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Abstract We denote by M n
R the test neighbourhood sufficient to extract the Euclid-

ean Medial Axis of any n-dimensional discrete shape whose inner radius is no greater
than R. In this paper, we study properties of discrete Euclidean disks overlappings so
as to prove that in any given dimension n, M n

R tends to the set of visible vectors as
R tends to infinity.

Keywords Medial axis · Look-up table · Squared Euclidean distance transform ·
Visible points · Disks overlappings

1 Introduction

The Medial Axis (MA) is an important tool in image analysis, shape description,
computer vision, robot motion planning, surface reconstruction, etc. It provides a
global and centred representation of a shape S , a shape being for example a discrete
set of points or the frontier of a compact, depending on the considered working space.
The medial axis allows one to simplify, compress or compute a reversible skeleton
of S . First proposed by Blum in [2], MA was defined in [11] as the set of centres (and
radii) of maximal disks in S , a disk being maximal in S if it is not included in any
single other disk included in S . The medial axis is a cover of the input shape, i.e., the
union of the balls of MA(S) is exactly S , and thus MA is a reversible coding.
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In this paper, we only consider shapes as bitmaps, i.e., a shape is a subset of
Z

n (without topology considerations). When the disks are distance balls, the MA
points can be locally detected on the Distance Transform (DT) of the shape, where
each shape point is labelled with the distance to its closest point in the background
[16]. Then, a Reverse Distance Transformation (RDT) applied on MA allows one
to recover exactly the original shape. Note that a maximal disk can be included in
the union of several maximal disks; therefore MA, which is unique by definition, is
seldom a minimal cover.

The most important discrete distances used in image analysis for bitmaps (in Z
n)

are the squared Euclidean distance d2
E (squared to store integers) and chamfer dis-

tances dC , also known as weighted distances (introduced in [9]). Note that dE is also
denoted �2 in the literature and that both �1 and �∞ are simple cases of chamfer
distances. Chamfer DT and RDT are well known [3, 9, 16] with a simple and fast
sequential in two raster scans computation; complexity is O(N.m), where N is the
number of points of the image, and m is the cardinal of the chamfer mask. A number
of Squared Euclidean DT algorithms have been proposed over the past 30 years; see
for example [12] or the recent one from Hirata [7], which is exact in arbitrary dimen-
sion and easily parallelised, with a O(N.n) time complexity, n being the dimension.
The same complexity holds for the computation of the Squared Euclidean RDT [6].

The characterisation of MA is simple for distances such as �1, �∞ [16] or 3 × 3
chamfer masks [1] by detecting the local maxima on DT, possibly lowering some
DT labels before. A general approach using look-up tables (LUT for short) has been
introduced for d2

E in [4] and for a 5 × 5 chamfer mask in [5]. The LUT gives for each
value read in the DT, the minimum value of the neighbours that forbids a point to be
in the MA. The neighbours which are necessary to test for each point of the shape are
stored as a set M n

R of vectors. The test neighbourhood M n
R is sufficiently large to

detect the MA of all n-dimensional shapes whose inner radii are no greater than R,
the inner radius of a shape S being the radius of a largest ball included in S .

The algorithms to compute both LUT and the neighbourhood M n
R are given

in [15] for d2
E and [14] for chamfer norms, in any dimension n. The extraction of

MA from DT using a precomputed M n
R and LUT is linear in N ∗ card(M n

R). The
computation of the LUT is linear in N for each vector in M n

R . A fast algorithm to
compute the test neighbourhood in the case of 2-dimensional chamfer norms, using
the polytope description of discs, is proposed in [10]. The computation of M n

R is time
consuming in the case of the Euclidean distance, but M n

R can be calculated once for
all bounded size images and stored at low memory cost (while LUTs can be huge and
might be recomputed each time).

Alternative medial axes were recently proposed. In [13], an efficient algorithm,
based on [15], computes the Higher Medial Axis (HMA), a medial axis for d2

E in a
doubled resolution grid, which permits the application of further homotopic thinning
for the computation of homotopic skeletons. A new linear-time algorithm in [6], in-
spired by [7], provides the Reduced Medial Axis (RMA) for d2

E ; the basic idea is
to filter a set of maximal Euclidean paraboloids; while maximal balls and maximal
paraboloids coincide in the continuous case, this is not true in the discrete space, and
the resulting RMA is generally different from MA.

