar...aiFregC1...C Qi41...8n FRegs Cit1-.-Cp

() }_Reg* () aq...dn }_Reg* Cl...Cp

It is standard in XML to restrict to expressions that den@gugences of elements unequiv-
ocally. We say that a pattern with selectoris unambiguousf each sequence of tags has at
most one witness faf. Assume thatp;, (7)) e1..m IS “the witness” ofS for b, ... b,. When a

documenb; [v;] . . . by[v,,] iS matched against a pattern with selecipeach sub-document is
matched againgt;, (v;;). If by ... b, has no witness then the pattern-matching fails.

Some schema languages, like DTD for example [7], use a stramgtion which requires
that the witness can be computed incrementally, readinmg &sequence of tags with only one
symbol look-ahead. While this notion is suitable when wogkwith streamed data (of ordered
documents) it may impose needless performance penalties wbrking in a truly concurrent
way. For instance, we want to be able to start the evaluatioanoelement without necessarily
matching all its preceding siblings beforehand (whild gtibviding a minimal support for “set-
at-a-time” operations). For this reason, we require an swemger notion of unambiguity and
say that a selectd®eg(a; [p;(0;)]):c1... IS CONsistently unambiguoifevery tag specifies a unique
pattern, i.e. whenever, = a; thenp;(v;) andp;(v;) are the same.

Another (more flexible but also more complex) solution wolédto require that, for every
sequence of tags and every integehe:" component of a witness can be computed only from
the value of the'™ tag.

3 The Calculus

The presentation of the calculus can be naturally dividéd iwo fragments: a language of
functional expressions, @rograms that are used in the body of pattern and function declara-
tions; and a language of processescanfigurationsthat models distributed documents and the
concurrent execution of programs.

3.1 Programs

The calculus embeds a first-order functional language vétarences, pattern-matching and
constructs for building documents. In the following, wewass that every function identifier

f has associated arity > 0 and a unique definitiorf (Z) := e where the variables i are
distinct and include the free variablescofWe take similar hypotheses for patterns. The syntax
of expressions, ¢/, . .. is given below:

Syntax of Expressions

U, v = results
x name: variable or location
1.ty index (withn > 0)
e = expressions
u result
alul element creation
Uy result composition
flug, ... up) function call
letz = e; iney let
newref u new reference (with initial value)
lu dereferencing

U+=v update (adds to the values stored im)
try up(ug, ..., uy,) pattern matching call
wait u(x) then e; else ey wait matching

A result is either a name or an index, i.e. an expression thatddiately returns itself. Ex-
pressions include results, operators for creating new exésa/u|, for concatenating indexes
u, v, and for creating and accessing references. Referenceeupama slightly unusual seman-
tics since the effect of += v is to append to the value stored in the reference Actually,
we could imagine that each reference is associated withggrégating function” that specifies
how the sequence of values stored in the reference has tonbleireed. For example, assume
¢ is an “integer reference” that increments its value by onewery assignment. Then a call
to names(¢, ¢) counts the number of people in a document of typeWe only consider index
composition in this work.

The expressionry v p(u) is used to apply the patteqmto the indexv = 2;...2,. A
try expression returns at once with the location of a fresh noterevthe matching oc-
curs. Moreover, evaluation of patterns is carried out comeuly: the effect of evaluating
let z = (try v p(%)) in P is to filter v by p concurrently with the evaluation dP. In this
example is bound to the location of the “thread” that executestthe expression, say. The
location/ can be tested i to check whether the pattern-matching has ended using gre®x
sionwait /(z) then e; else e;. Thewait statement blocks until the pattern evaluating at
stops. Then the continuatien is evaluated if the matching succeeds, otherwisis evaluated.
In each case the variableis bound tov.

3.2 Configurations

The syntax of processd3 (), . . . is as follows:

Syntax of Processes

PQ,R:= processes
e expression
letx = Pin @ let
(1—d) location
PrQ parallel composition
()P restriction

d = resources
ref u reference with value
node a(u) node, element taggedwith indexu
try e p(uy, ..., uy,) try matching
testiu test matching
ok successful match
fails failed match

The calculus features operators from thealculus: restrictiorfr2) P specifies the scope of
a name local to P; parallel compositioP I’ () represents the concurrent evaluatiorPadnd().
Overall, a process is a multiset bét expressions, describing threads execution, and locations
(21— d), that describes sesourced located ir.

The calculus is based on an abstract notion of location shat the same time, the minimal
unit of interaction and the minimal unit of storage. Failkigge not part of this model (they can
be viewed as an orthogonal feature) but could be added,retheistyle of [5]. Locations store
resources. The main resources ssé v, to store the current state of a reference, asik a(u),
to describe an element of the foerfu]. The calculus explicitly takes into account the distribati
of document nodes and, for example, the documaésif c|]] can be represented (at runtime) by
the parallel composition:

(vt122) ({ 2+ node a(11 25)) P (211 —mnode b()) (22 +—node c())) .

The other resources arise in the evaluation of patternfimayand correspond to different
phases in its execution: scheduling a “pattern cait’y(); waiting for the result of sub-patterns
(test); stopping and reporting success) or failure (fail).

Syntactic conventionsithe operatorslet, wait and v are name binders. Notions of-
equivalence and of free and bound names arise as expectetnetefv(P) the set of variables
that occur free inP andfn(P) the set of free names. We identify expressions and terms up-t
a-equivalence. Substitutions are finite partial maps fronages to results: we writ€{x«—u}
for the simultaneous, capture-avoiding substitution bfrak occurrences of in P with u. As-
sumeo is the substitutioq z1«u, } . . . {z,<—u, } andd = (uy, ..., u,). We write f (@) := €' if
f(Z) := eande’ = o(e) and we writep(u) := S’ if the selector ofp(¥) is .S andS” = o(5).
Finally, we make use of the following abbreviationsuif= ¢, .. .1, then(vu)P is a shorthand
for (ve) ... (v2,)P; the term(v0) Pr @ stands for((v/)P) T Q; the termlet x = Pin QT R
stands folet z = P in Q)T R; andwait /(x) then e; stands fomait ¢(x) then e; else ()
(and similarly for omittecthen clause).

3.3 Reduction Semantics

The semantics of our calculus follows the chemical stylatbin ther-calculus [23]: it is based
on structural congruence and a reduction relation. Reglucépresents individual computation
steps and is defined in terms of structural congruence arndatian contexts.

Structural congruences allows the rearrangement of terms so that reduction rulesbeaap-
plied. It is the least congruence on processes to satisfiptlosving axioms:

Structural Congruence: P = @

(Struct Par Assoc) (Struct Par Let)
x & fn(P)

(PrQ)rR=Pr(QrR) Prletz=QinR=1letz = (PrQ)inR

9

(Struct Par Com) (Struct Res Let)

(¢ fn(Q)
(PPQ)FR=(Qr P)IT'R (vl)letx =Pin@Q =1letx = (V)P inQ
(Struct Res Res) (Struct Res Par R) (Struct Res Par L)
v ¢ fn(P) v ¢ fn(Q)

() (wl)P = (vl)(1n) P () (Pr@Q)=Pr(n)Q (1) (PT Q) = ((1)P)T Q
(Struct Let Assoc)

z ¢ fn(R)
lety=(letz=PinQ)in R=1letx = Pin(lety = @ in R)

Since a process may return a value, we take the conventibthihaesult of a composition
Py r...7 P, is the result of its rightmost term®,. The values returned by the other processes
are discarded. This entails that the order of parallel carepts is relevant. For this reason,
unlike the situation in most process calculi, parallel cosipon is not a commutative operator.
Actually, composition is “left commutative”, which meansat (Pr @) R is equivalent to
(Qr P)r R but that we do not necessarily have” () equivalent toQ P. This choice is
similar to what is found in calculi introduced for definingeteemantics of concurrent-ML [16]
and for concurrent extension of object calculi [18]. An autage is that we directly include
sequential composition of processes: the sequential csitiguoP; () can be interpreted by the
termlet x = P in), Wherex ¢ fv(Q). Moreover it relieves us from the need to encode the
operation of returning a result using continuations andisgna message on a result channel, as
in ther-calculus.

Reduction— is the least binary relation on closed terms to satisfy thievong rules.

