
Look-Up Tables for Medial Axis

on Squared Euclidean Distance Transform

Eric Remy1 and Edouard Thiel2

1 LSIS (UMR CNRS 6168) - ESIL, Case 925,
163 Av. de Luminy, 13288 Marseille Cedex 9, FRANCE

Eric.Remy@up.univ-mrs.fr

2 LIF (UMR CNRS 6166) - Case 901,
163 Av. de Luminy, 13288 Marseille Cedex 9, FRANCE

Edouard.Thiel@lim.univ-mrs.fr

http://www.lim.univ-mrs.fr/~thiel

Abstract. Medial Axis (MA), also known as Centres of Maximal Disks,
is a useful representation of a shape for image description and analy-
sis. MA can be computed on a distance transform, where each point is
labelled to its distance to the background. Recent algorithms allow to
compute Squared Euclidean Distance Transform (SEDT) in linear time
in any dimension. While these algorithms provide exact measures, the
only known method to characterize MA on SEDT, using local tests and
Look-Up Tables, is limited to 2D and small distance values [5]. We have
proposed in [14] an algorithm which computes the look-up table and the
neighbourhood to be tested in the case of chamfer distances. In this pa-
per, we adapt our algorithm for SEDT in arbitrary dimension and show
that results have completely different properties.

Keywords. Medial Axis, Centres of Maximal Disks, Look-Up Tables,
Squared Euclidean Distance Transform, Digital Shape Representation.

1 Introduction

Blum proposed in [2] the medial axis transform (MAT), which consists in de-
tecting the centres of the maximal disks in a 2D binary shape. Following Pfaltz
and Rosenfeld in [11], a disk is said to be maximal in a shape S, if it is not com-
pletely covered by any single other disk in S. The medial axis MA of S is the set
of centres and radii of maximal disks in S; an example is given Figure 1. Pfaltz
and Rosenfeld have shown that the union of maximal disks in S is a covering,
thus MA is a reversible coding of S.

MA is a global representation, centred in S, allowing shape description, anal-
ysis, simplification or compression. While MA is often disconnected and not thin
in Z

n, further treatments are applied to achieve shape analysis. In this way, MA
is an important step for weighted skeleton computation [17]. A maximal disk
can be included in the union of other maximal disks; so the covering by maximal
disks, which is unique by construction, is not always minimal. Minimizing this
set while preserving reversibility can be interesting for compression, see [10, 4].

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 224-235, 2003.

c© Springer-Verlag Berlin Heidelberg 2003

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 225

Fig. 1. Medial Axis with circles.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

p+−→v −→v
p

Fig. 2. Balls inside the shape.

One attractive solution to detect MA is to use a distance transform, denoted
DT. In a distance transform on S, each pixel is labelled with its distance to the
background; it is also the radius of the largest disk in S, centred on the pixel. A
reverse distance transform (RDT) allow to recover the initial shape from MA.

Rosenfeld and Pfaltz have shown in [15] for the city block and chessboard
distances d4 and d8, that it is sufficient to detect the local maxima on the DT

image. For chamfer (i.e.weighted) distances using 3×3 masks, Arcelli and Sanniti
di Baja proved in [1] that some labels have to be lowered on the DT before
identifying the local maxima; but their solution cannot be extended to larger
masks. Borgefors presented in [3] a method to extract MA in the case of a 5× 5
chamfer mask (namely, 〈5, 7, 11〉), using a look-up table. Borgefors, Ragnemalm
and Sanniti di Baja have previously used the same method for SEDT in [5], but
giving a partial look-up table, which cannot be used for radius greater than

√
80.

The principle of look-up table (LUT) is general: it gives for each radius value
read in the DT , the minimum value of the neighbours which forbids a point to
be in MA. The problem is to systematically compute the LUT associated with
a distance function, for any radius, and also to compute the test neighbourhood
(which is not necessarily 3 × 3 as seen later). In [14] we have shown an efficient
algorithm which computes both of them for any chamfer norm in any dimension.

The first Euclidean distance transforms (EDT), proposed by Danielsson [6]
and Ragnemalm [12], give approximate results, which where improved afterwards
by many authors. Saito and Toriwaki in [16] have presented an efficient algorithm
computing exact SEDT (S for Squared) in arbitrary dimension. Recently, Hirata
[8] and Meijster et al. [9] have optimized this algorithm to linear time complexity
in the number of pixels. Reverse SEDT can be easily derived from [16, 8, 9].