In the LUT method, experiments in [14, 15] show completely different properties
of M n

R depending on the distance used. For any given chamfer norm, M n
R is bounded
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but can have nonvisible vectors (a vector is said to be visible if its coordinates are co-
prime). Concerning d2

E , M n
R is unbounded; moreover, M n

R has only visible vectors,
and progressively, all visible vectors seem to appear in M n

R when R grows. This is
summarised by a conjecture in [15], which claims that M n

R tends to the set of visible
vectors of Z

n as R tends to infinity.
In this paper, we are interested to prove the above conjecture. The difficulty lies in

the fact that the algorithm in [15] neither explains why a vector might be selected or
not for a radius R, nor gives information about the order of appearance of vectors in
M n

R . To our knowledge, there is no closed formula for M n
R and LUT. Also, intuition

might be distorted by geometry in Euclidean space. We have to deal with discrete
Euclidean disks, with overlappings of smallest or largest disks including or excluding
discrete points. In order to insure the existence of points in some situation, we will
construct a family of shapes, involving sometimes huge disks. The reader does not
need to be fully acquainted with the DT and LUT algorithms, since neither of them
play a part in our proof.

After some definitions and recalls in Sect. 2, we tackle the proof in Sect. 3: we
show the unicity of M n

R for every R, then we prove that nonvisible vectors are su-
perfluous, and finally, that all visible vectors are gradually necessary when R grows.
We conclude after a discussion in Sect. 4.

2 Definitions

2.1 The Discrete Space Z
n

In the following, we consider Z
n both as an n-dimensional Z-module (i.e., a discrete

vector space) and as its associated affine space; we set Z
n∗ = Z

n \ {0}. A shape S is
a subset of points of Z

n. The complement of S (also called background), denoted by
S , is Z

n \ S .
In the remainder of the paper, we only consider the Euclidean distance. Given two

points x, y and a vector v in Z
n, we denote by dE(x, y) or xy the Euclidean distance

between x and y, and by ‖v‖ the Euclidean norm of v. We write (xy) for the line
in R

n passing through x and y, and [xy] for the line segment in R
n joining x and

y. The Cartesian coordinates of v are denoted by (v1, . . . , vn). A vector v ∈ Z
n is

visible from the origin (visible for short) if �u ∈ Z
n∗ and λ > 1 such that v = λu, or

equivalently, if gcd(v1, . . . , vn) = 1. The set of all visible vectors of Z
n is denoted by

V n (note that �0 is not visible).
We call Σn(x) the group of axial and diagonal symmetries in Z

n about centre x.
For a given x, the cardinal of the group is #Σn(x) = 2nn! (which is 8, 48 and 384 for
n = 2, 3 and 4). A shape S is said to be G-symmetrical if for every σ ∈ Σn(O), we
have σ(S) = S . The generator of a set X ⊆ Z

n (or R
n) is

G(X) = {
(x1, . . . , xn) ∈ X : 0 � xn � xn−1 � · · · � x1

}
. (1)

Figure 1 shows G(Rn) for n = 2 (an octant) and n = 3. A G-cone of Z
n is, by

definition, the image of G(Zn) by a given symmetry σ in Σn(O).
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Fig. 1 G(Rn) for n = 2 and 3

For any set of vectors v1, . . . ,vk ∈ Z
n, C(v1, . . . ,vk) stands for the relation:

v1, . . . ,vk all lie in a common G-cone of Z
n. We also denote by ¬C(v1, . . . ,vk)

the contrary of the relation C(v1, . . . ,vk), i.e., ∃1 � i < j � k such that vi and vj do
not lie in a same G-cone of Z

n.
Finally, given a vector v ∈ Z

n, we call ṽ the representative of v in G(Zn), defined
to be the vector in G(Zn) verifying ṽ = σ(v) for some σ ∈ Σn(O). According to
the definition of the generator (1), ṽ is unique for any v, and its coordinates can be
computed by swapping the absolute values of the Cartesian coordinates of v until
they are decreasing.