Reduction: P — @

I(Red Fun) (Red Let)
f declared ag (%) :=e

flur, .. uy) — ef{ry—u } .. {zp—u,} let z =uin P — P{x—u}
(Red Struct) (Red Contexfy) (Red Ref)

P=Q, Q—Q, Q=P P—P u=1...1, £ fresh name

P— P E[P] — E[P] newref u — (v0)(({+—ref u)r ()
(Red Read) (Red Write}*)
W= U,
(l—refu)fll — ({—refu)fu ({—refu)ll+=v — (L—refw)r()

10

(Red Node) (Red Comp)

u=1...17, ¢ freshname Up =27 .. .0 U = Uy ... 1p
a[u] — (v2)({2+—node a(u)) 1) Upy Us — U1 - . . Uy
(Red Try)

U=1...%, 1, ¢ distinct fresh names
try u p(v) — (1) (vf)({21+—node o(u)) P{L—try 1 p(¥))T L)

(Red Try Match)
P = (1—mnodea(...1))" [[1c1 (% — node ay(wy))

p(¥):=S aj...apbgpi(vh)...pu(th) w =7 ...7, distinct fresh names
Pr{t—tryip(@)) — PP (vw)([Tper (x> tTy we pe(U)) P (L test 1w))

(Red Try Error)
P = (1—mnodea(y...1,)) " [[1c1 n(% — node ax(wy))
p(¥): =S aj...ayls

(Red Try All)

(frtryAll) — ({1 ok) PPty p(t)) — PPl failt)

(Red Try Error)
P = (1—mnodea(s...%,)) [[,e; ,(w—=mnode ag(wy)) p(v) =S5 aj...a;ls

Pr{l—tryip(v)) — Pr{f+— fail)

(Red Test OKk)
P=(1—mnodea(ty...15)) " [[hcr n{k—=0ku) w=71...0,
Pr(l—testiw) — Pr{{+—oku)

(Red Test Fail)

P = (v—mnodea(t...%))" [[rer nlok—di) W=171-In
Vk e l.n: dy € {oky, faily} djel.n: dj="~failyy;

Pr(l—testiw)— Pr{f+—fails)

(Red Wait Ok)
P = (1+—nodea(u))r({+—ok)

Prwait /(x) then e; else eg — Prej{z—u}

(Red Wait Fail)
P = (1—nodea(u))r(l+fail)

Prwait /(x) then e; else eg — PTr ex{z—u}

) where E:=QrE | ErP | [] | (WOE | letx=FEinP

(=) in the general case we have= op(u, v), whereop is some “aggregating” function

11

The rules for expressions are similar to traditional semarior first-order languages, with
the difference that the resources in a configuration playrdte of the store. Likewise, the
rules for operators that return new values (the operatewsef, a[| andtry) yields reductions
of the forme — (v¢)({({+—d)r ¢), which means that new values are always allocated in a
fresh location. Actually a quick inspection of the ruleswhdhat resources are created in fresh
locations and are always used in a linear way: an expresaiamot discard a resource or create
two different resources at the same location.

The remaining rules are related to the evaluation of pattemtching expressions. Ary
expression on the patteprgenerates a frestry resource, rule (Red Try). Assume tifats the
selector ofp, thetry resource will trigger evaluation of sub-patterns selefteoh a witness of
S, rule (Red Try Match). For the sake of simplicity, we only sater selector patterns in rule
(Red Try Match). In the general case, for patterns with Iaeal definitions, capture variable
and continuation, we can use the following rule:

P = (1—mnodea(t...1))" [[1c1 (% — node ay(wy))
p(¥) :=let D in (S as v;) then ¢; else e,
ay...ap s p1(07)...pn(vyn) w=) ..., fresh names
e =1letz= (v +=(11...1,)) iney z fresh variable
Pr{l—tryip(@)) — Pr(let Din (vw)([Te; (0 tryup(i))
P(l—testiwe]er)))

A try resource spawns nevty resource and turns intotest, waiting for the results of
these evaluations. Upon termination of all the sub-padteartest resource turns intok or
fail, rules (Red Test Ok) and (Red Test Fail). Tdxeandfail resources are immutable. The
status of a pattern evaluation can be checked with the esipresait ¢(x) then e; else es,
see rules (Red Wait Ok) and (Red Wait Fail). If the resourcé & ok ¢ then thewait
expression evaluates to{z«<v}, wherev is the index of the node located atlf the resource
isfailzthen the expression evaluategt§z<—wv}. In all the other cases the expression is stalled.

Remark:in rule (Red Try Match), we compute the witness for all theldii@in of an element
in one go. This is not always realistic since the size of thédmm’s index can be very large
(actually, in real applications, big documents are gehesdlallow and have a large number
of children). It is possible to refine the operational sentanéo that each sub-pattern is fired
separately, not necessarily following the order of the doent, and we can imagine that indexes
are implemented using streams or linked lists. We have chtse presentation for sake of
simplicity (it is one of the simplifications used in this pajg® that we can concentrate on the
innovative features of the calculus and its type system).

4 Static Semantics

The types of document indexes are the same than the typesdoménts defined in Section 2.
Apart from regular expressions typds the typet of a process can also be the resource type

12

(a constant type for terms that return no values); a refer¢yfgeref A; a node typeode a(u)
for the type of a location holding an elemetit]; or a try typeloc a(A), that is the type of a
location hosting the evaluation of a pattern of typen the contents of an element tagged

Types
t= type
* no value
A regular expression type
ref A reference
node a(u) node location
loc a(A) try location

We can easily adapt the definition of witness to types (a tygeine sort of selector). Assume
A is declared as! := Reg(a;[A;i])ic1... We say that there is a witness fdrof a;, ... a;,,
denotech;, ...a;, Fa A;, ... A;,, ifand only if the sequence of tags, . . . a;, is in the language
of the regular expressioReg(a;);c1..,- We can define the language of a typeas the set of
documents that are matched by the patt®en(a; [A;]):c1...- Based on this definition, we obtain
a natural notion of subtyping <: B, meaning that the language 4fis included in the language
of B. We write A = B if the languages ofA and B are equal. We writel for some chosen
regular expression type whose language is the complement ¢The typeA is unnecessary
whenA = A11, which means that we do not need to introduce a type with artyelapguage.)
In the case of type witness, we haxg ...a;_ 74 if and only if there is a witness for of

Ai; - - Q4
The type system is given in the following table. A type enaim@ntF is a finite mapping; :
ti,...,x, : t, between names and types. The type system is based on a sppglgdgment,

E + P : t, meaning that the processhas typel under the hypothesi&. We assume that there
is a given, fixed set of type declarations of the form= Reg(a;i[A;])ic1..- We assume that
functions and patterns are well-typed, which is dengtedt’ — t, andp : ¢ — A. The types
t1,...,t, in t are the types of the parameters, whijés the type of the body of and A is the
type of the selector gf. The type of a selecta¥ = Reg(a; [p;(Z;)])ic1..n IS Obtained fromS by
substituting to every pattens in the selector its corresponding tyge. Hence the type of is
equivalent to some type variahlesuch thatd := Reg(a;[A;])ic1..n-

Typing Rules: E+ P : ¢

I(Type:c) (Type Sub) (Type Fun) (Type Let)
A<:B f:(tl,...,tn)ﬁto
EF-P:A Etu:t; i€l.n E-P:t E,xtk-Q:t
Ex:t,E'Fax:t E-P:B EE f(d):to Etrletx=PinQ@:t
(Type Doc) (Type Node) (Type Comp)
EtF oy :nodeay(uy) EFuy:By kel.n Eru:A Etu A ie{l,2}
Etag...,:a4[Biy ...y 2By E b alu] : a[A] E b uyyug: Ay, Ay

13

(Type Ref) (Type Read) (Type Write)

Eru:A Eru:ref A EFru:refA EFv:B A,B< A
E t- newref u : ref A Etrlu:A Et u+=v: Empty
(Type Res) (Type Par)

Ely:ty,.... 0, t,FP:t
u=1...0,) unfn(E)=10 EFEP:t/ EFQ:t

EF (vu)P:t EFPrQ:t
(Type Try Doc) (Type Wait)
pi(ty,....t,) = A EFu:loca(A)
Etrov:t; i€el.mn EFrFu:B Ex:AbFe :t E,x:AFey:t
EtFtryup(vy,...,v,): loc o(A) E F wait u(x) then e; else ey : ¢
(Type Loc Ref) (Type Loc Node)
Er/l:refA EFlu:A EF/{:nodea(sy...1,)
Etr ({—refu):x EF ({—nodea(ty...1,)) 1 %
(Type Loc Ok) (Type Loc Fail)
Et(l:loca(A) EF1:nodea(u) Et(l:loca(A) EF1:nodea(u)
u=1...1,, FEru:A u=1...1, EFu:A
Et ({—ok1): EF ({—fails) :x
(Type Try Loc)

Er{l:loca(A) Etri:nodea(ty...1,) p:(ty,....tn) = A Etuv:t; i€lun
Er ({—tryip(v)) :x

(Type Test Loc)
EtF/{:1loca(A) EFi:nodea(u) FEF g :locax(Ag)
w=1..-Jn) a...anFaA... A,

EF(l—testiw):*

The typing rules for the functional part of the calculus aandard. In what follows, we
consider that references can only hold document valuesteeeree is of typeref A and not
ref t. Moreover, since a reference collects the sequence of wahae are assigned to it, we
check for every assignment of a value of tyBento a reference of typeef A that the relation
A, B <: A holds, see rule (Type Write). This check allows us to enfategically the type of
references.