These exact and fast transforms bring about renewed interest in MA com-
putation for Euclidean distance. We present in this paper an adaptation of [14],
which efficiently computes the LUT for SEDT in any dimension. Our algorithm
also computes the test neighbourhood, and certifies that this neighbourhood is
sufficient up to a given radius. We recall in §2 some basic notions and definitions.
We present and justify in §3 our method. Results are given in §4 in the 2D and
3D cases, and we finally conclude in §5.

226 Eric Remy and Edouard Thiel

G(Z2)
y

O

y

x

O

z

z

G(Z3)
x

y

y

z

y
x

G(Z4)

O

y
t

z

t

Fig. 3. The generators G(Zn) for n = 2, 3 and 4 in projection.

2 Definitions

2.1 Generator and grid symmetries

The rectilinear grid of Z
n has a number of natural symmetries, which we em-

ploy to simplify our study. We denote SG(n), the group of axial and diagonal
symmetries in Z

n. The cardinal of the group is #SG(n) = 2nn! (which is 8, 48
and 384 for n = 2, 3 and 4). A subset X of Z

n is said to be G-symmetrical if for
all σ ∈ SG(n) we have σ(X) = X . We call generator of X the subset

G(X) =
{

(x1, ..., xn) ∈ X : 0 6 xn 6 xn−1 6 . . . 6 x1

}

. (1)

If X is G-symmetrical, the subset G(X) is sufficient to reconstruct X with the
G-symmetries. Figure 3 shows G(Zn) for n = 2 (an octant), n = 3 and 4 (cones).

2.2 Balls and reverse balls

We call direct ball B and reverse ball B−1 of centre p ∈ Z
n and radius r ∈ N,

the G-symmetric sets of points

B(p, r) =
{

q ∈ Z
n : d 2

E(p, q) ≤ r
}

(2)

B−1(p, r) =
{

q ∈ Z
n : r − d 2

E(p, q) > 0
}

. (3)

Since d 2
E is integral, balls and reverse balls are linked by the relation

B(p, r) = B−1(p, r + 1) . (4)

We point out that on DT , the value DT [p] for any shape point p is the radius of
the greatest reverse ball centred in p inside the shape, namely B−1(p, DT [p]).

2.3 Look-Up Tables

In the following, we denote MLut a G-symmetric set of vectors, Mg
Lut =

G(MLut) and −→v g = G(−→v) for any vector −→v ∈ MLut.

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 227

A shape point p is the centre of a maximal disk if there is no other shape
point q such that the ball B−1(q, DT [q]) entirely covers the ball B−1(p, DT [p]).
The presence of q forbids p to be an MA point. Suppose that it is sufficient to
search q in a local neighbourhood MLut of p. Suppose also that we know for each
DT [p] the minimal value DT [q], stored in a look-up table Lut, which forbids p in
direction −→v = −→pq . The minimal value for p and −→v is stored in Lut[−→v][DT [p]].
Because of the G-symmetry, it is sufficient to store only the values relative to
Mg

Lut ; hence the minimal value for p and −→v is accessed using Lut[−→v g][DT [p]].
Finally we have the following criterion:

p ∈ MA ⇐⇒ DT [p +−→v] < Lut[−→v g][DT [p]] , ∀−→v ∈ MLut . (5)

3 Computation of Lut and MLut for SEDT

3.1 Computing an entry of Lut

The computation of an entry Lut[−→v][r] in the look-up table for r = DT [p] in
direction −→v , consists in finding the smallest radius R of a ball B−1(p +−→v , R)
which completely covers B−1(p, r) (see Figure 2). Since all considered balls are
convex, G-symmetric and such that if r1 ≤ r2 then B(O, r1) ⊆ B(O, r2), we can
limit the covering test by restricting the two balls to G(Zn). One can find R,
as illustrated in Figure 4, by decreasing the radius R+ while keeping the ball
B−1(q, R+) covering the ball B−1(p, r), where q = p+−→v = p−−→v g by symmetry.
A basic method, using a reverse SEDT for each step, would be prohibitive. We
avoid it by using relation (4), and another distance image denoted CT g, resulting
from the cone transform in Figure 6, where each point of G(Zn) is labelled with
its distance to the origin (see example Figure 14.a).