2.2 Balls and Medial Axis

The ball of centre x ∈ Z
n and radius r ∈ R is

B(x, r) = {
p ∈ Z

n : dE(x,p) � r
}
. (2)

Since we consider discrete balls, any ball has an infinite number of radii. We denote
by ∼ the equivalence relation

r ∼ r ′ ⇔ B(O, r) = B(O, r ′). (3)

The equivalence class of a given r ∈ R is the set of all r ′ ∈ R satisfying B(O, r) =
B(O, r ′). We define the representative radius of a given ball B of centre x ∈ Z

n to
be the smallest radius r for which B(x, r) = B . As a consequence, the representative
radius r is the only radius of its equivalence class for which there exist a, b ∈ N such
that r2 = a2 + b2.

By definition, the considered balls are ascending by inclusion, i.e., such that

r � r ′ ⇒ B(x, r) ⊆ B(x, r ′). (4)

Let S be a shape and x ∈ Z
n. We define IS (x) to be the largest ball of centre x

included in S (if x /∈ S , we have IS (x) = ∅). Analogously, we denote by HS (x) the
smallest ball of centre x which contains S . See an example in Fig. 2.

The inner radius of a given shape S , denoted by rad(S), is the representative radius
of a largest ball included in S . We denote by CSn(R) the class of all n-dimensional
shapes whose inner radii are less than or equal to R.

A ball included in S is called a maximal ball of S if it is not included in any other
ball included in S . The Medial Axis (MA) of a shape S is the set of centres (and radii)
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Fig. 2 HS (x) and IS (x) for a
shape S (S is represented by
bullets)

of all maximal balls of S . The balls being ascending by inclusion, we have

x ∈ MA(S) ⇔ x ∈ S and ∀x′ ∈ S \ {x}, IS (x) � IS (x′). (5)

If there exists v ∈ Z
n∗ such that IS (x) ⊆ IS (x − v), we say that v forbids x to be a

medial axis point of S .
In order to obtain the radii of all largest balls inside S , we first compute the Dis-

tance Transform (DT for short) of S defined by

∀x ∈ Z
n, DT(x) = min

{
d2
E(x,p) : p ∈ S

}
. (6)

Since d2
E is a discrete distance (i.e., whose values are in N), DT(x) − 1 is a squared

radius of the ball IS (x). Although MA is computed on the Squared Euclidean Dis-
tance Transform (SEDT), which is stored as integer values, the result is actually the
MA for dE , since balls of dE and d2

E (up to a squared radius) are equivalent.
Compared to the continuous case, no closed formula gives the minimal radius of

a discrete ball containing another discrete ball, which is a major difficulty.

2.3 Minimum Test Neighbourhood M n
R

For a given shape S , we need a test neighbourhood M ⊆ Z
n∗ sufficient to detect, for

every x ∈ S , if x is a point of MA(S). If x /∈ MA(S), then M must contain at least
one vector v which forbids x to be an MA point. Otherwise, if x ∈ MA(S), there is
no v ∈ Z

n which satisfies IS (x) ⊆ IS (x − v). Thus M is sufficient for S iff

∀x ∈ S,
(
x �∈ MA(S) ⇒ ∃v ∈ M, IS (x) ⊆ IS (x − v)

)
. (7)

We are interested in computing, for any shape S , a minimum test neighbour-
hood M. More generally, we shall look for a minimum test neighbourhood M n

R

sufficient to detect the MA of all n-dimensional shapes whose inner radii are less
than or equal to a given R, i.e., shapes in CSn(R).

3 Properties of the Test Neighbourhood Mn
R

The following observation provides two criterions for excluding a point from the
medial axis of a shape, and it will be extensively used in the following proofs. It is a
consequence of the fact that the balls are ascending by inclusion, see (4).
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Observation 1 Let S ⊆ Z
n be a shape, x ∈ S , v ∈ Z

n∗, and let B = IS (x). The
following three sentences are equivalent:

(a) v forbids x to be an MA point of S ,
(b) B ⊆ IS (x − v),
(c) HB(x − v) ⊆ S .