The remaining typing rules are for resources and pattencinreg operators. The type of an
expressiortry u p(v) is Lloc o(A) if the patternp matches documents of typk see rule (Type
Try Doc). Indeed the effect of this expression is to returreali location hosting the evaluation
of p on an element of the form[u|. Correspondingly, aait expression is well typed only if it is

14

blocking on a location of typgoc a(A), that is the location of a resource that can eventually turn
into ok or fail. The important aspect of this rule is that, while the cordimnse; ande, of
thewait expression must have the same type, they are typed undenedifityping environment:
the expression; is typed with the hypothesis: A while ¢, is typed with the hypothesis: A.
This leads to more precise types for filtering expressioas (&low).

The typing rules for locations are straightforward. Sinaesource returns no value it has
type x. By rule (Type Try Loc), a locatiof containing atry resource, evaluating a pattesn
of type A, is well typed if¢ is of typeloc a(A) and the root tag of the evaluated document is
a. Note that no assumption is made @n . .., ,), which might well not be of typel. Finally,
the rule for node location, (Type Loc Node), states that atioo containingnode a(u) has
only one possible type, namehode a(u) itself. Hence this rule avoids the presence of two
node resources with the same location but containing differéernents. Actually, we could
extend our type system in a simpler way to ensure that a wedlet configuration cannot have
two resources at the same location: we say that the confignriatwell-formed(for a formal
definition see Appendix A).

An important feature of our calculus is that every patterstisngly typed: its type is the
regular expression obtained by erasing capture varialhlikewise we can type locations, ex-
pressions and processes using a combination of regulae®sipn types andef types. As
it is often the case with typed languages, the first imponteoperty we need to prove is that
well-typedness of processes is preserved by reduction.

Theorem 1 (subject reduction) Suppose thaP is well formed and contains only unambiguous
patterns and contains only unambiguous typesHf- P : tand P — Q thenE + Q) : t.

Proof. See Appendix B. O

The proof of Theorem 1 is by induction on the derivation of tbkation P — (). The proof
is quite involved since it is not possible to reason on a widoleument at once: its content is
scattered across distinct resource locations. This codqtyleflects actual restrictions imposed
when working with distributed documents, e.g. that theymawer be checked locally.

We do not state @rogress theorenin connection with Theorem 1. Indeed, there exists
no notion of errors in our calculus (like e.g. the notion oféssage not understood” in
object-oriented languages) as it is perfectly acceptaiieafpattern matching to fail or to get
blocked on await statement. Nonetheless the subject reduction theorenilisissful. For
instance, we can use it for optimizations purposes, likeatetg that a specific matching will
always fail.

Well-Formed Environments and Well-Typed Patteffise typing judgment + P : ¢ defined in
page 13 relies on several auxiliary judgments that we dasanithis section. The first judgment
is for stating that an environment is well-formefd, - ¢, that is essentially that no variable is
declared more than once in an environment.

15

Good environments

I(Env 0) (Envx)
Eto x¢ dom(E)

DEo E xthko

The remaining judgments are for defining well-typed patgerah function definitions. Indeed,
we assume in the typing rules (Type Fun), (Type Try Doc) ayg€TTry Loc) that function and
pattern declarations are well typed, meaning that the fonal type (globally) associated to
function or pattern identifiers is correct with respect teitllefinitions.

Well-Typed Declarations

I(Type Selector)
S = Reg(ai[ps(T))))iint.n EF pi(@): (&) — A i=1,....,n
Reg(ai[Ai])ic1.n = A
EFEES:A

(Type Pat)
p(T1,...,x,) :=1let 2y =€),..., 2, =€, in S as v} then e; else ey
n(p(@)) Ndom(E) =0 E,zy:ty,...,xpt, et i€l.m
E xity, .. xpity, 200ty o ozt E S 0 A A compatible withty,
E xyty, .. xpity, 200t . zmitl eyt
E xty, .. xpity, 200t o 2zt Foeg it

Etbp(xy,...) (tr,...,t,) — A

(Type Fun dec)
fi=e E. xy:ty,....,0,:t,Fe:ty

Et f(zy,...,xn) : (L1, ..., t,) — 1o

Rule (Type Selector) state that the type of a selestes obtained fromS by substituting
every pattern identifies; with the corresponding typé;. Rule (Type Pat) checks if the definition
p(1,...,x,) i = let z; = ¢€),...,2, =€, in S as x; then e; else ey respects the declared
type (¢4,...,t,) — A. Therefore, that upon receiving its actual parameterspéty, ..., ¢,
and evaluating the expressions in tlee part, patterrp actually matches documents of tyde
In particular it is checked that the type of the selecias A, that continuationg; ande, are
well typed, and that the typig associated to the capture variableis compatible withA, that
is t; is of the formref B andB, A <: B. Rule (Type Fun dec) verifies if the definitigh:= e
complies with the typét,, ..., t,) — to by checking if the type of the expressieris t, when
evaluated in a context where the formal parametef lodve associated types .. ., t,.

16

5 Examples and Possible Extensions

We study examples that show how to interpret interestingrammming idioms in our model,
like spawning an expression in a new thread or handling deéined exceptions.

5.1 Types and Pattern-Matching

We can encode a “traditionatiatch operator, as found in XDuce for example, that matches
the patterrp againstu and conditionally proceeds with or e;. Assumey is a fresh variable

(y ¢ fole1) U fo(ey)), we define:

let z = (try up(?))

match u with p(¥) then e; else ey =gef { in (wait 2(y) then e; else 62)

This example allows us to emphasize the role of the varigllben typing arait statement.
Lete =qer (match z with Empty then a[z] else z) be the expression that returndf it is not
empty else returns|z]. Assumez is a variable of type11, then the most precise type feiis
alsoAl1l. In contrast, if we consider the expressiot = = (try z Empty) in (wait z(y) then
aly| else y), which is equivalent te, we obtain the more precise tygepty, that is, we prove
that the returned value cannot be empty. Indggiays the role of an alias for the value of
that is used with typ&mpty in the continuatiora[y| and with typeEmpty in y (and we have
a[Empty| <: Empty).

5.2 Concurrency

We show how to model simple threads, that is, we want to enaodgperatospawn such that
the effect ofspawn e;; e iS to evaluate; in parallel withe,, yielding the value oé, as a result.
The simplest solution is to interprepawn e;; e, by the configurationr; I’ e,. A disadvantage of
this solution is that it is not possible to testanwhether the evaluation @f, has ended.

Another simple approach to encosleawn is to rely on the pattern-matching mechanism. Let
p be the patterp() := (Empty then e;). We can interpret the statemesgtawn e;; e, with the
expressioriet z = (try () p()) in es. Indeed we have:

letz = (try () p())ines —* (val)({2v+—nodeo())r
(let z =ey in (Lr>o0ke)) M ex{aL}) .