The covering of the ball B−1(q, R+) over B−1(p, r) can be tested by simply
scanning CT g; moreover, the smallest radius R can be read in CT g during the
scan. We propose to translate both B−1(p, r) and B−1(q, R) to the origin as
shown in Figure 5. We scan each point p1 of G(B−1(O, r)), which by translation
of vector −→v g gives p2. Values d 2

E(O, p1) and d 2
E(O, p2) are read in CT g. We have

R = max
{

d 2
E(O, p2) : p2 = p1 + −→v g , p1 ∈ G(B−1(O, r))

}

, so (6)

R = max
{

d 2
E(O, p1 + −→v g) : p1 ∈ G(B−1(O, r))

}

. (7)

This process can be efficiently implemented (see Figure 7), because all the
covering relations (r, R) in a direction −→v g can be detected during the same scan
(lines 2–7). To remain in the bounds of the CT g image, the x scan is limited
to L − −→v g

x − 1 (where −→v g
x is the x component of −→v g). For each point p1, we

look for the corresponding radius r1 which is CT g[p1] + 1 by (4). Then we look
for the radius r2 of the ball passing via the point p2. Its value is CT g[p2] + 1 =
CT g[p1 +−→v g] + 1, by (4). During the scan, we keep in Lut[−→v g][r1] the greatest
value found for r2, which at the end, is R by (7).

At this stage, our algorithm gives a set of local covering relations, which
stands for a partial ordering on the covering of balls. This ordering is not to-
tal since one can observe in Lut, cases where ra < rb while Lut[−→v g][ra] >

228 Eric Remy and Edouard Thiel

B−1(p, r)

r

G(Z2)

R R+
q

p

B−1(q, R+)

−−→v g

Fig. 4. Covering test on two balls
restricted to G(Z2).

p2

O Rr

p1

G(Z2)

−→v g

−→v g

Fig. 5. Translated covering test on
CT g.

Procedure CompCTg (L, CT g) ;

1 for x1 = 0 to L − 1 , for x2 = 0 to x1 , . . . , for xn = 0 to xn−1 do

2 CT g[x1, ..., xn] = x2

1 + · · · + x2

n ;

Fig. 6. Fast Cone Distance Transform. Input: L the side length. Output: CT g the Ln

distance image to the origin for d 2

E .

Lut[−→v g][rb] ; it means that the ball covering B−1(O, ra) is bigger than the ball
covering B−1(O, rb), which is impossible. Thus, we correct the table by assum-
ing that in this case, Lut[−→v g][rb] should at least equal Lut[−→v g][ra], building this
way a compatible total order (Figure 7, lines 8–10).

3.2 Computing MLut

Let us assume that a given Mg
Lut is sufficient to extract correctly the MA from

any DT which values does not exceed RKnown . This means that Mg
Lut enables to

extract, from any ball B(O, R) where R ≤ RKnown , an MA which is by definition,
the sole point O. At the beginning, Mg

Lut is empty and RKnown = 0.

So as to increase RKnown to a given RTarget , we propose to test each ball
B(O, R), where R > RKnown , each time extracting its DT and then its MA,
until whether R reaches RTarget , or a point different from O is detected in the
MA of B(O, R). If R reaches RTarget , then we know that Mg

Lut enables to extract
the MA correctly, for any DT containing values lower or equal to RTarget . Thus
this value RTarget must be kept as the new RKnown .

On the contrary, if one extra point p is found in MA during the scan, then
Mg

Lut is not sufficient to properly extract the MA, since by construction B(O, R)

covers B−1(p, DT g[p]). In this case we add a new vector
−→
Op in Mg

Lut (and keep
R for further usage, see §4.2). This vector is necessary and sufficient to remove
p from the MA of the ball B(O, R) because the current Mg

Lut is validated until

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 229

Procedure CompLutCol (CT g, L, −→v g, Rmax, Lut[−→v g]) ;

1 for r = 0 to Rmax do Lut[−→v g][r] = 0 ; // Initialize Lut[−→v g] to 0.
2 for x1 = 0 to L − vg

x1
− 1 , for x2 = 0 to x1 , . . . , for xn = 0 to xn−1 do

3 {
4 r1 = CT g[x1, ..., xn] + 1 ; // Radius of the ball where p1 is located,
5 r2 = CT g[(x1, ..., xn) + −→v g] + 1 ; // same for p2.
6 if r1 ≤ Rmax and r2 > Lut[−→v g][r1] then Lut[−→v g][r1] = r2;
7 }
8 rb = 0 ;
9 for ra = 0 to Rmax do

10 if Lut[−→v g][ra] > rb then rb = Lut[−→v g][ra] else Lut[−→v g][ra] = rb ;

Fig. 7. Lut Column Computation. Input: CT g the cone, L the side length, −→v g the
direction of the search, Rmax the greatest radius value to be verified in Lut. Output:
the column Lut[−→v g] is filled with the correct values.

