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Abstract. The Euclidean test mask T (r) is the minimum neighbour-
hood sufficient to detect the Euclidean Medial Axis of any discrete shape
whose inner radius does not exceed r. We establish a link between T (r)
and the well-known Farey sequences, which allows us to propose two new
algorithms. The first one computes T (r) in time O(r4) and space O(r2).
The second one computes for any vector −→v the smallest r for which
−→v ∈ T (r), in time O(r3) and constant space.
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1 Introduction

The Medial Axis is a geometrical tool, which is widely used in numerous fields
of image analysis [1]. The basic idea is simple: consider a subset S of a space E;
the medial axis MA of S is the set of centres (and radii) of all maximal disks
in S. A disk D is maximal in S if D is included in S and if D is not included
in any other disk included in S. Thus MA(S) is a covering of S and so, the
list of centres and radii of MA(S) is a reversible coding, a key point in many
applications.

Another important point of interest about MA is that detecting the centres
of maximal disks can be very efficiently achieved using a distance transform of S.
The distance transform DT(S) is a copy of S where each point is labeled with its
distance to the closest point of the background E \ S. The geometric properties
of MA, as well as the computation of DT, both depend on the distance function.
The main distances used in discrete geometry are the Euclidean distance dE [2],
generally squared to get integer values in E = Zn, and the chamfer (or weighted)
norms [3].

The general method to extract MA from DT, applicable to dE and chamfer
norms in Zn, is known as the LUT method [4, 5]. A precomputation [6, 7] gives
a neighbourhood T and a look-up table LUT; then, to know if a point p ∈ S is a
medial axis point, it is sufficient to check the neighbours p+−→v for all −→v ∈ T and
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compare their DT values to the values stored in LUT. Lately, a fast algorithm
using H-polytopes was proposed for 2D and 3D chamfer norms in [8, 9].

Instead of computing T , we may use T = Zn, but the MA extraction would
be excessively long. On the other hand, if T is too small, the MA extraction may
choose non maximal disks. Therefore, we aim at computing a minimal T with
respect to a class of shapes: Given a distance d in Zn, n fixed, and a radius r, we
denote by T (r) the minimum test neighbourhood sufficient to extract the MA
of all n-dimensional shapes whose inner radius are not greater than r.

Concerning the Euclidean distance, we have proved in [10] that in any dimen-
sion, T (r) is unique and tends to the set of visible vectors when r tends to infinity.
We have recently tackled the search of arithmetical and geometrical properties
concerning T (r) and the appearence radii of vectors in the 2-dimensional case.
We have presented recent results concerning 5× 5 chamfer norms in [11]; in this
paper we present new properties in the Euclidean case.

When r grows, new vectors (that is to say, neighbours) are inserted from
time to time in T (r). Given a vector −→v , we denote by rapp(

−→v ) the appearance
radius of −→v , that is, the smallest r for which −→v ∈ T (r).

In order to incrementally find the new vectors of T (r), the method proposed
in [6, 7] consists in checking, for every point p in a disk of radius r, disks inclusion
relations in directions p +−→v , for all −→v ∈ T (r). In this paper, we show that it is
sufficient to test the inclusion relations with two neighbours, instead of all the
neighbours of T (r). These two points are indeed the neighbours of p in some
Farey sequence [12].

This property has two consequences: first, the computation of T (r) can be
sped up significantly. Second, these two points to test are independent from
T (r), so we are able to compute the appearance radius rapp(

−→v ) of any visible
vector −→v without computing T up to rapp(

−→v ).
In Section 2 we introduce the definitions which are used in Section 3, where

we establish the link between Farey sequences and the appearance radii of visible
vectors. Then we present the two algorithms in Sections 4 and 5. We conclude
by observations and conjectures in Section 6.

2 Preliminaries

2.1 The discrete space Zn

Throughout the paper, we work in the discrete space Zn (we will at some point
fix n = 2). We consider Zn both as an n-dimensional Z-module (a discrete vector
space) and as its associated affine space; and we write Zn∗ = Zn \{0}. We denote

by (v1, . . . , vn) the Cartesian coordinates of a given vector −→v . A vector
−→
Op ∈ Zn

(or a point p ∈ Zn) is said to be visible if the line segment connecting O to p
contains no other point of Zn, i.e., if the coordinates of p are coprime.