In the resulting process; ande, are evaluated concurrently and the resoyre- ok +) cannot
interact withe, until the evaluation oé; ends (see rule (Struct Par Let) for example). Hence an
occurrence of the expressidmit z(y) then e) in e, acts as an operator blocking the execution
of e until e; returns a value. We can in fact improve our encoding so tleatabult ofe; is bound

to z in e as follows:

spawn ey; €y =def (V2l) < ;iz{zxi% in ((z»—>node o(z2)) P(E»—mkz)))

17

It emerges from this example thatay location can be viewed adature, that is a reference
to the “future result” of an asynchronous computation. Mgeeerally, we can liken a process
((2+—mnode a(u)) F{{+— ok:)) to an (asynchronous) output actififok, =) as found in process
calculi such as the-calculus. Similarly, we can compare an expressieft /(x) then e; else
e; With a combination of input action and matching(z).{ok = e; | fail = ey}, with the
following synchronization rules:

(1 {ok, u) | €?(z).{ok = e; | fail = es} — (ll(ok,u) | er{z—u}
N(fail,u) || €7(z).{ok = ey | fail = ey} — ll(ok,u) || ex{r—u}

The main distinction with “traditional process calculi"tizat we are in a situation where inputs
are replicated. For this reason, we can have multiple: operators synchronizing on the same
location? without the need for global consensus (or a lock) on the mesoat/. Nonetheless,
since the calculus can express atomic reads and writes ar@dsimemory, it could be useful to
rely on a standard mutual exclusion algorithm for accessfeyences. We could also interpret
high-level primitives for mutexes directly in our calculigee e.g. [18] for an example). Note also
that there is no need for replication in our calculus sinG®ueces are persistent and recursive
behaviors can be encoded using recursive function deidasat

5.3 Exceptions

We show how to model a simple exception mechanism in our kedcSuppose we need to check
that a document of type L (the type of family trees) contains only women. This can beeed
using the pattern declarationpg) := woman[q()]* and¢() := name[A11],d[p()], s[Empty]
and a matching expressiarry u p(). A drawback of this approach is that we need to wait
for the completion of all sub-patterns to terminate befayepleting the computation, even if
the matching trivially fails because we find an element taggen early in the matching. A
natural optimization is to use an explicit handling of fads, e.g. to add primitives to kill and
“ping” (the location of) atry resource in the style of [5]. Another solution is to encodasi®
mechanism for handling exceptions using the following=tioperators, wherg is a default
name associated to the locatipn — node o()):

exception = (vl){ creates a fresh (location) exception
throw ¢ = ({+— o0k)r() raises an exception &t
catchfe = wait/(x)thene catches exceptiohand runs: (z ¢ fu(e))

A simple example is to raise the exception at the end of a ctetipu, like in the expression
let z = exceptionin ((...;throwz)r catch z e). If and when thehrow expression is eval-
uated, we obtain a configuration of the fofed) (...r(¢+ ok ¢,) wait {(z) then €), which
starts the execution @f For instance, it is possible to raise the exception in thepensation
part of a pattern declaration and to redefine the pafierbove in:p(r) := woman|q()]* else
throw z.

With our encoding, it is not possible to abort the executibawhole “program block” using
exceptions. Using a more involved encoding, e.g. based @t@sforms, we could interpret
this more general exception model.

18

6 Future and related work

We study a formal model for computing over large, perhapsadyinally generated, distributed
XML documents. We define a typed process calculus and shawitteapports a first-order
type system with subtyping based on regular expressiorstygpsystem compatible with DTD
and other schema languages for XML. Our work may be compardgdrecent proposals for
integrating XML data intar-calculus. It can also be compared with proposals for filgeand
querying XML streams (or so-calleXML pipeliningframeworks) for which there exists almost
no formal foundations.

6.1 Related Work

There are a few works mixing XML with process calculi: lotd {$ a concurrent XML script-
ing language with channel-based communications thatsr@ietypes to guarantee the well-
formedness (not the validity) of documents; XPi [2] is a t¥pecalculus extended with XML
values in which documents are exchanged during commuaoicgtiPiDuce [9] features asyn-
chronous communications and code mobility and includetepaimatching expressions with
built-in type checks. In all these proposals, documentdiesieclass values exchanged in mes-
sages, which make these approaches inappropriate in ta@tasry large or dynamically gen-
erated data. At the opposite, we consider documents asasp@wil of processes that can be
randomly accessed through the use of distributed indexes.

Works on querying XML streams can be roughly divided in twepmaches. The first is
to provide efficient single-pass evaluator, working witreaquery at a time (generally XPath
gueries) on multiple documents. The second approach, atioelto peer-to-peer and event-
notification systems, is to filter XML streams by a large numbkequeries. We look more
closely at some examples of such systems. SPEX, XSQ and XSUR[&2] are single-pass
evaluators of XPath queries in which queries are compilemnetworks of independent, deter-
ministic pushdown transducers with buffers. The query legg in XSM is severely restricted
and only streams with non-recursive structure definiticars loe processed (this is akin to non-
recursive types in our framework). XFilter, YFilter and X4, 15, 11] follow the second
approach. XFilter is a filtering system based on finite statehimes (FSM). It uses one FSM per
path query and an indexing mechanism to allow all FSMs to leewed simultaneously during
the processing of a document. YFilter extends XFilter usitazy NFA-based representation in
which state transitions for simultaneous queries are pnpcted (hence exploiting commonali-
ties among path queries). Likewise, XTrie is based on deosing tree patterns into collection
of substrings and indexing them using a trie with the purposéare the processing of “common
sub-queries”.

Our work follows the first approach with some differencestgras extend XPath queries and
try-statements apply one pattern to one document at a time)t \bdsbly, we take a strongly
typed approach and, instead of using XPath or XQuery, wenextee functional approach taken
in e.g. XDuce and define distributegbular expression patterrAs a byproduct, we also provide
a possible semantics for a concurrent extensions of laregubgsed on XDuce. Nonetheless,
since our operational semantics does not dictate how regatgerns should be implemented, we

19

can take inspiration from these systems to implement efficiad scalable filtering primitives in
our calculus. Conversely, we could use our calculus to giegraal semantics to these systems.

6.2 Future Work

The goal of this paper is not to define a new programming laggu&Ve rather try to provide
formal tools for the study of concurrent computation modelsed on service composition and
streamed XML data. However our calculus could be a basisdeeldping concurrent extensions
of strongly typed languages for XML, such as XDuce. It coukbae used to provide the
semantics of systems in which XML documents contain actogecthat can be executed on
distributed sites (i.e. processes and document text ared)jikke in the Active XML system for
example [1]. To this end, it will be necessary to add end'1/quote” mechanisms, as in LISP or
multi-stage programming languages [24], and to fundaniigmevise our static type checking
approach.

Our work raises questions concerning observational etpneas that we intend to study in
future work. Another avenue to investigate is the encodingtloer concurrency related prim-
itives, like channel-based synchronization and distedutansactions, or the possibility to dy-
namically update documents.

20

References

[1] Abiteboul S., Benjelloun O., Milo T., Manolescu |., Watie.: Active XML: Peer-to-Peer
Data and Web Services Integration.Rroc. of VLDB 2002.

[2] Acciai L., Boreale M.: XPi: a typed process calculus foMK messaging. InProc. of
FMOODS LNCS vol. 3535, Springer, 2005.

[3] Acciai L., Boreale M., Dal Zilio, S.: A Typed Calculus fd@uerying Distributed XML
Documents. LIF Research Report xx, 2006.

[4] Altinel M., Franklin M.J.: Efficient filtering of XML doawments for selective dissemination
information. InProc. of the 26th VLDB Conferenc2000.

[5] Amadio R.: An Asynchronous Model of Locality, Failure AriProcess Mobility. IrProc.
of COORDINATIONLNCS vol. 1282, Springer, 1997.

[6] Bierman G., Sewell P.: lota: A concurrent XML scriptingniguage with applications to
Home Area Networking. TR 577, Computer Lab., Cambridge 3200

[7] Bruiggemann-Klein A., Wood D.: One-unambiguous regldaguages. Information and
Computation, 142(2), 1998.

[8] Bry F., Furche T., Olteanu D.: An efficient single-paseguevaluator for XML data struc-
ture. TR PMS-FB-2004-1, Computer Science Institute, Man2004.

[9] Brown A., Laneve C., Meredith G.: PiDuce: a process caiswith native XML datatypes.
In Proc. of Workshop on Web Services and Formal Meth®d85.

[10] Castagna G.: Pattern and types for querying XML documeén Proc. of DBPL, XSYM
2005 joint keynote talk, 2005.

[11] Chan C.Y., Felber P., Garofalakis M., Rastogi R.: Eéfitifiltering of XML documents
with XPath expressions. The VLDB Journal 11, 2002.

[12] Chawathe S.S., Peng F.: XPath Queries on Streaming Defaoc. of SIGMOD 2003.

[13] Comon H., Dauchet M., Jacquemard F., Tison S., LugieZlDmmasi M.:Tree Automata
on their application1999.ht t p: / / ww. grappa. univ-1lille3.fr/tata/

[14] Dean J., Ghemawat, S.:MapReduce: Simplified Data RBeieg on Large Cluster. IAroc.
of OSDI| 2004.

[15] Diao Y., Fisher P., Franklin M.J.: Yfilter: efficient aratalable filtering of XML docu-
ments. InProc. of 18th ICDE IEEE, 2002.

[16] Ferreira W., Hennessy M., Jeffrey A.S.: A theory of wdagimulation for core CML. J.
Functional Programming 8(5), 1998.

21

[17] Gardner P., Maffeis S.: Modelling dynamic web data. dh€omput. Sci. 342(1) (2005).

[18] Gordon A.D., Hankin P.D.: A concurrent object calculusduction and typing. IiProc. of
HLCL. Electr. Notes Theor. Comput. Sci. 16(3), 1998.