Procedure CompLutMask (L, Mg

Lut, RKnown , RTarget , Lut) ;

1 CompCTg (L, CT g) ;
2 for each −→v g in Mg

Lut do CompLutCol (CT g, L, −→v g, RTarget , Lut[−→v g]) ;
3 for R = RKnown + 1 to RTarget do

4 {
5 for x1 = 0 to L − 1 , for x2 = 0 to x1 , . . . , for xn = 0 to xn−1 do

6 if CT g[x1, ..., xn] ≤ R

7 then DT g[x1, ..., xn] = 1
8 else DT g[x1, ..., xn] = 0 ; // Copy G(B(R)) to DT g

9 CompSEDTg (L, DT g) ;
10 for x1 = 1 to L − 1 , for x2 = 0 to x1 , . . . , for xn = 0 to xn−1 do

11 if DT g[x1, ..., xn] 6= 0 and IsMAg ((x1, ..., xn),Mg

Lut, Lut, DT g) then

12 {
13 Mg

Lut = Mg

Lut ∪ (x1, ..., xn ; R) ; // Insert the new vector
14 CompLutCol (CT g, L, (x1, ..., xn), RTarget , Lut[x1, ..., xn]) ;
15 if IsMAg ((x1, ..., xn), Mg

Lut, Lut, DT g) then error ;
16 }
17 }

Fig. 8. Full Mg

Lut and Lut Computation. Input: L the side length, Mg

Lut, RKnown and
RTarget . Output: Lut, Mg

Lut and RTarget . At first call, Mg

Lut and RKnown must be set
to ∅ and 0 respectively. After exit, RKnown must be set to RTarget .

Function IsMAg (p, Mg

Lut, Lut, DT g) ;

1 for each −→v g in Mg

Lut do

2 if p −−→v g ∈ G(Zn) then // Test only in G(Zn).
3 if DT g[p −−→v g] ≥ Lut[−→v g][DT g [p]] then return false ;
4 return true ;

Fig. 9. Fast extraction of MA points from G(B). Input: p the point to test, Mg

Lut the
generator of the Lut neighbourhood, Lut the look-up table, DT g the distance transform
of the section of the ball. Output: returns true if point p is detected as MA in DT g.

230 Eric Remy and Edouard Thiel

R−1; thus it enables to find all the direct balls covering B−1(p, DT g[p]) of radii
lower or equal to R − 1. So, the only direct ball which is not tested is the only

ball of radius R : B(O, R) itself. This ball is in direction
−→
pO from p and must be

searched by Mg
Lut to remove p. Since MLut is G-symmetric, B(O, R) is detected

by adding
−→
Op in its generator.

After having added the vector, we compute the corresponding new column
in Lut. Then, we ensure that this new MLut is sufficient to remove p. This is
actually a consistency test of the Lut column computation algorithm of Figure 7,
because we are sure that the new MLut is correct.

Once p is removed, we resume the scan for current R. Other extra points p

may be detected sequentially, each time giving a new vector and Lut column.
The computation of Mg

Lut is finished when R reaches RTarget .
The full algorithm, presented in Figure 8, uses an adapted version of MA

extraction (see Figure 9), working on G(Zn) with Mg
Lut in a single scan. Note

also that the computation of DT g (function CompSEDTg called Figure 8, line
9), using a slightly modified SEDT working in G(Zn), is mandatory, since the
MA is extracted from the DT to the background. In fact, a simple threshold on
image CT g to the radius R gives only the G(B(O, R)) set, but not the correct
DT g labels (see Figure 14, where values of (a) differ from (b)).

4 Results for SEDT

4.1 Complexity

While the function d 2
E is not a metric (triangular inequality is not satisfied),

its balls respect sufficient conditions for the validity of our method (convexity,
G-symmetry and increase by inclusion). The same can be applied for discrete
functions round(dE), bdEc and ddEe (successfully tested).

For CompSEDTg (not presented), we have chosen to use a modified version
of the algorithm in [16], which provides exact results and can be relatively easily
adapted to G(Zn). In particular, backward scans can be suppressed [13, §6.5.2].
Note that SEDT on a ball is the worst case for the complexity of [16], and that
optimised algorithms [8, 9] are noticeably more efficient for large radii.

The complexity in Z
n of CompSEDTg for a ball of radius R is O(n.Rn) with

[8, 9] or O(n.Rn+1) with [16]. The complexity of CompLutCol is O(2.Rn) (one
scan of G(Zn) plus one scan of a Lut column). The complexity of IsMAg, with a
number k of directions to test, is O(k.Rn) in the worst case, that is to say, when
p is detected as an MA point. Since this event is seldom, the algorithm returns
almost always early, hence the real cost of IsMAg is negligible. In CompLutMask,
the complexity of one iteration of the main loop (lines 4–16 in Figure 8) is thus
the complexity of CompSEDTg. As CompLutMask makes radius R increase, its
total cost grows quite fast.