We call Σn the group of axial and diagonal symmetries in Zn about centre
O. The cardinal of the group is #Σn = 2n n! (which is 8, 48 and 384 for n = 2,
3 and 4). An n-dimensional shape S is by definition a subset of Zn. A shape S is
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said to be G-symmetrical if for every σ ∈ Σn we have σ(S) = S. The generator
of a set S ⊆ Zn is G(S) =

{

(p1, . . . , pn) ∈ S : 0 6 pn 6 pn−1 6 . . . 6 p1

}

.

2.2 Balls and medial axis

Let d be a distance on Zn. The ball of centre p ∈ Zn and radius r ∈ R is B(p, r) =
{ q ∈ Zn : d(p, q) 6 r }. To shorten notation, we let Br stand for B(O, r). Since
we consider discrete closed balls, any ball B has an infinite number of real radii
in a left-closed interval [r1, r2[, with r1, r2 ∈ Im(d). We define the representable
radius of a given ball B to be the radius of B which belongs to Im(d).

Let S be a shape and p ∈ Zn. We define Ip(S) to be the largest ball of centre
p, included in S (if p /∈ S, we have Ip(S) = ∅). Analogously, we define Hp(S) to
be the smallest ball of centre p, which contains S. We also define Rp(B) to be
the representable radius of Hp(B). See an example in Fig. 1. The inner radius
of a given shape S, denoted by rad(S), is the representable radius of a largest
ball included in S. We denote by CSn(r) the class of all n-dimensional shapes
whose inner radius are less than or equal to r. A ball included in a shape S is
said to be maximal in S if it is not included in any other ball included in S. The
Medial Axis (MA) of a shape S is the set of centres (and radii) of all maximal
balls of S:

p ∈ MA(S) ⇔ p ∈ S and ∀q ∈ S \ {p}, Ip(S) * Iq(S). (1)

Finally, if a point q ∈ S satisfies Ip(S) ⊆ Iq(S), we say that q forbids p from
MA(S), see Fig. 3.

p

Ip(S)
Hp(S)

Fig. 1. Hp(S) and Ip(S) for a shape S
(S is represented by bullets).

8 5 4 5 8

52125

4 1 1 4

52125

8 5 4 5 8

O

Fig. 2. Balls of squared Euclidean
radii 1 (shaded) and 2 (delimited
by the thick line). Values indicate
the distance to O.

2.3 The medial axis test mask T

For the coherence of what follows, we assume d is a translation invariant distance.
We define the test mask T (r) to be the minimum neighbourhood sufficient to
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p

q

Fig. 3. Left: A shape S (bullets). Since Ip(S) ⊆ Iq(S), the point q forbids p from
MA(S). Right: the medial axis of S (circled points).

detect locally, for all S in CSn(r) and all p ∈ S, if p is a point of MA(S):

{

∀S ∈ CSn(r),∀p ∈ S,
(

p 6∈ MA(S) ⇒ ∃−→v ∈ T (r), Ip(S) ⊆ Ip−−→v (S)
)

;

T (r) has minimum cardinality.
(2)

We have shown the unicity of T (r) for all r > 0 in [10]. As a corollary, if
the considered distance is G-symmetrical, then so is T (r). Therefore, by abuse
of notation we write T (r) instead of G(T (r)). Finally, the appearance radius
rapp(

−→v ) of a given vector −→v is the smallest radius r for which −→v ∈ T (r).
Once we have a pre-computed test mask T (r), it is quite straightforward to

compute the MA of a given S ∈ CSn(r): first, compute for each p ∈ S, the ball
Ip(S). DT(p) is the distance from p to Zn \S, so Ip(S) is the open ball of radius
DT(p). Second, test for each point p ∈ S whether Ip(S) is included in some
Ip−−→v (S), with −→v ∈ T (r).

Actually, the hard part consists in computing T (r), as we will see. According
to (2), finding the appearance radius of a given vector −→v consists in solving the
following keyhole problem: Given a vector −→v , find the smallest positive r s.t.
there is no ball B satisfying IO+−→v (Br) ( B ( Br. The term key refers to the
ball B that we are trying to insert between Br and IO+−→v (Br).