[19] Hosoya H., Vouillon J., Pierce B.J.: Regular expressiypes for XML. ACM Transactions
on Programming Languages and Systems, 27(1), 2004.

[20] Hosoya H., Pierce B.J.: Regular expression patterrciiag for XML. In Proc. of POPL,
2001.

[21] Hosoya H., Pierce B.J.: XDuce: A Statically Typed XMLdeessing Language. Iroc.
of ACM Transaction on Internet Technolo@p03.

[22] Ludascher B., Mukhopadhyay P., PapakonstantinotAYTranducer-Based XML Query
Processor. IiProc. of VLDB 2002.

[23] Milner R.: Communicating and Mobile Systems: TheCalculus. CUP , 1999.

[24] TahaW., Sheard T.:MetaML and multi-stage programmuitf explicit annotations. Theor.
Comput. Sci. 248(1-2), 2000.

22

A Well-formedness

A well-formed process is a configuration where every logaisalefined once. In the style of [18]
we add simple linearity constraints to the type system taengell-formedness and we show
some properties of well-formed terms.

Definition 1 (well formed configuration) A configurationP is well formedif for every location
¢ it contains at most one definitigf — d).

It is convenient to define thdomainof a configuration?, dom(P), to be the set of the names
of the free location definitions if:

Domain of a configuration

dom(e) £ 0

dom(let z = Pin Q) £ dom(P)U dom(Q)
dom(({—d)) 2

dom(PT Q) £ dom(P) U dom(Q)
dom((v€)P) = dom(P) \ {¢}

The well-formed configurations are given by the judgeméntwf defined in the following
table:

Well-Formed configurations

I(WF-Exp) (WF-Let) (WF-Resource)
P:wf @Q:wf dom(P)Ndom(Q) =10
e wf letx = Pin @ :wf (l—d) :wf
(WF Par) (WF-Res)
P:wf @Q:wf dom(P)Ndom(Q) =10 P:wf (€ dom(P)
Prq@:wf (V)P : wf

In what follows we show that well-formedness is preservedstoyctural congruence and
reductions.

Proposition 2 (well formed subject congruence)lf P : wf and P = @ then@ : wf and

dom(P) = dom(Q).

Proof. By induction on structural congruence rules:

(Struct Par Assoc) if (P, P,)r Py : wf then, by (WF-Par),P,I" P, : wf, P; : wf and
dom(P; T P;) ﬂ dom(P;) = 0. Again by (WF-Par),P;, : wf, P, : wf anddom(P;) N
dom(P;) = dom(P;) N dom(P;) = @, thus, by (WF-Par),P,r P; : wf and

(P
dom(P, 1 Ps) ﬂ dom(Pl) = (0, thusP, P (P, 7 P3) : wt. dom((P I P,) " P3) = dom(P;) U
dom(Py) U dom(Ps3) = dom((P, I P2) T Ps);

23

(Struct Par Let) if P, letx = Pyin P : wf then by (WF-ParpP; : wf, letx = Pin P; : wf
anddom(P;) Ndom(letz = Pyin P3) = (). By (WF-Let) ,1letz = P,in P; : wf implies
Py : wt, Py : wf anddom(P,) N dom(P3) = (. Thusdom(P;) N dom(P,) =) and rule
(WF-Par) implyP, " P, : wf and by (WF-Let) andiom(P; " P,) N dom(P3) = () we have
letz = P\ Poin P : wi. dom(P, " letx = Poin Ps) = dom(P;)Udom(FPz)Udom(Ps) =
dom(let z = P, Py in P3);

(Struct Par Com) it is similar to the (Struct Par Assoc);

(Struct Res Let) by rule (WF-Res)v{)let z = P, in P, : wf implies/ € dom(let z =
Py in Py)andlet z = P, in P, : wf. By (WF-Let) P, : wf, P, : wf anddom(P;) N
dom(P,) = (). £ € dom(let x = P in Py) andl ¢ fn(P) (thus{ ¢ dom(F,)) implies
¢ € dom(P,), thus by (WF-Res)v/) P, : wt and by (WF-Letllet x = (v() P, in P, : wf.
dom((vf)letx = Py in P,) = (dom(P;)Udom(P)) \ {¢} = dom(letx = (v/)P, in P);

(Struct Res Res)by (WF-Res)(v 2)(v ¢)R impliesR : wf and:, ¢ € dom(R), and by (WF-Res)
(v €)(v)R :wif.dom((v1)(v {)R) = dom(R) \ {2, ¢} = dom((v ¢)(v 2)R);

(Struct Res Par R) (Struct Res Par L) by (WF-Res)(v ¢)(P, 7" P,) : wf implies P, P, : wf
and/ € dom(P, I P,). By (WF-Par)P; : wf, P, : wf anddom(P;) N dom(P,) = () and
by (Struct Res Par R) € dom(P,) (resp. (Struct Res Par L) impli¢se dom(P;)). By
rule (WF-Res)(v ()P, : wt (resp. (v)P, : wf); so by rule (WF-Par)P, ' ((v () P,) :
wE (resp. ((v €)P)T Py : wf). dom((v £)(PiT Py)) = (dom(P;) U dom(P)) \ {¢} =
dom(P, P((v £)P,)) becausé € dom(P,) andl ¢ dom(FP;);

(Struct Let Assoc) by rule (WF-Let)let z = (let y = P, in P») in Pj : wf implieslet y =
Py in P, : wf, P; : wf anddom(let y = P; in P») Ndom(P3) = (. Again, by rule
(WF Let), P, : wf, P, : wf anddom(P;) Ndom(P,) : wf. dom(P,) N dom(P3) = (), so
by (WF-Let)let x = P, in P; : wf anddom(let y = P, in P;) Ndom(P;) = () thus
lety = P in (let 2z = Pyin P3) : wf. dom(let z = (lety = P in P») in P;) =
dom(P;) U dom(P,) Udom(P;) = dom(let y = P, in (let x = Py in P;)).

O

Proposition 3 (well formed substitution) R : wf implies R{z«/¢} : wf and dom(R) =
dom(R{z/}).

Proof. By induction on the depth of the derivation Bf: wf; we consider the last rule applied:
(WF-Exp) e{x«/(} : wf by (WF-Exp) andiom(e) = dom(e{z+(}) = 0;

(WF-Let) lety = Pin(@ : wf impliesP : wf, @ : wf anddom(P)Ndom(Q) = . By induction
P{xz—/(} : wf, dom(P) = dom(P{z/}), Q{z—/} : wf anddom(Q)) = dom(Q{x/}).
By (WF-Let) let y = P{x«/(} in Q{z<{l} = (let y = P in Q){z</¢} : wf and
dom(lety = Pin@) = dom(P)Udom(Q)) = dom(P{z—/})Udom(Q{z—/}) = (lety =
P in Q){z(};

24

(WF-Resource) (V' —d) : wt;, (('—d)){x—Ll} = ({'—d{z—Ll}) : wE. dom(({'—d)) =
dom((V' +— d{x—L})) = {{'};

(WF-Par) Pir P, : wf implies P, : wf, P» : wf and dom(P;) N dom(P) = 0.
By induction P {z—/¢} : wf, Py{z<—(} : wf, dom(P;) = dom(P{z<(}) and
dom(Py) = dom(Py{z(}). By (WF-Par) P{x—(}T Py{ax—l} = (P,T Py){x—(} :
wf anddom(P, " P,) = dom(P;) U dom(P,) = dom(P{z«/}) U dom(Pp{z—/l}) =
dom((P T Py){z(});

(WF-Res) (v¢)'P : wf implies P : wf and/¢ € dom(P). By induction P{z«/} : wf and
dom(P) = dom(P{x<(}), thus by (WF-Res)v!) P{x<—(} : wf anddom((v{)'P) =
dom(P) \ {¢'} = dom(P{x/}) \ {¢'} = dom(((v0)' P){x—(}).

O

Theorem 4 (well formed subject reduction) SupposeP : wf, if P — @ then@ : wf and
dom(P) = dom(Q).

