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Any region can be regarded as a union of maximal neigh-
borhoods of its points, and can be specified by the centers
and radii of these neighborhoods; this set is a sort of “skele-
ton” of the region. The storage required to represent a region
in this way is comparable to that required when it is repre-
sented by encoding its boundary. Moreover, the skeleton
representation seems fo have advantages when it is necessary
to determine repeatedly whether points are inside or outside
the region, or to perform set-theoretic operations on regions.

1. Introduction

There are many pictorial data processing problems
which require the encoding and processing of irregularly
shaped planar regions. In general it is impractical to repre-
sent such regions by explicitly enumerating their points,
since the required storage capacity would be prohibitively
large (though not infinite, since a digitized region con-
tains only finitely many “points”). Instead, regions are
usually described by encoding their boundaries. A bound-
ary can be approximated piecewise by analytically simple
curves, as in Sketchpad and its successors [1-3]. Alterna-
tively, it can be approximated by a chain of segments
taken from a fixed grid, as in the work of Freeman [4-3].

In this paper, an alternative approach to representing an
arbitrary planar region is described. The given region is
described as a union of “maximal neighborhoods” of a
certain “skeleton” set of its interior points. It is shown that
this approach is comparable to chain encoding in storage
requirements. At the same time, it can have significant
advantages for certain types of region processing prob-
lems, such as those in which it must be determined whether
or not a given point is inside a given region, or in which
the intersection of two or more regions must be found.

2. Maximal Neighborhoods and Skeletons

A digitized image is usually given in the form of a

rectangular matrix of elements (a,;) in which (7, j) are
the Cartesian coordinates of a “point” and a;; is the den-
sity of the digitized image at the point (i.e., the average
density of the original image over the small region repre-
sented by the “point”). Other digitized image configura-
tions are possible, for example that using a hexagonal
rather than rectangular grid, which in fact seems to be
preferable for some applications. However in what follows
it will be assumed for simplicity that the given digital
picture is in rectangular matrix form.

In order to define the concept of a maximal neighbor-
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hood, one must specify a metric on the picture matrix.
Let Py = a;,,; and Py = a,,; be two matrix elements
(from now on: “points”), and define d{(P;, P:) =
[ — 2| + | /i — j2 . It is easily verified that this fune-
tion has the standard properties of a metric or “distance,”
namely

d(Py,P:) 20, and =0 ifandonlyif Pi= P, (1)
d(Py, Ps) = d(P,, Py) (2)
d(P1, Py) £ d(Py, P2) + d(P:, Ps) (3)

for all points Py, Py, Py.

If r is a non-negative integer, the neighborhood
of Py = ay,,;, of radius » is defined as the set of all P = a,;
such that d(P, Py) £ r. Evidently, this neighborhood is
just the square array of points centered at P,, oriented
diagonally and with side » 4+ 1 points long, as shown in
Figure 1. If » = 0, the neighborhood reduces to P, itself.'

Fia. 1. Neighborhood of the point P with radius 2.

Let R be a region within the picture matrix 3/—in
other words, R can be any subset of 47. Let P, by any
point of E. Some neighborhood of Py must always be con-
tained in R, e.g., the neighborhood of radius 0. Let 91z be
the set of all neighborhoods (of points of R) which are
contained in R. Since any point of E is contained in at
least one of these neighborhoods, their union is all of R,
i.e., R = UNE‘JZR N.

A neighborhood in 91, will be called mazximal if 1t is not
(properly) contained in any other such neighborhood.
Some examples of maximal neighborhoods are shown in
Figure 2. Since 9, is finite, any N € 9 is contained in
at least one maximal neighborhood. Let 911z © 9z be the
set of maximal neighborhoods; thus B = Uycuq, N.

Any neighborhood is defined by specifying its center
and radius. Since R is a union of maximal neighborhoods,
it can thus be completely described by giving the centers
and radii of these neighborhoods. This is the method of
region representation which will be studied in the re-
mainder of this paper.