It is easy to check that the above problem is equivalent to finding the smallest
positive RO+−→v (Br) s.t. there is no ball B satisfying Br ( B ( HO+−→v (Br). We
would like to test as few balls (keys) B as possible when solving the keyhole
problem:

Definition 1 (Set of keys) Given a vector −→v ∈ Zn, a set A is called a set of
keys of −→v iff A is a neighbourhood sufficient to solve the keyhole problem with
parameter −→v . Precisely, A is a set of keys of −→v iff

−→
0 ,−→v /∈ A and ∀ r < rapp(

−→v ), ∃−→u ∈ A s.t. HO−−→u (Br) ⊆ HO−−→v (Br).

We aim at finding a set of keys of −→v having minimal cardinality. To do so,
we define a domination relation as follows:
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Definition 2 (−→v -Domination) We say that a vector −→u is −→v -dominated by a
vector −→u ′ (−→u 4−→v

−→u ′ for short) iff

∀r > 0,
(

HO−−→u ′(Br) * HO−−→v (Br) ⇒ HO−−→u (Br) * HO−−→v (Br)
)

.

Thus, if −→u 4−→v
−→u ′, then −→u can be replaced by −→u ′ in any set of keys of −→v .

Notice that 4−→v is not a total order, however it is clearly reflexive and transitive.

2.4 Farey Sequences

Let k be a positive integer. The Farey sequence of order k is the sequence of
all irreducible fractions between 0 and 1, whose denominators do not exceed k,
arranged in increasing order. For example, the Farey sequence of order 5 is

F5 =

{

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}

.

Let 0 < a
b < 1 be an irreducible fraction. We call predecessor of a

b the term
which precedes a

b in Fb; we denote it by pred(a
b ). Similarly, the successor of

a
b , denoted by succ(a

b ), is the term which follows a
b in Fb. For example, the

predecessor and the successor of 3
4 are respectively 2

3 and 1
1 . Cauchy proved that

if a
b and c

d are two consecutive terms in some Farey sequence, then bc − ad = 1
(see [12] for details). Conversely, if 0 6 a

b < c
d 6 1 are two irreducible fractions

satisfying bc − ad = 1, then there is a Farey sequence in which a
b and c

d are
neighbours. As a corollary, if a

b , e
f , c

d are three consecutive terms in a Farey

sequence, then e
f is the mediant of a

b and c
d , that is to say e

f = a+c
b+d . For instance

1
4 , 1

3 , 2
5 are three consecutive terms in F5, so 1

3 = 1+2
4+5 .

In this paper, we will use a geometric interpretation of Farey sequences: each
irreducible fraction 0 6

y
x 6 1 can be associated with a visible point p (or a

vector
−→
Op) in G(Z2), with coordinates (x, y). By abuse of notation, we may

write p ∈ Fk or
−→
Op ∈ Fk if y

x belongs to the Farey sequence Fk. Accordingly,
the Farey sequence of order k is the sequence of all visible vectors of G(Z2)
whose abscissas do not exceed k, arranged counterclockwise from the x-axis. As
an example, the points of F6 are depicted in Fig. 4.
Let −→u and −→v be two consecutive vectors in some Farey sequence. Since |u1v2 −
u2v1| = 1, the set {−→u ,−→v } is a basis of Z2. Moreover, the triangle (O,O+−→u ,O+−→v ) has area 1/2, and it contains only three lattice points — its vertices. Also, let−→v be a visible vector whose predecessor and successor are respectively denoted
by −→u and −→w . Since −→v is the mediant of −→u and −→w , we have −→v = −→u + −→w (see
Fig. 5 for an example).

3 Farey sequences and −→
v -domination

From now on, we use the squared Euclidean distance d2
E in the space Z2.

The variable R ∈ N will always denote a squared Euclidean radius. Also, we
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O

Fig. 4. Points of the Farey sequence of
order 6 (in black) among the visible
points in G(Z2) (in grey).

succ(−→v )

O

−→v

pred(−→v )

Fig. 5. The predecessor and the succes-
sor of (5, 3) are respectively (2, 1) and
(3, 2).

write Rapp(
−→v ) for the squared Euclidean appearance radius of −→v : Rapp(

−→v ) =
r2
app(

−→v ). For abbreviation, we write pq instead of d2
E(p, q). Nevertheless, since

d2
E is not a norm, the standard notation ‖−→v ‖ will denote the Euclidean norm of−→v . Notice that d2

E is not even a metric, however it is important to point out that
the medial axis with dE and d2

E are identical, since these two distances yields
the same set of balls.