Proof. By induction on the depth of the derivationBf— (); we distinguish the last rule applied:

(Red Fun) f(u) : wtf (WF-Exp) anddon(f(w)) = 0. f(u) — e{Z—u}, e{Z—u} : wf by
(WF-Exp) anddom(e{z+i}) = 0;

(Red Let) let = w in P : wf impliesu : wf and P : wf; moreoverdom(u) = () because
w is an expressionlet x = u in P — P{z+«u}; by Proposition 3P{z«u} : wf and
dom(P) = dom(P{zr+u});

(Red Struct) P : wf andP = @ imply @ : wf anddom(P) = dom(Q) by Proposition 2. By
induction, — Q' implies @’ : wf anddom(Q)) = dom(Q’); finally, by Proposition 2,
Q' = P’ implies P’ : wf anddom(P’) = dom(Q’) = dom(Q)) = dom(P);

(Red Context) by a straightforward induction on the derivation Bf: wf, distinguishing the
contextr;

(Red Ref) newref u : wf anddom(newref u) = (), because it is an expressionewref v —
(wl)(({+—refu)rt); by (WF-Exp) ¢ : wf and dom(¢) = @, by (WF-Resource)
({—refu) : wf anddom(({+—ref u)) = {{}, by (WF-Par){({+—refu)r/(: wf and
dom(({+—refu)rl) = {¢} and finally, by (WF-Res)v¢)({{+—ref u)r¥¢) : wf and
dom((v)({(£+—refu)r()) =0 = dom(newref u);

(Red Read) (/+—ref u)rl : wt implies, by rule (WF-Par){ {—ref u) : wf and!/ : wf;
moreoverdom(!/) = () because it is an expressiofW — ref u)l — ({+—ref u)r u,
u : wf by rule (WF-Exp), andiom(u) = (). In conclusion,({+— ref u) : wf and
dom(({+—ref u)ru)=dom(({+ref u)ri) ={r},

25

(Red Write) (/+—ref u)r ¢ += v : wf implies, by rule (WF-Par){{+ ref u) : wf andl +=
v : wf; moreoverdom(¢ += v) = () because it is an expressio./+—ref u)r{ +=
v — ({—refu)r(); () : wt by rule (WF-Exp), andiom(()) = 0. In conclusion,
({—refu)r () :wfanddom(({—refu)r())=dom(({r—refu)ll+=v)={l};

(Red Node) a[u] : wf and dom(alu]) = () because it is an expression.afu] —
(v2)((1—mnode a(u)) I2); by rule (WF-Exp): : wf anddom(z) = () because it is an ex-
pression, by (WF-Resourcé)+— node a(u)) : wf anddom((z+—node a(u))) = {1},
by (WF-Par) (2+—node a(u))z : wf and dom({z+—node a(u))r2) = {u}, finally,
by (WF-Res), (v2)((1+—node a(u))r) : wf and dom((r2)({2+—node a(u))ri)) =
dom({2+node a(u)))\ {¢} = 0 = dom(alu));

(Red Comp) uy,us : wf anddom(uy,us) = 0. ug,us — 21...2,; by (WF-EXp)ey .. .10, : wf
anddom(¢; . . .12,) = dom(uy,us) = 0;

(Red Try) try w p(v) : wf and dom(try u p(v)) = (because it is an expres-
sion. try u p(v) — (v,€)((2—nodeo(u))r{l—tryep(v))re), by (WF-
Exp) ¢ : wf and dom(¢) = () because it is an expression, by (WF-Resource)

(1+—>nodeo(u)) : wf, ({—tryep(d)) : wf, dom({(z+—nodeo(u))) = {+} and
dom(({+—tryp(w))) = (. By (WF-Par) (1—node o(u))r{{—tryip(v))reé :

wf and dom({2—mnodeo(u))r({+— try:p(v))r) = {1,¢} and by
(WF-Res) (v1,£)({(2+—node o(u)) P({—tryp(V))r () ; wf and
dom((v2,£)({21+node o(u)) (L try1p(¥))r) = 0;

(Red Try Match) Pr(¢+—tryep(v)) : wf implies, by (WF-Par), P : wf,
({—try1p(v)) : wE, anddom(P)Ndom({ £+ try e p(v))) = 0. PP {{+—try1p(?v)) —
PP(I/]l...]n)(erLn(]kHtry U pk(v})>ﬁ<€»—>test231...jn>); by (WF-

Resource)({+—test1j;...7,) : wf andVk € 1...n (jp—trywu pe(vr)) : wi.
dom(J[,cq (k= try u pp(Vi))) = {s1,--.,n} @anddom((f+—test sy ...9,)) = ¢,
thus dom(J], ,,(gk — try w pr(vi))) N dom({{+—testzy...7,)) = @ and by
(WE-Par) [.c; (o= try w pe(vp)) P(l—testey...5,) : wf. By (WF-Res)
CZ ,jn)(erl__n<jk —try o pr(vp))P (L—test 2 1. .., >) wf and by (WF-
Par) Pr vy ... gn) (ITrer n{ ok — txy e pi(0k)) P(€—test 1 g1...7,)): wf because
dom(P) N dom((v1 ... gn) ([Ter (ki try we pe(vi))P (L>test e g ... 00))) =
0. Moreover dom(PT{{+ try1p(v))) = dom(P) U {/¢} =
dom(P (g1 ... 30) (TTier n{ow = txy v pe(Ur))P (L test 1 g1 ... gn)))

(Red Try All) (¢+—try:All) : wf anddom((¢+—try:tAll)) = {/}. ({—try1All) —

({—ok); (L—oke) : wf by (WF-Resource) andlom((/+—oke)) = {{} =
dom({ {— tryAll));

(Red Try Error) Pr({+— try:p(?v)) : wf implies, by (WF-Par),P : wf, ({+ tryp(v)) :
wf and dom(P) N dom({{—try:p(?))) = 0. Pr{l—tryip(v)) —
Pr{lw— fail); by (WF-Resource}/— fail ¢) : wf, moreoverdon(({+— failz)) =

26

dom({ ¢ tryp(v))) = {¢}, thusdom(P) N dom((¢— fail+)) = 0 and by (WF-Par)
Pr{lw—faila) : wf;

(Red Test Ok) Pr({+— testiw) : wf implies, by (WF-Par),P : wf, ({—testiw) : wf
anddom(P)Ndom({/—testiw)) =0. Pr({+—testiw) — Pr{{+— oku); by (WF-
Resource) ¢+ ok) : wf, moreoverdon((/+ ok?)) = dom({/—testrw)) = {(},
thusdom(P) Ndom({ £+ ok:)) = () and by (WF-ParPr (¢~ ok) : wf;

(Red Test Fail) Pr({+— testrw) : wt implies, by (WF-Par),P : wf, ({+—testrw) : wf
and dom(P) N dom((¢—testrw)) = . Pr(f—testiw) — Pr{f—fail);
by (WF-Resource) (/+— fail:) : wf, moreover dom(({+— fails)) =
dom({¢—testrw)) = {/¢}, thusdom(P) N dom({{+ failz)) = (@ and by (WF-
Par)Pr({+ fail) : wf;

(Red Wait Ok) Prwait ¢(z) then e; else ey : wf implies, by (WF-Par),P : wf,
wait /(x) then e; else ey anddom(P) N dom(wait ¢(z) then e; else e3) = 0.
Prwait ¢(x) then e; else es — Pre{z—u}; e;{xr—u} : wf because:; : wf
(WF-Exp) and by Proposition 3, moreovésm(e;{z<—u}) = 0, thus, by rule (WF-Par),
Pre{x—u} : wf;

(Red Wait Fail) Prwait ¢(z) then e; else ey, : wf implies, by (WF-Par),P : wf,
wait /(z) then e; else ey anddom(P) N dom(wait /(x) then e; else ey) = 0.
Prwait /(x) then e; else es — Prey{z—u}; es{x—u} : wf because, : wf
(WF-Exp) and by Proposition 3, moreovésm(es{z<—u}) = (), thus, by rule (WF-Par),
Pr ey{z—u} : wf.

O

B Proof of Theorem 1

We are set to prove the main result of the paper, the subjdattien theorem; but we need a
few preliminary results.

Proposition 5 (substitution) If £, x:t - P: ¢ andE - u : t thenE - P{z «— u} : t'.

Proof. By a straightforward induction on the derivation®fx:t - P : t'. !
Proposition 6 (weakening) If £, z:t = P : t' andz ¢ fn(P)thenE = P : ¢’ and vice versa.
Proof. By a straightforward induction on the derivation®fx:t - P : ¢'. O

Proposition 7 (subject congruence)lf P=Q andE + P : tthenE - Q : t.