The concept of representing a region by its set of maxi-
mal neighborhoods has recently been proposed and studied
by Blum [6]. Since the locus of centers of maximal neigh-
borhoods often takes the form of a centrally located stick

! It should be noted that other metrics could be defined on a
picture matrix, which would give rise to other neighborhood sys-
tems. For example, one could define d’ (P, P2) = max ([i1 — 24,
71 — 7o) and verify that it too is a metric. For d’, the neighbor-
hood of P, of radius r is readily the square array of points centered
at Py, oriented horizontally and vertically, and with side 2r + 1
points long. However, the metric d defined above seems to be the
simplest for most computational purposes.
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figure, the name “skeleton” has been suggested for it. We
can thus speak of R as being determined by specifying its
skeleton together with the maximal neighborhood radius
associated with each skeleton point.

Algorithms for determining the skeleton points and
their associated radii for any region in a digital picture,
given the boundary of the region, are described in [7].
Figure 3 shows the skeletons of a number of different
regions; each skeleton point is labeled with its radius
reduced modulo 10. Other algorithms, also described in
[7], will regenerate the region from the skeleton. These
algorithms produce the region boundary as a distinguished
point set, but not as a linearly ordered chain.

3. Comparison of Storage Requirements

The amounts of storage required by the skeleton and
boundary techniques of region encoding will now be com-
pared. Let R be a region on a digital picture; since the
picture is discrete, the boundary of R is a polygon. Four
methods of encoding R can be considered:

(a) The boundary of R is specified as an ordered se-
quence of straight line segments of given lengths
and slopes.

(b) The same as (a), but allowing only slopes in the
eight principal directions (horizontal, vertical
or diagonal)

(¢) The same as (b), but allowing only segments of
length 1.

(d) R is specified by the set of its skeleton points and
their associated radii.

Note that method (a) requires a possibly large number of
bits to specify both the length and slope of each boundary
segment, while methods (b)-(c¢) require only three bits
to encode slope, and method (¢) requires no encoding of
length. However, methods (b)-(¢) in general require
successively greater numbers of boundary segments to
specify K. Method (b) is used for purposes of comparison
in the example which follows.

To compare the relative amounts of storage required
by these methods in practical situations, an outline map
of southeast Asia (Figure 4) was manually digitized on a
200X250 grid. Table I gives the number of straight line
boundary segments [as in method (b)] and the number
of skeleton points for each country on this map. Note
that except for China and Burma, which have long
straight lines as major parts of their boundaries, there
are always somewhat fewer skeleton points than boundary
segments. (Note also that a skeleton point radius cannot
exceed half the diameter of the picture, while a straight
boundary segment can be as long as the picture diameter;
thus an arbitrary radius can be specified using one bit less
than required to specify the length of a boundary segment.
However, if long straight boundary segments are very
rare, appreciable savings can be achieved by using Shan-
non-Fano techniques to encode boundary segment
lengths.) On the other hand, specifying the slope of a
boundary segment in method (b) requires only three bits,
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F16. 2. A region defined by maximal neighborhoods of the
points P, Q, B, 8, with radii 3, 2, 1, and 0.

*Xxxxa XXAXLXAXA
I LLITTIVI
AR KRR kxR
. P P Kx oz oaxa
AAXAXARZL xaxy Hrkx e ae
AKXRXXXXXTRRK x42x
KUAXE KXxxa xax
xxxx Xxaxa an “ axax xx 3
2xxX Xxxx xxxx P
xxax o xxan Je0 Kxa AKX 3 aax
xxx1 3 axx xxs a8 H
14x FIYy Aux K a4z xax 33 axx
xxx s & xx xxx . H
XXk 5 xax xax
Xxx 99y X Kxxx B X
o L xxx xias .
e s 7 xxx xixa B
x [ s aa axx g P
xxx 3 3 oxxx FIY TN
xxax Tk
xxxx xax
xxxx Axxx X sl gy
xxxxg ¥xxxx K g X X 33 sax
XxKAX XXEAXX axxa 0 ot XEK 33 ExRX
AXAKX  xxaxxaxxa [ L Rrxo 3 KEX
KXAKK AXXxRARE L IS Aeda e 2K
XXXRXXRXRZXX o
XKXXXRX I T

A1 22 XAXK
Axxx 2 XAX
axx XAXx ) KK

Fi16.3. Skeletons of three irregular regions (bounded by X’s).