We present the results of our method in 2D and 3D in Figures 10 and 13.
Computing the Mg

Lut shown Figure 10 takes 590s, while computing one cor-
responding Lut column takes 0.004s, for L = 400 and from RKnown = 0 to

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 231

i x , y R
1 1 , 0 1
2 1 , 1 2
3 2 , 1 101
4 3 , 1 146
5 3 , 2 424
6 4 , 1 848
7 5 , 1 1 370
8 6 , 1 2 404
9 4 , 3 3 049

10 7 , 1 3 250
11 5 , 2 3 257
12 7 , 5 3 700
13 5 , 3 4 709
14 7 , 3 5 954
15 5 , 4 9 805
16 8 , 1 11 237
17 9 , 1 11 889
18 10 , 1 14 885
19 7 , 4 19 465
20 11 , 1 20 738
21 6 , 5 22 261
22 7 , 2 22 736
23 9 , 2 26 216

24 8 , 7 28 564
25 7 , 6 29 042
26 9 , 4 35 113
27 8 , 3 38 900
28 9 , 5 44 433
29 11 , 6 44 433
30 8 , 5 46 660
31 14 , 1 57 128
32 12 , 1 58 084
33 11 , 4 59 417
34 9 , 8 64 089
35 13 , 1 64 528
36 15 , 1 66 050
37 12 , 7 66 820
38 10 , 3 72 194
39 13 , 7 75 242
40 11 , 3 76 040
41 11 , 5 91 012
42 9 , 7 92 240
43 13 , 6 104 452
44 11 , 2 109 609
45 11 , 9 117 137
46 10 , 9 125 512
47 16 , 1 128 178

Fig. 10. Beginning of Mg

Lut for
Z

2 (appearance rank i, coordi-
nates, appearance radius R).

46 45

34

24 42 37 39

25 29 43

21 12 30 28 41

15 19 26 33

9 13 14 27 38 40

5 11 22 23 44

2 3 4 6 7 8 10 16 17 18 20 32 35 31 36 47

1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 1213 14 1516

O0

0

Fig. 11. Representation of Mg

Lut points (val-
ues show appearance ranks, white squares are
visible points, grey squares non-visible).

r 1,0 1,1 2,1 3,1 3,2
1 2 3 6 11 14
2 5 6 11 18 21
4 6 9 14 21 26
5 10 11 18 27 30
8 11 14 21 30 35
9 14 19 26 35 42
10 17 19 27 38 42
13 18 21 30 41 46
16 21 26 35 46 53
17 26 27 38 51 54
18 27 30 41 54 59
20 27 33 42 54 62
25 30 35 46 59 66
26 37 42 53 66 75
29 38 42 54 69 75
32 41 46 59 74 81
34 42 51 62 75 86
36 46 53 66 81 90
37 50 53 66 83 90
40 51 54 69 86 91
41 54 59 74 91 98
45 54 62 75 91 101
49 59 66 81 98 107
50 65 66 83 102 107
52 66 73 86 105 114
53 66 75 90 107 118
58 69 75 91 110 118
61 74 81 98 117 126
64 75 86 101 118 131
65 82 86 102 123 131
68 83 90 107 126 137
72 86 91 110 131 138
73 86 99 114 131 146
74 91 99 117 138 147
80 91 101 118 138 150

81 98 107 126 147 158
82 101 107 126 147 158
85 102 107 126 149 158
89 105 114 131 154 165
90 107 118 137 158 171
97 110 118 138 161 171
98 117 126 147 170 181
100 117 129 147 170 182
101 122 131 150 171 186
104 123 131 150 174 186
106 126 131 154 179 186
109 126 137 158 181 194
113 131 138 161 186 195
116 131 146 165 186 203
117 138 147 170 195 206
121 138 150 171 195 209
122 145 150 171 198 209
125 146 150 174 201 209
128 149 158 181 206 219
130 149 163 182 206 222
136 154 165 186 213 226
137 158 171 194 219 234
144 161 171 195 222 234
145 170 171 198 227 234
146 171 182 203 230 245
148 171 182 206 233 246
149 174 182 206 235 246
153 174 186 209 235 251
157 179 186 213 242 251
160 181 194 219 246 261
162 186 195 222 251 262
164 186 201 222 251 266
169 186 203 226 251 270
170 197 206 233 262 275
173 198 209 234 262 278
178 201 209 235 266 278

Fig. 12. Beginning of Lut for Z
2 (radius r, next

columns Lut[−→v g][r]).

i x , y , z R
1 1 , 0 , 0 1
2 1 , 1 , 0 2
3 1 , 1 , 1 3
4 2 , 1 , 1 26
5 2 , 1 , 0 49
6 3 , 1 , 0 65
7 3 , 1 , 1 67
8 2 , 2 , 1 83
9 3 , 2 , 1 89