The equivalence (a) ⇔ (b) is the definition of v forbidding x from MA(S). We
also clearly have (c) ⇒ (a). Finally we have (b) ⇒ (c) because B ⊆ IS (x − v) im-
plies that HB(x − v) ⊆ IS (x − v), and so B ⊆ HB(x − v) ⊆ IS (x − v) ⊆ S .

Remark 1 In figures, we will often represent a discrete ball by the boundary of a
continuous counterpart, i.e., a ball in R

n having an equivalent radius. These figures
might seem counter-intuitive, for if a discrete ball is included in another discrete ball,
then their continuous counterparts may not satisfy the inclusion.

3.1 Unicity of M n
R

We begin by proving the following proposition:

Proposition 1 For all R ∈ R and n � 2, there exists a unique test neighbourhood
M n

R which is minimal by cardinality and sufficient to detect the medial axis of any
shape in CSn(R).

Proof The existence of M n
R is guaranteed by the fact that Z

n∗ is a sufficient test
neighbourhood for any n-dimensional shape.

Suppose that for given R ∈ R and n � 2, there exist two different test neighbour-
hoods M n

R and M′ n
R , both minimal by cardinality. Hence there is at least one vector

u in M n
R \ M′ n

R . Moreover, there exists a shape S in CSn(R) and a point x in S such
that u is the only vector in M n

R which forbids x to be in MA(S), for otherwise u

could be removed from M n
R , which would contradict the minimality of M n

R .
We set B = IS (x) and H = HB(x − u), see Fig. 3. By Observation 1 we have

H ⊆ S , so H ∈ CSn(R). Since {x − u} is the MA of H (a ball) and u /∈ M′ n
R , there

exists a vector u′ �= u in M′ n
R which forbids x to be in MA(H).

Now, consider H ′ = HB(x − u′). Since u′ forbids x from MA(H), Observation 1
yields H ′ ⊆ H . Furthermore, H and H ′ do not coincide, and therefore H � H ′.
Again by Observation 1, it follows that u does not forbid x to be in MA(H ′). In
consequence, there exists v �= u in M n

R which forbids x from MA(H ′). However,
such a vector v in M n

R also forbids x to be in MA(S), contradicting the fact that u is
the only one. �

Corollary 1 If 0 � R � R′, then M n
R ⊆ Mn

R′ .

Proof By definition, Mn
R′ is large enough to detect the MA of any shape in CSn(R).

Since M n
R is unique for every R, it follows easily that M n

R ⊆ Mn
R′ . �
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Fig. 3 A shape S , a ball
B = IS (x), and two balls
H = HB(x − u),
H ′ = HB(x − u′)

Corollary 2 For all R � 0 and n � 2, M n
R is G-symmetrical.

Proof By Proposition 1, G(M n
R) is unique. Moreover, the Euclidean balls are

G-symmetrical, so ∀S ∈ CSn(R),∀σ ∈ Σn(O),σ (S) ∈ CSn(R). Therefore, M n
R is

also G-symmetrical. �

We now proceed in two steps in order to prove that M n
R tends to V n as R tends

to infinity. First, we show in Sect. 3.2 that every M n
R contains visible vectors only.

Second, we show in Sect. 3.3 that for each visible vector v ∈ V n, there exists R ∈ R

such that v belongs to M n
R .

3.2 Nonvisible Vectors Are Superfluous

Proposition 2 Let x be a point in a given shape S ⊆ Z
n, and u, λu be two vectors

in Z
n∗ with n � 2 and λ > 1. If λu forbids x to be a point of MA(S), then so does u.

Proof Set v = λu, x′ = x − u, x′′ = x − v and B = IS (x) (see Fig. 4). Let p, p′
and p′′ be points of B (arbitrarily chosen) that maximise the distance to x, x′ and x′′,
respectively. So we have1

∀z ∈ B, xz � xp, x′z � x′p′ and x′′z � x′′p′′. (8)

Let B ′ = B(x′, x′p′) and B ′′ = B(x′′, x′′p′′). By construction, B ′ = HB(x′) and
B ′′ = HB(x′′).