Throughout this section, −→v denotes a visible vector in G(Z2) different from
(1, 0) and (1, 1). We set p = O + −→v , and we denote by q and q′ (respectively)
the predecessor and the successor of p. Also, the points p′(p1, 0) and p′′(p1, p1)
are the points with same abscissa as p and minimal (resp. maximal) ordinate in
G(Z2), see Fig. 6.

Lemma 1 If t is a lattice point inside the triangle (Opp′) (different from O and
p) then q belongs to the triangle (Opt). Besides, if t is a lattice point in the
triangle (Opp′′) (different from O and p) then q′ belongs to the triangle (Opt).

Proof. We prove the Lemma in the case where t ∈ (Opp′). Since q is the prede-

cessor of p, there is no vector in the cone
−→
OqN +

−→
OpN and whose abscissa is not

greater than that of p. Suppose that q is not inside the triangle (Opt); the vector
−→
pt must belong to the cone −→pqN+

−→
pON, see Fig. 6. The point p is the mediant of

q and q′ so
−→
Oq′ = −→qp (and

−→
Oq =

−→
q′p). By symmetry, we deduce that

−→
tp belongs

to the cone
−→
OpN+

−→
Oq′N; furthermore its abscissa is not greater than that of

−→
Op.

It follows that there is a point between p and q′ in the Farey sequence of order
p1, which contradicts our assumption q′ = succ(p).
By symmetry, the same reasoning applies to the case where t ∈ (Opp′′). ¤

The preceding Lemma states that all lattice points in the triangle (Op′p′′)
belong to the shaded area drawn in Fig. 7 (with the exception of O and p). This
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O p′

q

p

q′

t

p′′

Fig. 6. Impossible configuration for the
proof of Lemma 1. A visible point p, its
predecessor q and successor q′ (the shaded
parallelogram has area 1 and contains only
4 lattice points — its vertices). For the sake

of clarity, the angle dOqp is exaggerated.

O p′

p

p′′

q
q′

Fig. 7. The shaded areas (together
with their boundaries) contain all
the lattice points within the trian-
gle (Op′p′′), with the exception of O
and p.

geometrical property allows to establish −→v -domination relations between points
of (Op′p′′):

Lemma 2 Every lattice point inside the triangle (Opp′) is −→v -dominated by q.
Besides, every lattice point inside the triangle (Opp′′) is −→v -dominated by q′.

Proof. We examine the case of a point t ∈ (Opp′′). Lemma 1 claims that q′ ∈
(Opt), i.e., t belongs to the upper shaded area in Fig. 7. Now, let B be a ball of
centre O. According to Def. 2, it remains to prove that Hq′(B) * Hp(B) implies
Ht(B) * Hp(B). Actually, it turns out that any point z in Hq′(B) \Hp(B) also
belongs to Ht(B), as we will see. Let x be a point of the ball B which maximizes
the distance to q′, as illustrated in Fig. 8, left. We now need to establish three
inequalities:

– By definition of x, the representable radius of Hq′(B) is q′x. Moreover, z ∈
Hq′(B), thus q′z 6 q′x.

– The point x belongs to B, unlike z (since z /∈ Hp(B) and B ⊆ Hp(B)).
Accordingly, Ox 6 Oz.

– x belongs to Hp(B) (because x ∈ B), but z does not, so px 6 pz.

These three inequalities give information about the position of O, p and q′ with
respect to the perpendicular bisector of the line segment [xz]: the points O and
p lie on one side, while q′ lies on the other, see Fig. 8, right. Moreover, q′ is
inside (Opt), so t must lie on the same side of the bisector as q′. It follows that
t is closer to z than x. However x belongs to Ht(B), therefore z also belongs to
Ht(B), which is the desired conclusion.
Again, similar arguments apply in the case t ∈ (Opp′), to show t 4−→v q. ¤
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z

Hq′(B)

p′′

p

q′

t

B

O

x

Hp(B)

O

x

bis(x, z)

z

p

q′
t

Fig. 8. Illustration for the proof of Lemma 2. Left: a point p and its successor q′. If
for a ball B of centre O there is a point z ∈ Hq′(B) \ Hp(B), then z ∈ Ht(B). Right:
position of the points O, p, q′ and t with respect to the perpendicular bissector of [xz].