—

Fi1g. 4. Outline map of Southeast Aisa
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TABLE I. BounDaRY SEGMENTS AND SKELETON
Poinrs For FiGUure 4

Number of siraight Number of

Region H'?g;%::?;ary skeleton points
Burma 338 371
Cambodia 178 135
China 231 - 407
Laos 286 272
Thailand 440 402
N. Viet Nam 197 183
S. Viet Nam 262 244

while specifying the position of a skeleton point requires

a number of bits which depends on the picture diameter

(in the case of Figure 4, roughly 16 bits).

It can thus be concluded that the skeleton method of
encoding a region requires somewhat more storage than
do the boundary methods, as exemplified by method (b).
However, if the picture is not too large, the storage re-
quired is of the same order of magnitude. In particular,
if the region has many connected components or is multi-
ply connected, the skeleton representation may actually
be more economical. Note, in fact, that to represent the
boundary of such a region, special coding schemes may be
needed to link the disconnected parts of the boundary,
whereas the skeleton method can be used without modifi-
cation. In any case, for certain applications, the additional
storage requirement may be more than offset by gains in
processing speed.

4. Comparison of Processing Requirements:
Shading

The standard method of determining whether a point
lies inside or outside a region, given the boundary of the
region, is to draw a straight line from the point to the
border of the picture and count the number of times it
intersects the boundary. If this number is odd, the point
is inside; if even, outside—provided that the line is never
tangent to the boundary. To carry out this procedure, each
segment of the boundary must be compared with the line
in order to determine whether or not they intersect.

If a region is given by specifying its skeleton, the proce-
dure for determining if a given point P lies inside it is
analogous. The coordinates 7, j of the point must be com-
pared with the coordinates 4, 7» and radius r, of each
skeleton point P; . The point lies inside the region if and
only ifj 7 — & |+ |7 — jr| £ n for some k. Note that
in general it is necessary to make all of these comparisons
only for points outside the region; if a point is inside, that
fact is established as soon as the first P, satisfying the
above relation is found.

Shorteuts ean be devised to reduce the number of
comparisons actually required in both the boundary and
skeleton cases, by using special methods of indexing the
boundary segments or skeleton points. (For the boundary
case see, e.g., [8].) One can, for example, (a) enclose the
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region in a set of rectangles, and determine analytically
which rectangle(s) contain the skeleton points to be
searched; (b) use a sweeping line technique which limits
search to those skeleton points whose maximal neighbor-
hoods intersect the line; (c¢) arrange the skeleton points
in various types of lexicographic order. However, it is not
difficult to exhibit cases in which these shorteuts fail to
yield significant savings.

It can be concluded from the foregoing that since there
are typically fewer skeleton points than boundary seg-
ments, and the comparison operations required in the
skeleton case are considerably simpler, the skeleton repre-
sentation has significant advantages if it is necessary to
repeatedly determine whether points are inside or outside
the given region.

A specific application which does require many such
determinations is that of shading a region, for example
with parallel straight lines. If the region is given in bound-
ary form, the method described in the first paragraph of
this section can be used to determine, for any given line,
the segments of it which lie inside the region. Repeating
this process for other lines parallel to the given line will
systematically generate the desired set of shading seg-
ments. Note, however, that virtually the entire process
must be repeated for each line.

An algorithm for parallel line shading of a region given
in skeleton form can proceed as follows: For any one line
L, the distance d; and direction 8 from any point on L
to each skeleton point P, is first determined. These
distances and directions can then be computed very easily
for the other points on L, and for points on lines parallel
to L, by systematically incrementing the d; and 8, appro-
priately. (Similar algorithms can be devised for shading
a region with any of a wide variety of other regular tex-
tures.)