The hypothesis that v forbids x from MA(S) is by Observation 1 equivalent to
B ⊆ IS (x′′) or B ′′ ⊆ S . To prove that u forbids x from MA(S), we have to show that
B ⊆ IS (x′), or analogously, that B ′ ⊆ S . It is thus sufficient to show that B ′ ⊆ B ′′.
To complete the proof, we need two preliminary lemmas.

Let P be the hyperplane in R
n orthogonal to u and containing p′, and let P + be

the closed half-space delimited by P and which does not contain x′; we have

P + = {
z ∈ R

n : u · −→p′z � 0
}
. (9)

1Remember that ab stands for dE(a, b).
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Fig. 4 x, x′ and x′′ are
collinear. S is not shown. The
figure may seem
counter-intuitive, see Remark 1

Lemma 1 If z ∈ B ′ and z ∈ P +, then z ∈ B .

Proof Since z ∈ B ′, we have (x′z)2 � (x′p′)2. By inserting u = −→
x′x we obtain (u +

−→
xz)2 � (u + −→

xp′)2. Hence xz2 + 2u · −→xz � xp′2 + 2u · −→xp′, so

xz2 + 2u · −→p′z � xp′2. (10)

Since z ∈ P +, we have u · −→p′z � 0 by (9); therefore (10) gives xz2 � xp′2, so xz �
xp′. Furthermore, p′ ∈ B by definition, so xp′ � xp. Thus xz � xp, and so z ∈ B . �

Lemma 2 Suppose that v = λu with 1 < λ ∈ R. If z ∈ B ′ and z /∈ B ′′, then z ∈ P +.

Proof Since z ∈ B ′, we have x′z � x′p′. By inserting u = −→
x′x we can write (u +

−→
xz)2 � (u + −→

xp′)2, so

xz2 + 2u · −→xz � xp′2 + 2u · −→xp′. (11)

We also suppose that z /∈ B ′′, so x′′p′′ < x′′z. Since by definition p′ ∈ B ⊆ B ′′, we

have x′′p′ � x′′p′′, thus x′′p′ < x′′z. By inserting v = −→
x′′x we have (v + −→

xp′)2 <

(v + −→
xz)2, and so

xp′2 + 2v · −→xp′ < xz2 + 2v · −→xz. (12)

By adding (11) and (12) we obtain u · −→
xz + v · −→

xp′ < u · −→
xp′ + v · −→

xz, and thus

u · −→p′z < v · −→p′z. Provided that v = λu, λ > 1, it follows that (λ − 1)u · −→p′z > 0, so

u · −→p′z > 0, and thus z ∈ P +. �

These two lemmas allow us to complete the proof of Proposition 2; recall that we
want to establish the inclusion B ′ ⊆ B ′′. Suppose that there exists a point z in B ′ \B ′′.
According to Lemma 2, we have z ∈ P +. So z ∈ B ′ and z ∈ P +, and therefore by
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Lemma 1 we get z ∈ B . Thus z ∈ B and z /∈ B ′′, but by construction B ⊆ B ′′, a
contradiction. �

Proposition 3 No M n
R contains nonvisible vectors.

Proof Let u be a visible vector and v = λu with λ ∈ N, λ > 1. To obtain a con-
tradiction, suppose that there exists a radius R for which v ∈ M n

R . According to
Proposition 2, v can be replaced with u in M n

R . If u is already in M n
R , then v is

useless and M n
R is not minimal. Else, M′ n

R = (M n
R \ {v}) ∪ {u} has the same cardi-

nality as M n
R , and therefore is another minimal neighbourhood, contradicting unicity

in Proposition 1. �

3.3 All Visible Vectors Are Gradually Necessary

We first need three preliminary lemmas. The first two will help defining the so-called
candidates of a given visible vector v, a set of vectors of finite cardinality which will
be sufficient to consider when we will prove that v appears in some M n

R .

Lemma 3 Let u,v ∈ Z
n∗ with n � 2. If ¬C(u,v), then ‖u + v‖ < ‖̃u + ṽ‖.

Proof Without loss of generality, we can assume that u ∈ G(Zn) and v /∈ G(Zn). We
define the following transformation g:

� If ∃i � n such that vi < 0, then g(v) = (|v1|, . . . , |vn|).
� Else, if there exist at least two indexes i < j � n such that vi < vj and ui > uj ,

then g(v) = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn).
� Else, we have v ∈ G(Zn), so we set g(v) = v.