We have shown in [10] that the set ♦−→v =
{−→u ∈ G(Zn∗) : −→v −−→u ∈ G(Zn∗)

}

(roughly, a parallelogram) is a set of keys of any visible vector −→v in G(Zn). The
set ♦−→v is included in the triangle (Op′p′′), so Lemma 2 shows that any vector
in ♦−→v is −→v -dominated either by pred(−→v ), or by succ(−→v ). We have thus proved:

Theorem 1 Let −→v be a visible vector in G(Z2), different from (1, 0) and (1, 1).
The set

{

pred(−→v ), succ(−→v )
}

is a set of keys of −→v .

4 Computing the appearance radius of a given vector

Theorem 1 will allow us to compute efficiently the appearance radius of any
visible vector −→v . The point is that we do not need to compute the test mask
up to Rapp(

−→v ); we only need to test the inclusion of two balls — in direction
pred(−→v ) and succ(−→v ).

We first examine the case of the vectors (1, 0) and (1, 1). It is easy to check
that T (1) =

{

(1, 0)
}

and T (2) =
{

(1, 0), (1, 1)
}

(balls of radii 1 and 2 are drawn
in Fig. 2):

– The smallest representable non-zero value for d2
E is 1. Since p(1, 0) is in B1

and does not belong to MA(B1) (the medial axis of a ball is its center), it
follows that the appearance radius of (1, 0) is 1.
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– The next representable integer is 2. The point q(1, 1) is not in MA(B2),
however the point (1, 0) does not forbid q from MA(B2) because Ip(B2) has
radius 0. So (1, 1) belongs to T (2).

We now proceed to the general case. For any visible vector −→v in G(Z2)
different from (1, 0) and (1, 1), set p = O + −→v , and let q and q′ denote the pre-
decessor and the successor of p. We know from Theorem 1 that the geometrical
configuration for the appearance of −→v is obtained for the smallest R for which
Hq(BR) * Hp(BR) and Hq′(BR) * Hp(BR).

Alg. 1 works as follows: for all balls BR in order of increasing radius R,
it first computes Rp = Rp(BR) and Rq = Rq(BR) on line 4. The function
Rcov(R,−→z ) computes, for any R > 0 and −→z ∈ Z2, the covering radius of BR

in direction −→z , that is to say, RO+−→z (BR). Since −→qp =
−→
Oq′, we have Hq(BR) *

Hp(BR) ⇔ Rcov(Rq,
−→
Oq′) > Rp. So, if Rcov(Rq,

−→
Oq′) > Rp, it remains to test

whether Hq′(BR) * Hp(BR); this is done in the same manner on line 6. In this

case, i.e., if Rcov(Rq′ ,
−→
Oq) > Rp then neither q nor q′ forbids O from MA(Bp),

hence Hp(BR) is a shape of smallest inner radius for which the inclusion test in

direction
−→
Op is mandatory. The existence of such a configuration is guaranteed

by the fact that −→v is visible [10].

Algorithm 1: Comp Rapp

Input: a visible vector −→v =
−→
Op

Output: the appearance radius of −→v

if −→v = (1, 0) then return 1 ; if −→v = (1, 1) then return 2 ;1

q ← pred(p) ; q′ ← succ(p) ; R ← 0 ;2

loop3

Rp ← Rcov(R,−→v ) ; Rq ← Rcov(R,
−→
Oq) ;4

if Rcov(Rq,
−−→
Oq′) > Rp then5

Rq′ ← Rcov(R,
−−→
Oq′) ; if Rcov(Rq′ ,

−→
Oq) > Rp then return Rp ;6

R ← R + 1 ;7

Let us examine the complexity of Alg. 1. First, the computation of −→u =
pred(−→v ) and −→w = succ(−→v ) is easy: since u1v2 − u2v1 = 1, we are reduced to
finding positive integers x and y satisfying v2x − v1y = 1. This can be achieved
using the well-known extended Euclidean algorithm, in time O(log(u2)).

The function Rcov(R,−→v ) consists in computing the maximum value of ‖−→Ox +−→v ‖2 for all points x on the boundary of BR. As R is the squared Euclidean
radius of BR, there are about

√
R points on the boundary of BR. We use a

simple Bresenham-Pitteway algorithm [13] to scan the boundary of BR; hence
Rcov(R,−→v ) can be computed in time O(

√
R).