A ForTrAN routine has been written which outputs a
shaded drawing of any region which has been stored in
skeleton form. Specifically, this routine shades the specified
region with straight lines of any orientation and density.
Examples of the output of this routine for the map of
Figure 4 are shown as Figures 5 and 6. These shaded maps
were drawn by a Calcomp Model 565 Digital Incremental
Plotter.

Figures 5-6 also show region boundaries which were
generated from the stored skeletons. This was done by
the following procedure: A point known to be inside the
region (e.g., a skeleton point) is picked, and a straight
line is drawn from it until a point is found which is no
longer inside the region; this point must be on the bound-
ary. With the direction of the straight line as a reference,
the neighboring points are examined in a clockwise se-
quence until another boundary point is found. Repeating
this process will systematically generate the successive
boundary points, thus providing directly a chain-encoded
representation of the boundary.

5. Set-Theoretic Operations on Regions

A frequently encountered problem in computer process-
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F1c. 5. Shaded map produced from Figure 4, with
four regions combined.

Fi1c. 6. Shaded map prodaced from Figure 4, rescaled
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ing of map data is that of determining the intersection of
two given regions—or, more generally, determining any
given set-theoretic composite of a given collection of
regions. If the regions are represented analytically, as in
Sketchpad and its descendants, this type of manipulation
can be carried out in the analytical domain. However, as
the regions become complex, their analytical representa-
tion becomes uneconomical.

The following is an algorithm for directly determining
the skeleton representation of the intersection 4 ) B of
two regions, given the skeleton representations of 4 and
of B.

Let P; be a skeleton point for 4, and r, the correspond-
ing radius; let Q; , s; be defined analogously for B. If P isa
point in 4 N B, then there exist 7 and j such that

d(P,P;) £ ri;  d(P,Q;) £ s
For any point P, let r be the largest integer such that

d(P,P;) +r =

for some ;
similarly, let s be the largest integer such that
d(P, Q;) + s = s

Let t be the smaller of r and s. If ¢ < 0, Pis notin 4 N B;
while if t = 0, P isin 4 N B, and the neighborhood of P
of radius ¢ is the largest neighborhood of P contained in
A NB.

Order the set of such (P, t) in descending order of their
t’s. If t is maximal, P must be a skeleton point. If ¢ is not
maximal, P is a skeleton point if and only if it has no
horizontal or vertical neighbor P’ such that the corre-
sponding ¢ is greater than ¢. (The number of operations
required to implement this algorithm can be reduced by
an order of magnitude by applying various shortcuts, as
indicated in Section 4.)

Another algorithm can be used to obtain the skeleton
of the set-theoretic difference of 4 and B. With notation
as above, define

(P, A) = min; [d(P, P;) —ril.

It is easily seen that if 8(Q;, A) > s;, then @, is a skeleton
point of B-4; whereas if 6(Q;, A) =< s;, the neighborhood
of @; of radius s; is not contained in B-A. Moreover, if P
is a skeleton point of B~4 which is not a skeleton point of
4, its associated radius must be 8(P, A)—1, and its
neighborhood of this radius must be contained in the
maximal neighborhood of some skeleton point of B which
is not a skeleton point of B-4. These necessary conditions
are not sufficient; however, the set of points which they
define can be reduced to the true skeleton of B-4 by the
procedure described in the preceding paragraph.

The union of the skeletons of A and B gives a skeleton-
type representation for 4 U B. This set is not the skeleton
of 4 U B unless 4 and B are disjoint; however, it still
completely defines 4 U B, even if somewhat redundantly,

for some j.

(Continued on page 126)
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PFALTZ AND ROSENFELD—cont'd from p. 122

and so can still be used to represent A U B. In Figure 5,
this method was used to determine the union of Cam-
bodia, Laos, and North and South Viet Nam.
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