All the coordinates of u are positive, so if the first case applies, then clearly ‖u +
v‖ < ‖u + g(v)‖. If the second case applies, then

∥∥u + g(v)
∥∥2 − ‖u + v‖2 = (ui + vj )

2 + (uj + vi)
2 − (ui + vi)

2 − (uj + vj )
2

= 2(ui − uj )(vj − vi),

which is strictly positive. ṽ is constructed from v by repeated applications of g, at
least once. Finally we obtain

‖u + v‖ <
∥∥u + g(v)

∥∥ <
∥∥u + g

(
g(v)

)∥∥ < · · · < ‖u + ṽ‖. �

The lemma still holds if we consider three or more vectors, the hypothesis be-
ing that at least two of them do not satisfy the relation C. The method of proof is
unchanged.

Lemma 4 Let u,v be two vectors in Z
n∗ and B be a discrete ball of centre x ∈ Z

n

with n � 2. Let B ′ = HB(x − u) and B ′′ = HB(x − v). If ¬C(u,v,v − u), then
B ′

� B ′′.
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Fig. 5 A point q in B ′ \ B ′′.
For the sake of clarity, only a
quarter of B is drawn (black
bullets). In general, z may not
be equal to z̃

Fig. 6 The set A(v) of
candidates (represented by
bullets) of a visible vector v

Proof The procedure is to find a point q in B ′ \ B ′′. Let x′ = x − u, x′′ = x − v,

w = v − u = −−→
x′′x′ (see Fig. 5).

Without loss of generality, we can assume that w ∈ G(Zn). Let p be a point
(arbitrarily chosen) of B which maximises its distance to x′′, and set z = p − x.
By construction, x′′p = ‖v + z‖ is the representative radius of B ′′. Now consider

q = x′ + ũ + z̃. We have x′q = ‖̃u + z̃‖ and x′′q = ‖−−→x′′x′ + −→
x′q‖ = ‖w + ũ + z̃‖. Let

σ denote the symmetry in Σn(x′) satisfying σ(u) = ũ, and set B̃ = σ(B). Since σ

preserves distances, B̃ ∈ B ′. Furthermore, q ∈ B̃ , so q ∈ B ′.
The hypothesis ¬C(u,v,w) implies that u and w do not lie in a common G-cone,

for otherwise v would also lie in the same G-cone, since by definition v = u + w.
So we have ¬C(w,u), and therefore ‖w̃ + ũ + z̃‖ > ‖w + u + z‖ by extension of
Lemma 3 to three vectors.

Since w ∈ G(Zn), we have w̃ = w, and hence

x′′q = ‖w + ũ + z̃‖ > ‖w + u + z‖ = x′′p.

Since x′′p is the representative radius of B ′′, we deduce that q /∈ B ′′. Consequently,
we have proved that q ∈ B ′ \ B ′′. �

From now on, we call

A(v) = {
u ∈ Z

n∗ : u �= v and C(u,v,v − u)
}

(13)

the set of the candidates of a given visible vector v. Geometrically speaking, the
candidates of v are a finite set of vectors which are smaller than v and angularly
close to v. An example of candidates in the 2-dimensional case is given in Fig. 6.

The following lemma will be central to prove that every visible vector belongs to
some M n

R . Let B be a ball of centre x and radius r . If the working space was R
n
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instead of Z
n, we would naturally have rad(HB(x − v)) = r + ‖v‖. This is generally

false in the discrete space. However, the lemma states that in the discrete space, this
equality tends to be satisfied as r tends to infinity.

Lemma 5 Let v be a vector in Z
n∗ (with n � 2), x ∈ Z

n and r ∈ R+. Let r ′ denote a
radius of the smallest discrete ball of centre x′ = x − v which contains B(x, r). Then
we have

lim
r→+∞ r + ‖v‖ − r ′ = 0.