10 4 , 2 , 1 134
11 4 , 1 , 1 146
12 4 , 3 , 1 165
13 3 , 3 , 1 180
14 4 , 3 , 2 195
15 5 , 1 , 1 198
16 3 , 2 , 0 203
17 5 , 3 , 1 203
18 5 , 3 , 2 211
19 3 , 2 , 2 229
20 5 , 2 , 1 233
21 4 , 1 , 0 292
22 5 , 2 , 0 298
23 6 , 3 , 1 306
24 6 , 2 , 1 308
25 5 , 2 , 2 317
26 5 , 1 , 0 325
27 5 , 4 , 1 341
28 7 , 2 , 1 341
29 3 , 3 , 2 355
30 6 , 4 , 1 373
31 7 , 5 , 2 373
32 6 , 1 , 1 402
33 5 , 4 , 2 405
34 5 , 3 , 0 425

35 5 , 3 , 3 459
36 7 , 3 , 1 499
37 11 , 5 , 2 499
38 8 , 2 , 1 546
39 4 , 4 , 1 548
40 8 , 5 , 2 548
41 5 , 5 , 2 550
42 6 , 3 , 2 558
43 6 , 5 , 2 558
44 5 , 4 , 3 568
45 7 , 4 , 2 571
46 7 , 1 , 1 579
47 7 , 2 , 2 603
48 6 , 5 , 1 651
49 6 , 4 , 3 660
50 9 , 2 , 1 690
51 7 , 5 , 1 691
52 7 , 5 , 3 691
53 9 , 3 , 1 699
54 7 , 3 , 2 714
55 8 , 3 , 1 722
56 4 , 3 , 0 725
57 7 , 4 , 1 746
58 8 , 4 , 1 770
59 6 , 5 , 3 780
60 8 , 5 , 1 819
61 8 , 6 , 3 824
62 8 , 4 , 3 841
63 9 , 6 , 2 859
64 8 , 5 , 3 867
65 7 , 6 , 4 875
66 8 , 1 , 1 902
67 9 , 5 , 3 915
68 10 , 3 , 1 931
69 5 , 5 , 3 947

Fig. 13. Beginning of Mg

Lut for
Z

3 (appearance rank i, coordi-
nates, appearance radius R).

232 Eric Remy and Edouard Thiel

RTarget = 128 200 (on a Pentium 4 at 2.26 GHz with Debian Gnu/Linux 2.4.19).
This load is explained by the systematic test of about 26 000 balls. As expected,
CompLutCol is very fast, whereas CompLutMask is much slower, and its result-
ing (and compact) Mg

Lut should thus be saved for further re-usage.
The memory required to store Lut is m.R.e, where m is the number of

columns in Mg
Lut for R, and e is the size of one long integer (to store d 2

E values).
In Figures 10 and 13 we can see that m grows slowly with R. Since R grows
with the square of the radius in pixel of the largest Euclidean ball tested, the
memory cost of Lut becomes important for large images. For instance, the size
of the Lut corresponding to Figure 10 is 23 MB.

Memory can be saved by storing only possible values of d 2
E . The set of possible

values in 2D is S = { a2 + b2 6 R : a, b ∈ [0 .. R] }. The Lut entries are then
accessed by Lut[−→v g][index[r]], where index is a table of size R + 1, built in a
single scan on CT g, which gives for any r ∈ [0 . . . R] the rank index[r] in S.
The gain for Lut corresponding to Figure 10 is about 78% with only 5.1 MB to
store. The same holds in 3D, but in lesser proportion. On the contrary in 4D
and higher dimensions, any positive integer can be decomposed in sum of four
(or more) squares (Lagrange thm., see [7, §20.5]), so that no space can be saved
in this manner.

4.2 Extracting medial axis

A sample usage of the Lut given Figure 12 and formula (5) is : a point valued
4 on DT is not an MA point if, following third entry in table, it has at least a
(1, 0)-neighbour > 6, or a (1, 1)-neighbour > 9, or a (2, 1)-neighbour > 14, etc.
The table is compressed by showing only possible radii r.

In Figures 10 and 13 are given the vectors of Mg
Lut in 2D and 3D re-

spectively, and also their appearance radius R during CompLutMask. Keep-
ing this radius is important because it allows to limit the number of direc-
tions to test for each point during whole MA extraction. In a DT where
the greatest value is Rmax, it is necessary and sufficient to take the subset
MRmax

Lut = { (−→v ; R) ∈ MLut : R < Rmax } as the test neighbourhood to detect

all MA points. In fact, CompLutMask garanties that MRmax

Lut is necessary and
sufficient up to RKnown = Rmax − 1 in CT g (as a radius of direct ball), thus
by (4), up to Rmax in DT (as a radius of reverse ball). For example in Fig-
ure 10, if Rmax = 101 on DT , then the test neighbourhood will be limited to
(1, 0)-neighbours and (1, 1)-neighbours.