Besides, the main loop is composed of at most 5 calls to Rcov with parameter R,

thus the global complexity of the algorithm is roughly
∑Rapp(−→v )

R=0

√
R. We can find
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a tight upper bound of this sum by using an integral:
∑S

R=0

√
R 6

∫ S+1

1

√
R,

which approaches 2
3S3/2 when S → ∞. In consequence, Alg. 1 runs in time

O
(

R
3/2
app(

−→v )
)

= O
(

r3
app(

−→v )
)

. Furthermore, it is clear that this algorithm uses
O(0) space.

5 An algorithm for T (R)

In this section we propose an algorithm to compute T (Rmax) for any Rmax > 0.
This algorithm does not rely on the computation of DTs or LUTs, and need not
scan the boundary of a ball when computing a covering radius. The basic idea
is the following: we link each vector −→v ∈ G(Z2) to a vector next(−→v ) ∈ G(Z2)
whose norm is greater than or equal to that of −→v (see Fig. 9). Thus, it is easy
to localize the new points of a ball BR, when R increases.
When invoked with parameter Rmax, the algorithm is looking for the appearance
configuration of all vectors −→v whose norm are not greater than

√
R, for all

representable integers R s.t. R 6 Rmax. To do so, each visible vector also has
three pointers vecR(−→v ), testP (−→v ) and testS(−→v ):

– vecR(−→v ) is a vector whose squared norm is equal to the radius of the largest
open ball of center O + −→v included in BR, i.e., the radius of IO+−→v (BR).

– testP (−→v ) (resp. testS(−→v )) is the vector −→z ∈ G(Z2) having minimum norm
which satisfies O + −→v + −→z /∈ IO+pred(−→v )(BR) (resp. /∈ IO+succ(−→v )(BR)).

The property IO+−→v (BR) * IO+pred(−→v )(BR) is therefore equivalent to
‖testP (−→v )‖ 6 ‖vecR(−→v )‖. Similarly, IO+−→v (BR) * IO+succ(−→v )(BR) ⇔
‖testS(−→v )‖ 6 ‖vecR(−→v )‖. See Fig. 9 and 10 for examples of links between
vectors.

Let us give some details about Alg. 2. The vector outV is the first vector in
the linked list of vectors, whose norm is greater than

√
R. From line 5 to line 7,

we update the list of vectors outside BR (the grey points in Fig. 9 and 10): it
is sufficient to insert the vector located above outV , and the vector on the right
of outV if its abscissa is 0. The new vectors must be inserted according to their
norm. This is done by the procedure insert next. When a new vector is inserted
in the linked list, its pointers vecR, testP and testS are set to (1, 0).

For each vector −→v inside BR, we update the pointers vecR at lines 9 − 10,
and we update the pointers testP and testS at lines 14 − 17. Then, the test of
appearance of −→v is done at line 18. Notice that for a given radius R, we need
to scan the vectors −→v in order of increasing norm (or, alternatively, in order of
increasing abscissa) since the predecessor and successor of −→v must both have
their vecR pointers updated.

Concerning the complexity of this algorithm: let us denote by up(−→v ,R) the
number of instructions required to update vecR(−→v ), testP (−→v ) and testS(−→v )
from R to the smallest representable integer greater than R. For each radius R,
the time required to scan the vectors in BR is roughly

∑R
‖−→v ‖2=1 up(−→v ,R); the

procedure insert next is negligible since it only has to scan the boundary of BR
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94

10

8 13

17

16

18

20

25

vecR
next

Fig. 9. Linked list of points inside the open ball B of radius 18 (black squares). Each
point p has a pointer next(p) to a point whose squared norm is the next representable
integer (link represented by a solid arrow). The grey squares are the points of G(Z2)
on the outside of B, at the top of all columns around the boundary of B. The first grey
point in the list gives the radius of the smallest ball strictly larger than B. Also, each
visible point p has a pointer vecR(p) (depicted by a dashed arrow) to the first point in
the linked list whose squared norm is the radius of Ip(B). For the sake of clarity, only
3 pointers vecR are shown.
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Iq(B)

x

vecR

Fig. 10. Configuration for the open ball B of radius 26 (black squares). q is the
predecessor of p (2, 1); Ip(B) and Iq(B) are open balls of respective radii 9 and 17.
testP(p) = −→px is the smallest vector in G(Z2) for which x /∈ Iq(B). Here px < 9, so
Ip(B) * Iq(B).
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Algorithm 2: Comp T