Proof Let p be the farthest point from x included in B(x, r) verifying p = x + λv

for some λ ∈ N (see Fig. 7). There exists a vector in Z
n (say z) orthogonal to v whose

norm is no greater than that of v: for instance, take z = (−v2, v1,0, . . . ,0). Let q ∈ Z
n

be the farthest point from p included in B(x, r) which satisfies q = p + k.z for some
k ∈ Z+; and let t ∈ R

n be the point satisfying both xt = r and t = p + l.z for some
l ∈ R+. We have

pq � pt − ‖z‖ � pt − ‖v‖. (14)

Since z is orthogonal to v, we have

pt2 = xt2 − xp2 (15)

and also

r ′2 � x′q2 = x′p2 + pq2. (16)

Substituting (14) and (15) into (16) yields

r ′2 � x′p2 + (√
xt2 − xp2 − ‖v‖)2

. (17)

Replacing x′p by xp + ‖v‖ and xt by r , we can rewrite (17) as

r ′2 �
(
xp + ‖v‖)2 + (√

r2 − xp2 − ‖v‖)2

�
(
xp + ‖v‖)2 + r2 − xp2 + v2 − 2‖v‖

√
r2 − xp2

� ‖v‖(2xp + ‖v‖) + r2 + v2 − 2‖v‖
√

r2 − xp2. (18)

By construction we have xp > r − ‖v‖, and hence

r2 − xp2 < r2 − (
r − ‖v‖)2

< 2‖v‖r.
Using the last two inequalities, we can develop (18) into

r ′2 � ‖v‖(2r − ‖v‖) + r2 + v2 − 2‖v‖√2‖v‖r
� r2 + 2‖v‖r − 2‖v‖√2‖v‖r. (19)
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Fig. 7 A ball B of centre x and
radius r , and the ball
B ′ = HB(x − v)

With the notation �(r) = r + ‖v‖ − r ′, we deduce from (19) that

�(r) � r + ‖v‖ −
√(

r + ‖v‖)2 − 2‖v‖√2‖v‖r − v2.

A Taylor development at first order of the right-hand side of this expression gives

�(r) � ‖v‖.√2‖v‖√
r

+ o

(
1

r

)
as r → +∞.

Consequently, the limit of �(r) is 0 as r → +∞. �

Proposition 4 For all n � 2 and v ∈ V n, there exists R ∈ R+ such that v ∈ M n
R .

Proof Let v be a given visible vector in V n, and let x ∈ Z
n. The basic idea of the

proof is to construct a shape S ⊆ Z
n such that v is the only vector which forbids x to

be in the medial axis of S , i.e.,
{

IS (x) ⊆ IS (x − v),

∀u ∈ Z
n∗ \ {v}, IS (x) � IS (x − u).

(20)

Equivalently, if we consider B = IS (x), according to Observation 1, we have to show
that

{
HB(x − v) ⊆ S,

∀u ∈ Z
n∗ \ {v}, HB(x − u) � S.

(21)

For any k ∈ N, set pk = x + k.v, Bk = B(x, k‖v‖) and Sk = B(x − v, (k + 1)‖v‖).
An example is given in Fig. 8. Since rad(HBk

(x − v)) � rad(Bk) + ‖v‖ and pk ∈ Sk ,
we have Sk = HBk

(x − v).
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Fig. 8 Bk,Bu
k
, Sk in the plane

W (u), for k = 2

For any u ∈ Z
n∗, let Bu

k = HBk
(x − u). According to Lemma 4, ¬C(u,v,v − u)

implies that Bu
k � Sk , and hence u does not forbid x from MA(Sk). Therefore, to

complete the proof, we need only consider A(v) (the candidates of v) and find an
integer γ for which

∀u ∈ A(v), Bu
γ � Sγ . (22)

For any u ∈ A(v), let W (u) denote the 2-dimensional plane in R
n containing x, v

and u. We also denote by Pk the hyperplane in R
n orthogonal to v and which contains

pk . By construction, pk is the only point in Sk ∩ Pk . Set x′ = x −u, let qk denote the
orthogonal projection of x′ onto Pk , and let tk be the point verifying x′tk = rad(Bu

k )

and tk = pk + λ
−−→
pkqk for some λ ∈ R+. Note that in general, qk and tk are not points

of Z
n. We can write

(qktk)
2 = (x′tk)2 − (x′qk)