27

Proof. By induction on the depth of the derivation &f = (); we consider the last structural
congruence rule applied:

(Struct Par Assoc) E + (P, P,) T Ps : t3 implies, by rule (Type Par)E + P; : t3 and
EF PPty AgainE - P, :tyandE - P, : . Bythe sameruldl = P T P : t3
andEl_ P1|—)<P2|—>P3) It3;

(Struct ParLet) E + Pirletz = P, in Ps : t3 implies, by (Type Par) and (Type Let),
EFP :t,EE DBty andE,l‘ZtQ F Ps o ts. By(Type Par)E F P1|—>P2 D 1o and by
(Type Let)El_ letx:P1|'>P2 in P3 : t3,

(Struct Par Comm) this case is similar to (Struct Par Assoc);

(Struct Res Let) £ + (vf)let x = P, in P; : ty implies, by (Type Res)E, (:t' F let x =
Py in P, :ty. By (Type Let) we haver, (:t' = Py : ty andE, 0t x:ty = P - to. By (Type
Res)E - (v)P; : t; and by Proposition 6 (weakening) z:t; - P, : t, and by rule (Type
Let) E-letx = (v)P in P : t;

(Struct Res Res) E' + (v¢)(12) R : t' implies, by rule (Type Resy/, /:t; F (»2)R : ¢/, and again
E Uity vty - R - t'. By the same rulé, w:to H (V)R : t' andE + (12) (V)R : t/;

(Struct Res ParR) E + (1n2)(P,T" P) : ty implies, by rule (Type Res)ey, v:t' = P 7" Py : ty
and, by (Type Pank,«»:t' = P, : t; andE u:t' = P, : t5. By (Type ReS)E + (1) P, : 1,
by Proposition 6 (weakenind) - P; : t; and by rule (Type Parly = P, I (v1) Py : to;

(Struct Res Par L) this case is similar to the previous;

(Struct Let Assoc) E + let x = (lety = P, in P,) in P; : t implies, by rule (Type Let),
EFlety=P in P, :ty;andE, x:itys - P3 : t3. Again, E + P, : t; andE, y:t; F
P, : ty. By (Struct Let Assoc)y ¢ fn(P3) so, by Proposition 6 (weakening), we have
E,yity,x:ta b Py : t3,soby (Type Let) - let y = P, in (letx = Py in P;) : t.

OJ

Proposition 8 AssumeS = Reg(a;[p;(0;)])ic1.k 1S @ unambiguous pattern with typé. |If
aj...a, Fs pi(v1)...pu(v,) thenwe also have; . ..a, 4 Ay ... A,.

Proof. E + Reg(ai[pi(0})])ier..k : A impliesVi : p; : (t;) — A, E + @ : t;, and
Reg(ai[Ai])iz1,.k = A. ar...ay Fg p1(01)...pa(vy) implies thata; ... a, € Reg(ai)i—1,. k-
Moreover, S is unambiguous, thus for every tag we have exactly one pattem(v;), s.t.
J (5) — A;andE F o, : t; thus in A for every taga; we have associated exactly the

typeA;,anda; ... a, F4 A;... A,. O
Proposition 9 Assume A is a an unambiguous type. M,...a, F4, A;...A, then
ai[Ai], ...,an[A,] <@ A and if a;...a, ¥4 then there is noB,..., B, such that
ai[Bi], ... yan[By] <: A.

28

Proof. By definition of (type) witness. O

Proposition 10_Suppose4 unambi_guous andl # All. a;...a5...aa b4 Ay A L A, =
ai[A1], .54, .y anfAy] < A

Proof. By Propositon 9, ay...q;...a, Fa Ay A A, implies
a[A, .. a[A), ... anAd] < A, that |s£(a1[Oy oy as[A), . an[Aa]) € L£(A).

Vd € (A1, .- ya5[Aj], .. yan[A]) + d ¢ (a1 [Ai], - ..y a5[44], ...y an[Ay]) be-
causeL(4;) = [,(A) that is [,(A)N [,(A) 0. Thus, by the unambiguityyd <
ar[A1]y ... yai[Aj]s ... yan[A,] we haved ¢ A thatis L(ai[A1], ..., a;[A4)], ... a.[A]) N
L) = 0. In conclusion, L(aj[Ai], ...,ai[A)], ... a[A]) € L(A) and
ar[A1]y ..y ai[Ay]s - anfAL] < A O
Proposition 11 If a,[d,] . .. a,[d,] € AthenA = a;[dy], ..., a,[d,] | A.

Definition 2 ([u])

[0lz = ()
[e1... 0] =a1]di] ... a,[d,]) If E'F 4 node a;(u;) and[u;] g = d;.

Proposition 12 EF u: Aandu =1 ...1, < [u]g € A.

Proof.
(=): By induction on the depth af:

d=0: Inthiscase: = ()and[()]e = (). E+ () : Empty and() € Empty.

d=n+ 1. Inthis caseu = 1, ...1,. If the last rule applied for deducing thatt- « : A
is (Type Doc), we have:

o A=a[Bi], ... an[B];
e FE 1 :node ay(uy);

e F I uy : By; everyu, has depth less or equal 1o thus by inductiofux]z €
By.

If the last rule applied for deducing thatt « : A is (Type Sub), we have:

e EFu:aBy],y...,a,[B,], thatisE + 1 : node ay(ug), andE t wuy : By;
everyu,, has depth less or equal # thus by inductiofu, |z € By.
e ai[Bi], ... ,a,[By] <: AimpliesL(a1[Bi], ...,a,[B,]) C L(A).

In both casesju]r = a1[[u1]g] - . - an[[un]E] € a1[Bi], ..., an[By], thus[u]g € A.
(«=): By induction on the depth af:
d=0: Inthiscases = () and[()] = (). () € AimpliesL(Empty) C L(A). EF () :
Empty and by (Type Subfmpty <: AimpliesE + () : A.

29

d=n-+1: In this casey = 21 ..Uy [[U]]E = al[dl] an[dn] e A with dy = [[Ul]]E,
.oy dyp = [u,]e. We can say thati : d; € d; and by induction® + d; : d;.

ay[dy] ... a,ld,] € Aimplies, by Proposition 114 = ai[d], ...,a,[d,] | A. In
conclusiomnu [d4], ..., a,[d,] <: A and by rules (Type Doc) and (Type Sub)- « :
A.

O]

Proposition 13 Supposey - S : Aandu =2, .. .2, With ' - 3, : node a; (u;) fori € 1,...,n.
If a;...a, FsthenE - u : A.

Proof. SupposeS = Reg(a)[p;(v;)])ie1
A = Reg(ai[Ai])ier,...k-
ai...a, /s meansthat, ...a, ¢ Reg(a))ic:

» SO by definitiona; . .. a, ¥4 and by Propo-

.....

sition OVB; 1 ai[Bi], ...,a.[B,] £ A. We can not apply rule (Term Sub) for saying that
EFu:A soEt/u: A. By Proposition 12, this means that] ; ¢ A thatis[u]z € A, and by
Proposition 125 F u : A. O

Theorem 14 (Theorem 1) Suppose thaP is well formed and contains only unambiguous pat-
terns and: contains only unambiguous typesHf- P : tandP — Q thenE F Q : t.

Proof. By induction on reduction rules. We distinguish the laserapplied (rememebr that at
every step we work with a well formed term):

(Red Fun) by rule (Type Fun¥ + f(uq,...,u,) : toimpliesf : (t1,...,t,) — toandE + u; :
tio f:(t1,...,t,) — to means thaff (z,,...,x,) := eandxy:ty, ..., z,:t, F e : ty. By

(Red Fun)f(uq,...,u,) — e{zy < w1} ...{x, < u,}; in conclusion, by Proposition 5
(substitution)gy:ty, ..., x,:t, Fe:toandE F u; : t; impliesE F e{x; «— ui} ... {z, —
Un} : to;

(Red Let) by rule (Type Let)E' - let x =uin P : ¢ impliesE+w:tandFE,x:t+ Pt
by Proposition 5 (substitutiory - P{x «— u} : ¢/;

(Red Struct) if P : t and P = @ by Proposition 7 (subject congrueneg): ¢. By induction
Q — Q' and(Q’ : t. Again for Proposition 7 (subject congruena@),= P’ implies P’ : ¢;

(Red Context) the proof is straightforward distinguishing the contéit

(Red Ref) by rule (Type Ref)E + newref u : ref A impliesE + u : A. By (Red Ref)
newref u — (v0)(({+—ref u)r (). If we consider : ref A, and using rules (Type Res),
(Type Par), (Type Loc Ref) and (Typg E + (v)(({—ref u)rl): ref A;

(Red Read) by rules (Type Loc Ref) and (Type Real)- ({+—ref u)r!¢ . AimpliesE +
¢ :ref A, andE + u : A. Using rules (Type Loc Ref), (Type) and (Type Par}y +
(l—refu)lu: A

30

(Red Write) by rules (Type Loc Ref) and (Type Writd) + ({+—ref u)rl += v : Empty
impliesE+/¢ :ref A,EFu:A EFFv: BandA, B <: A. Rule (Red Write) implies
u,v = w and by (Type CompF F w : A, B, thusA, B <: AimpliesE + w : A and
EF ({—refw) : « by rules (Type Loc Ref) and’ - (¢{+—ref w)r () : Empty by
rule (Type Par);

(Red Node) E F afu] : a[A] implies, by (Type Node)E F « : A. If we consider : node a(u),
by (Red Nodeq[u]| — (v2)((2+ node a(u)) 1) impliesu = 4 ...1,, and by rules (Type
Res), (Type Par), (Type Loc Node), and (Type D&c) (v:)((:+—node a(u)) 2) : a[A];

(Red Comp) by rule (Type Compl¥ + uy,us : Ay, Ay impliesE + u; @ A; fori = 1,2. By
(Red Compli; =27 ...1 andug = 1541 . . . 2y,.