The extraction of MA from a binary image I can be divided in the following
steps. One must first compute SEDT, then search Rmax in the resulting DT .
Next, CompLutMask is applied using the Rmax value as RTarget ; this step can
be avoided if a sufficient Mg

Lut, computed once for all, is already stored. The

subset MRmax

Lut is then used to extract MA, which is initialized to shape points.
To minimize memory usage, we propose to allocate only one Lut column, instead
of computing for Rmax and #MRmax

Lut the whole Lut, which might be very large

as seen in §4.1 : for each vector −→v g in MRmax

Lut , we overwrite the previous column

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 233

using CompLutCol, then reject from MA all the points which do not fulfill (5)
with the G-symmetries of −→v g. This way, the MA set often decrease extremely
fast at each step, thus accelerating the computation.

4.3 Properties

Two reverse balls of radii r and r′ are said equivalent if the sets of pixels
B−1(O, r) and B−1(O, r′) are the same (even if the labels of the pixels on the
DT are generally different). The equivalence class of a reverse ball is the interval
of radii for which the reverse balls are equivalent. In Z

n, the equivalence classes
are easily obtained by underlining possible values in DT (i.e. integers which can
be written in sum of n squares); the equivalence class of a possible value b is
[a . . . b] where a−1 is the largest possible value less than b. The first equivalence
classes in 2D are [1], [2], [3, 4], [5], [6, 7, 8], [9], [10], [11, 12, 13], etc.

Equivalence classes of size > 1 exist in 2D and 3D because the sum of two
or three squares does not fill N. All the balls are different for dimension n > 4
because of Lagrange theorem; we think that this might have implications over
properties of MLut and Lut which are linked to equivalence classes.

Our algorithm CompLutCol in Figure 7 gives the low bound of each equiv-
alence class. We remark that the values published in [5] correspond to the high
bounds; in that sense, the two tables must be considered as equivalent. Figure
10 also confirms the 3 × 3 test neighbourhood used in [5] for radii less than 80
in 2D, because the third direction only appears for R = 101.

We illustrate in Figure 14 the appearance of the direction (2, 1) in MLut for
R = 101 in Z

2. The radius R = 101 of a direct ball (Figure 14.a) corresponds
by (4) to radius R′ = 101 + 1 of reverse ball. Since equivalence class of 102 is
[102, 103, 104], CompSEDTg labels O to 104 (Figure 14.b). When extracting MA
with 2 test directions (0,1) and (1,1), the point labelled 65 is detected since its
reverse ball is not completely overlapped by the reverse balls of its neighbours
(Figure 14.c,d), while it is overlapped in direction (2,1) (Figure 14.e).

Our experiments in 2D and 3D show that MLut is not bounded for d 2
E ,

unlike chamfer distances (see [14]). Figure 11 geometrically represents the set
of vectors in Mg

Lut from Figure 10 with their rank of appearance. While layout
seems random, one can note that all MLut points are visible points. A point
(x1, . . . , xn) is said visible (from the origin) if gcd(x1, . . . , xn) = 1; the set of
visible points in Z

n is denoted Vn (see [18]). When carrying on computation
of Mg

Lut with CompLutMask, all visible points seems to be gradually detected,
while non-visible points never are. We therefore propose the conjecture:

lim
R→∞

MR
Lut = Vn . (8)

These properties for d 2
E are very different from those of chamfer distances

(see [14]), where MLut are always bounded, Lut are bounded in most cases, and
non-visible points may appear in MLut. We think this is linked to the number
of normals of the balls, which is unbounded for infinite Euclidean balls, while
bounded for chamfer balls.

234 Eric Remy and Edouard Thiel

(c) (d) (e)

(a) (b)

1

5 2 1

13 8 4 1

25 17 10 5 2 1

40 29 20 13 8 4 1

58 45 34 25 16 9 4 1

80 65 50 37 26 17 10 5 2 1

10485 68 53 40 29 20 13 8 4 1

98

72 85100

50 61 74 89

32 41 52 65 80 97

18 25 34 45 58 73 90

8 13 20 29 40 53 68 85

2 5 10 17 26 37 50 65 82101

0 1 4 9 16 25 36 49 64 81100

Fig. 14. Appearance of vector (2, 1) in MLut for R = 101 in Z
2. In (a), B(101) is

obtained using points 6 101 from CT g, and gives after SEDT, B−1(104) in (b), on
which MA is extracted. In (c), B−1(65) (in gray) is not overlapped by B−1(80) in
direction (1, 0), nor in (d) by B−1(85) in direction (1, 1), but is overlapped in (e) by
B−1(104) in direction (2, 1).