Input: a positive integer Rmax

Output: the test mask T (Rmax), with the appearance radii of each vector

T ←
˘
((1, 0), 1), ((1, 1), 2)

¯
;1

outV ← V ector(2, 0) ;2

while ‖outV ‖2 6 Rmax do3

R ← ‖outV ‖2 ;4

while ‖outV ‖2 = R do5

insert next(outV ) ;6

outV ← next(outV ) ;7

foreach visible vector v in BR, in order of increasing norm do8

while ‖v + vecR(v)‖2 6 R do /* update of vecR(v) */9

vecR(v) ← next(vecR(v)) ;10

if v /∈ T then /* update of testP (v) and testS(v) */11

u ← Farey predecessor of v ;12

w ← Farey successor of v ;13

while ‖w + testP(v)‖ 6 ‖ vecR(u)‖ do14

testP(v) ← next(testP(v)) ;15

while ‖u + testS(v)‖ 6 ‖ vecR(w)‖ do16

testS(v) ← next(testS(v)) ;17

if ‖ testP(v)‖ 6 ‖ vecR(v)‖ and ‖ testS(v)‖ 6 ‖ vecR(v)‖ then18

T ← T ∪
˘
(v, R)

¯
; /* tests if v ∈ T (R) */19

return T ;20

to insert new points. It follows that the global time complexity of the algorithm
is roughly

Rmax
∑

R=1

R
∑

‖−→v ‖2=1

up(−→v ,R) 6

Rmax
∑

R=1

Rmax
∑

‖−→v ‖2=1

up(−→v ,R) =

Rmax
∑

‖−→v ‖2=1

Rmax
∑

R=1

up(−→v ,R).

We now point out the fact that for any −→v , the sum of the up(−→v ,R) from R = 1
to Rmax is O(Rmax), because the updates are done using a linked list. Hence,
Alg. 2 runs in time

O
( Rmax

∑

‖−→v ‖2=1

Rmax

)

= O(R2
max).

Besides, it is clear that this algorithm has space complexity linear in the number
of points inside BRmax

, hence it runs in space O(Rmax).

6 Conclusion and experiments

We have established a link between the Farey sequences and covering relations
between Euclidean disks. Accordingly, we have proposed two algorithms: the first
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Fig. 11. Appearance radii of some visible vectors −→v . Along the x-axis: abscissa v1 of −→v .
Along the y-axis: rapp(−→v ), the Euclidean appearance radius of −→v . The dots represent
the 540 vectors of T (r = 8600); the crosses represent the vectors (x, 1) for all x 6 210.
All the points we have found are above the function y = x2.

one computes the appearance radius of any visible vector −→v in time O
(

r3
app(

−→v )
)

,
the second one computes the test mask T (r) in time O(r4).

The source code of our two algorithms is freely available in C language [14].
We illustrate outputs of these algorithms in Fig. 11. The dots in the bottom left
corner have been computed by Alg. Comp T; they represent the 540 vectors of
T (r = 8600), which are necessary and sufficient to compute the medial axis of
all the shapes that can be drawn within an image of size 17200 × 17200 pixels.
In other words, we know all the vectors that are located below the dashed line
(there is no vector in the bottom right corner). Prior to this, T (r) was known
up to r = 4800 [7].

We have noticed that the vectors which are close to the x-axis, i.e., whose
coordinates are (x, 1) with x ∈ N∗, have a small appearance radii compared
to other vectors. So we used Alg. Comp Rapp to compute the appearance radii
of these vectors up to x = 210, see the crosses in Fig. 11. The results do not
disprove the conjecture we expressed in [10], which suggests that the Euclidean
appearance radius rapp(

−→v ) of any visible vector −→v ∈ Z2 is greater than the
squared abscissa of −→v . Moreover, these new data suggest that the bound is
tight.
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Also, we observed an interesting phenomenon: each time a vector −→v appears
in some T (r), we noticed that either the predecessor or the successor of −→v had
already appeared. Furthermore, the smallest of these two vectors had appeared.
We therefore conjecture the following: if −→v belongs to some T (r), then the
smallest vector among {pred(−→v ), succ(−→v )} belongs to T (r).

Obviously, proving any of the above conjectures constitute a natural follow-
up of this work, and would allow to speed up significantly the computation of
the test mask.
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