2. (23)

By projecting u onto v we can rewrite x′qk as xpk + ‖u‖ cos(u,v), and hence

(qktk)
2 = (x′tk)2 − (

xpk + ‖u‖ cos(u,v)
)2

= (
x′tk + xpk + ‖u‖ cos(u,v)

)(
x′tk − xpk − ‖u‖ cos(u,v)

)
. (24)

Since xpk and x′tk are the radii of Bk and Bu
k respectively, Lemma 5 shows that

lim
k→+∞x′tk − xpk = ‖u‖. (25)

Since u ∈ A(v), the vectors u and v are not collinear with each other, and 0 <

cos(u,v) < 1. So, combining (24) and (25), we deduce that

lim
k→+∞qktk = +∞. (26)

Each line (pkqk) passes through infinitely many points of Z
n, because pk ∈ Z

n and
there exists at least one discrete vector z ∈ W (u) ∩ Pk , for example, take z = (u ∧
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v) ∧ v. Moreover, the integer points on the line segment [qktk] are in Bu
k \ Sk since

[qktk] ⊆ Pk and Pk ∩ Sk = pk . On account of (26) and the above remarks, it follows
that

∀u ∈ A(v), ∃ku ∈ N, ∀k > ku, Bu
k � Sk. (27)

Finally, we see that taking γ = max{ku : u ∈ A(v)} is sufficient to satisfy (22). The
existence of γ is ensured by the fact that A(v) is bounded for every v. �

We can now formulate our main result. By Propositions 3 and 4, we have shown
the following:

Theorem 1 The minimum test neighbourhood M n
R sufficient to detect the discrete

Euclidean medial axis of any shape in CSn(R) satisfies limR→+∞ M n
R = V n.

4 Discussion

4.1 On the Density of V n

Let v be a vector in Z
n, selected at random. The probability p(n) that v is visible

is given by 1
ζ(n)

(see [8]), where ζ(n) is the Riemann zeta function defined for any
integer n by

ζ(n) =
+∞∑

k=1

1

kn
.

For the two-dimensional case, this gives

p(2) = 1

ζ(2)
= 6

π2
≈ 0.61.

In higher dimensions we have p(3) ≈ 0.83 and p(4) ≈ 0.92. Moreover, p(n) grows
with n and tends to 1 as n → +∞. So we see that the probability that a point (selected
at random) belongs to some M n

R is quite high.

4.2 On the Appearance Radii

The appearance radius of a given vector v ∈ V n, denoted by R(v), is defined to be
the smallest Euclidean radius R ∈ R satisfying v ∈ M n

R . We have seen above that V n

is quite dense in Z
n; however experiments in [15] show that the appearance radius of

a given vector v is much greater than the Euclidean norm of v. For example, in the
2-dimensional case, it seems that the appearance radius of a given vector v is always
greater than the squared norm of v.

Future work will be focused on bounding R(v) or card(M n
R). For instance, for

a given dimension n, if there exists a function f such that ‖v‖ � f (R(v)) for all
v ∈ V n, then the set of all visible vectors whose norm is no greater than f (R) will
be a sufficient test neighbourhood to detect the medial axis of any S ∈ CSn(R). This
way, it will not be necessary to precalculate M n

R before extracting the medial axis.
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5 Conclusion

In this paper, we have established a relation between the set of visible vectors V n and
the minimum test neighbourhood M n

R able to detect the discrete Euclidean medial
axis of any shape in Z

n whose inner radius is no greater than R.
The property that nonvisible vectors are superfluous allows one to speed up the

computation of M n
R . The fact that M n

R is unbounded when R grows is specific to
the Euclidean distance and seems to be false for all chamfer distances. This must
be linked to the fact that the discrete Euclidean balls may have an indefinitely large
number of faces, whereas the balls of a given chamfer distance are polyhedra with a
constant number of faces.

In future works, we hope to improve the characterisation of M n
R . In particular, we

would like to find a lower bound for the appearance radius of any given visible vector.
We are also interested in reducing the set of candidates of a given visible vector v (a
set of vectors sufficient to consider when computing the appearance radius of v), so
as to improve the computation complexity of M n

R .
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