5 Conclusion

The computation of the medial axis (MA) from the squared Euclidean distance
transform (SEDT) is detailed for arbitrary dimension. The principle of MA ex-
traction using look-up tables (Lut) was already published for d 2

E in 2D for small
values and 3× 3 neighbourhood in [5], but no general method to compute them
was given. We have introduced the mask MLut, which stores the test neighbour-
hood used during the MA extraction. We showed that, in the general case, the
mask MLut is greater than just the 3n neighbourhood. We have presented and
justified efficient algorithms which compute both Lut and MLut for d 2

E . Our
algorithms certify that MLut is sufficient up to a given ball radius. We give a
sample Lut table in 2D for comparison with [5]. We give two sets of Mg

Lut in 2D
and 3D which enable a simple MA extraction using only the Lut table computa-
tion algorithm (provided that the greatest radius R in the image is lower than
128 178 in 2D and 947 in 3D).

Our experimentations show that, in the case of d 2
E , the neighbourhood MLut

to test is a set of visible points. Unlike seen in the case of chamfer distances in
[14], this set seems to grow forever as the radius R of the greatest possible ball in
the image grows. A further work needs to be done to get a better understanding
of the inclusions of discrete Euclidean balls and to find arithmetical rules.

Look-Up Tables for Medial Axis on Squared Euclidean Distance Transform 235

References

1. C. Arcelli and G. Sanniti di Baja. Finding local maxima in a pseudo-Euclidean
distance transform. Comp. Vision, Graphics and Image Proc., 43:361–367, 1988.

2. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-
dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380,
Cambridge, 1967. MIT Press.

3. G. Borgefors. Centres of maximal disks in the 5-7-11 distance transform. In
8 th Scand. Conf. on Image Analysis, pages 105–111, Tromsø, Norway, 1993.

4. G. Borgefors and I. Nyström. Efficient shape representation by minimizing the set
of centres of maximal discs/spheres. Pat. Rec. Letters, 18:465–472, 1997.

5. G. Borgefors, I. Ragnemalm, and G. Sanniti di Baja. The Euclidean Distance
Transform : finding the local maxima and reconstructing the shape. In 7 th Scand.
Conf. on Image Analysis, volume 2, pages 974–981, Aalborg, Denmark, 1991.

6. P.E. Danielsson. Euclidean distance mapping. Comp. Graphics and Image Proc.,
14:227–248, 1980.

7. G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford
University Press, fifth edition, October 1978.

8. T. Hirata. A unified linear-time algorithm for computing distance maps. Informa-
tion Proc. Letters, 58:129–133, 1996.

9. A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink. A general algo. for comp.
distance trans. in linear time. In Goutsias and Bloomberg, editors, Math. Morph.
and its App. to Image and Signal Proc., pages 331–340. Kluwer, 2000.

10. F. Nilsson and P.E. Danielsson. Finding the minimal set of maximum disks for
binary objects. Graph. Models and Image Proc., 59(1):55–60, 1997.

11. J.L. Pfaltz and A. Rosenfeld. Computer representation of planar regions by their
skeletons. Comm. of ACM, 10:119–125, feb 1967.

12. I. Ragnemalm. The Euclidean distance transform in arbitrary dimensions. Pat.
Rec. Letters, 14(11):883–888, 1993.

13. E. Remy. Normes de chanfrein et axe médian dans le volume discret. PhD, Univ.
de la Méditerranée, Aix-Marseille 2, Dec 2001.

14. E. Remy and E. Thiel. Medial axis for chamfer distances: computing look-up tables
and neighbourhoods in 2D or 3D. Pat. Rec. Letters, 23(6):649–661, April 2002.

15. A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture processing.
Journal of ACM, 13(4):471–494, 1966.

16. T. Saito and J.I. Toriwaki. New algorithms for Euclidean distance trans. of an
n-dim. digitized picture with applications. Pat. Rec., 27(11):1551–1565, 1994.

17. G. Sanniti di Baja and E. Thiel. A skeletonization algorithm running on path-based
distance maps. Image and Vision Computing, 14(1):47–57, Feb 1996.

18. E. Thiel. Géométrie des distances de chanfrein. Docent, Univ. de la Méditerranée,
Aix-Marseille 2, Dec 2001. http://www.lim.univ-mrs.fr/~thiel/hdr .