If we have deducedv + u; : A; and E + wuy : A, both by using rule (Type Doc),
then A; = a1[By], ...,ai[Br] and Ay = ayy1[Bria]s - - -, a,[By], and by (Type Doc)
El_’ll...’lk’lkJrl...’ln : Al,AQ.

If we have deduced® + u; : Ay and E F wuy : A, both by using rule (Type

Sub), thena[By], ...,ax[Bx] <: Ay and agi1[Bgii]y ---ya,[Bn] <: Ay, and by
(Type Doc)E + wy : ay[By], ...;ax[Bi] and E b wuy @ api1[Bratls - - -5 an[Byl.
By (Type DOC)E F 41 ...00501 .- : a1[Bi]s -y ar[Br]s apr1[Bratls - - -5 an[Bnl-
Moreover, ai[Bi], ..., ag[Bily ags1[Brii]s - -y an[Bn] <: A1, Ay, and by (Type Sub)

El_’ll...’lk’lkJrl...’lnlAl,AQ.

The cased’ - u; : A; by (Type Doc) andE + u,y : Ay by (Type Sub) and vice versa, are
similar to the previous;

(Red Try) by rule (Type Try Doc)E F try u p(¥) : loc o(A) impliesp : (t) — A, E +
7 :t, andE u : B; by the reductionu = ¢, ...1,. If we choose: : node o(u) and
¢ : loc o(A) we haveFE, 1:node o(u) - (1+—node o(u)) : *, by (Type Loc Node), and
E,vnode o(u),l:1oc o(A) F (¢{—try1p(¥)) : * Finally, by rules (Type Res), (Type
Par), and (Type) £ + (v2,£)((2+—node o(u)) P {{—try 1 p(v)) {) : loc o(A);

(Red Try Match) by rules (Type Par), (Type Try Doc), and (Type Loc Nodg) +
[Irci (o= mnode ax(wy)) F(2—mnode a(z ...12,)) F({—tryep(v)) : «implies:

e Ft1:nodea(sy...1,);
e E -1 : node ax(wy) andwy = (11, .. .1,);
e BF(:loca(A),p:(t) — A andE - 7 : t; thus if p(v) := S thensS : A.

By (Red Try Match)[], ., , (% + node ax(wy))F(2+—node a(sy...2,))"
(L—=try1p(U)) — [ier (e —node ax(wy)) F(2+—mnode a(ty ...2,))l

(vw)(JT{ gk try w pr(vg))P (L—test o w)) implies w = ..., fresh and
ai...an g p1(01) ... pa (V).

If pr © (tx) — Ax we choosej, : loc ax(Ax) and E, ji : loc ax(Ax)k=1..n

[gk = try e pr(or))« *.
We have to show thdt/ +— test 1 w) : x. We know that:

31

e K+ {:loca(A);

e Fti:nodea(sy...1,);

(
)

I
-

o ji:locax(Ap)k

We have to prove thata;...a, F4 A;...A,. By the reduction we have
a;...a, kg pi(01)...pu(v;,); moreoverp;(v;) : A;, andS : A, so by Proposi-
tion 8a;...a, ka4 Ay... A, thusE F ({+—testiw) : * In conclusionE +

(vw)(TT(e = try w pe(vi)) P{L—testrw)) « x;

(Red Try All) E+ (£+—try1All) : ximpliesE + ¢ : loc a(All), E ¢ : node a(ty .. .1,)
andAll : () — All. By (Red Try All) (/—try2All) — ({+—okz) and E +
(£—ok1) : x becausel) F 4;...1, : A (for any A) and A <: Al1l, thus by (Type
Sub)E' 4y .. .1, : AL

({—tryip(¥)) : «impliesE F 2 : node a(1;...2,), £ F 1 : node ax(vg), vp =
(11, .. 1n,) EF £:1oca(A), p: (t) — A, andFE F ¥ : t. By the reductiorp(?) := S,
thusE - S : A. a,...a, /s, thus, by Proposition 137 I 1, .. .1, : A so, by (Type Let)
and (Type Loc Fall)E' - (/+ fail) : %;

(Red Test OKk) by rule (Type Loc Ok), (Type Loc Node), and (Type Test LaoE) +
(1+—omnodea(n...1.)) M [Tier n(sk—oky)l(f—testrw) : x (where w =
J1---Jn) implies E F 2 : node a(ty...1,), Yk € 1,....,n : E F 7 : loc ag(A),
E F 1 : node ax(ux), and E + wu; : A;. MoreoverE + ¢ : loc a(A) and
a;...ap b4 Ay, . A,

a;...a, Fa Aj...A, implies a;[A4;], ...,a,]4,] <: A, by Proposition 9; thus by
(Type Doc) E + 4 : node ay(ux), and E + wu, : A, we haveE F 1...1, :
ai[A1], ...,an[A,] and by (Type Sub)EF + 4;...2, : A. So by (Type Par)F +
(v—mnodea(ey...2))P [[ier (k> ok) P(Li—o0ka) 1 %

.....

(Red Test Fail) E + (1—mnode a(t ...2,)) P [[,c,
w=71...75,) implies:

A= di)P (l—testrw) 1 % (with

by rule (Type Loc NodeF I 2 : node a(t; .. .1,);

by rule (Type Loc OKkWEk € 1,...,n : S.t.d,, = ok 3 we haveE I 7, : loc ay(Ag),
E F 1, : node ay(vg), andE F vy = Ag;

by rule (Type Loc Fail)vk € 1,...,n : s.t. d, = fail 1, we haveF + . :
loc ay(Ag), B F 2 : node ay(vy), andE F vy, : Ay;

by rule (Type Test Loc + ¢ : loc a(A), E + 2 : node a(ty...1,), £ F 7 :
locay(Ax),as...anba Ao A,

By (Red Test Fail)z+—node a(t1 ... %)) I [[1c) (06— di)T
Sgedi)P {(l—faila) if 35 €

32

1,...,n : (y;+— faily;) (note that forj we haveE + v; : A;). Obviously A #
A11, so by Proposition 1@4[A;], ...,a;[A;], ...,a.[A4,] <: A. By rule (Type Doc)
E .o, s a[Al, .o 25[4], ...y a0[A,] and by (Type Subf + 4;...4, : A. In
conclusion, by (Type Loc Fail}y F (£ fail) : *;

(Red Wait Ok) by rules (Type Par), (Type Loc Ok), (Type Wait), and (Type IMade) £ +
({r—ok2)r(1—node a(u))rwait {(z) then e; else ey : t impliesu = 4;...12,,
Et1:nodea(u), EF{:loca(A),EFu:A ExAb e :t,andE,m:AF ey : t.
By rule (Red Wait Ok)(/+ ok 1) (2+—node a(u)) wait ¢(x) then e; else ey —
(£—ok1)l(1+—node a(u))r e {r «— u}. By Proposition 5 (substitution)y + u : A
andE,z:A F e, : timply £ + e;{x < u} : t. Finally, by rule (Type Par)F +
(r—ok2)l(1—mnodea(u))re{r — u}:t

(Red Wait Fail) by rules (Type Par), (Type Loc Fail), (Type Wait), and (TypeclNode)E +
(0—faile) P (e—node a(u))r wait /(x) then e; else ey : t impliesu = 1;...1,,
Et1:nodea(u), EF{:loca(A),EFu:A ExAb e :t,andE,m:AF ey : t.
By rule (Red Wait Fail) /+— fail ¢) {2+ node a(u)) "wait /(x) then e; else ey —
({+fail1)l{2+—node a(u))T ex{z « u}. By Proposition 5 (substitutiony - v : A
andE,z:A F ey : timply E F ey{x «— u} : t. Finally by rule (Type Par)E +
(Lr—fails) P (1—mnode a(u))l ex{r « u} : t.

O

33

