Undercover Boolean Matrix Factorization with MaxSAT

Florent Avellaneda and Roger Villemaire

Université du Québec à Montréal (UQAM)

AAAI 2022

Summary

- Introduction
- (Max)SAT Encoding
- Undercover Factorization
- 4 Block-Optimal Undercover

Plan

- Introduction
- (Max)SAT Encoding
- Undercover Factorization
- 4 Block-Optimal Undercover

Matrix Factorization Problem

Goal:

$$M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \times B \approx M$

$$(A \times B)_{i,j} = \sum_{\ell=1}^{k} A_{i,\ell} \times B_{\ell,j}$$

Matrix Factorization Problem

Goal:

$$M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \times B \approx M$

$$(A \times B)_{i,j} = \sum_{\ell=1}^k A_{i,\ell} \times B_{\ell,j}$$

Example of a rank 2 factorization (k = 2):

$$\left|\begin{array}{c|c} \mathsf{a}_{0,0} \; \mathsf{a}_{0,1} \\ \mathsf{a}_{1,0} \; \mathsf{a}_{1,1} \\ \mathsf{a}_{2,0} \; \mathsf{a}_{2,1} \end{array}\right| \left|\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right| \qquad \forall i,j: \sum_{\ell=0}^k \mathsf{a}_{i,\ell} \times \mathsf{b}_{\ell,j} \approx \mathsf{M}_{i,j}$$

$$\forall i,j: \sum_{\ell=0}^k a_{i,\ell} \times b_{\ell,j} \approx M_{i,j}$$

Solution with SVD

Solution with SVD

Problems:

No exact solution of rank 2

Solution with SVD

Problems:

- No exact solution of rank 2
- Poor interpretability of the factorization

Boolean Matrix Factorization Problem

Goal:

$$M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \circ B \approx M$

$$(A \circ B)_{i,j} = \bigvee_{\ell=1}^k A_{i,\ell} \wedge B_{\ell,j}$$

Boolean Matrix Factorization Problem

Goal:

$$M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \circ B \approx M$

$$(A\circ B)_{i,j}=igvee_{\ell=1}^k A_{i,\ell}\wedge B_{\ell,j}$$

Example of a rank 2 factorization (k = 2):

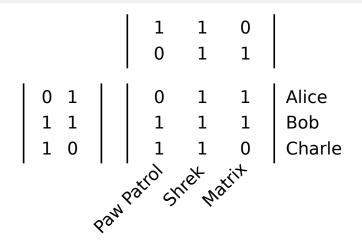
$$\begin{vmatrix} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{vmatrix}$$
 Constraints:

$$\left|\begin{array}{c|c} \mathsf{a}_{0,0} \; \mathsf{a}_{0,1} \\ \mathsf{a}_{1,0} \; \mathsf{a}_{1,1} \\ \mathsf{a}_{2,0} \; \mathsf{a}_{2,1} \end{array}\right| \left|\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right| \qquad \forall i,j: \bigvee_{\ell=0}^k \mathsf{a}_{i,\ell} \wedge \mathsf{b}_{\ell,j} = \mathsf{M}_{i,j}$$

$$\forall i,j: \bigvee_{\ell=0}^k a_{i,\ell} \wedge b_{\ell,j} = M_{i,j}$$

Solution with BMF

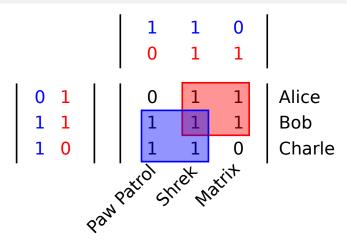
Solution with BMF



Advantages:

Exact solution of rank 2

Solution with BMF



Advantages:

- Exact solution of rank 2
- Good interpretability of the factorization

Plan

- Introduction
- (Max)SAT Encoding
- Undercover Factorization
- 4 Block-Optimal Undercover

If
$$m_{i,j} = 0$$
:

$$\begin{vmatrix} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} \ a_{0,1} \ a_{1,0} \ a_{1,1} \ a_{1,0} \ a_{1,1} \ a_{2,0} \ a_{2,1} \end{vmatrix} \ \begin{vmatrix} 1 \ 1 \ 1 \ 1 \ a_{1,0} \ a_{1,1} \ a_{2,0} \ a_{2,1} \end{vmatrix} \ \begin{vmatrix} 0 \ 1 \ 1 \ a_{1,0} \ a_{1,1} \ a_{1,1} \ a_{1,1} \ a_{2,0} \ a_{2,1} \end{vmatrix}$$

If
$$m_{i,j} = 0$$
:

$$\left| \begin{array}{c} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{array} \right|$$

$$\left| \begin{array}{c} a_{0,0} \ a_{0,1} \\ a_{1,0} \ a_{1,1} \\ a_{2,0} \ a_{2,1} \end{array} \right| \left| \begin{array}{c} 1 \ 1 \ 0 \\ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \end{array} \right|$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j})$

$$\begin{vmatrix} b_{0,0} & b_{0,1} & \boxed{b_{0,2}} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,1} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j})$

$$\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$

$$\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & \boxed{b_{1,2}} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$

$$\begin{vmatrix} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} \ a_{0,1} \\ a_{1,0} \ a_{1,1} \\ a_{2,0} \ a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

If
$$m_{i,j}=0$$
: $(\lnot a_{i,0}\lor\lnot b_{0,j})\land(\lnot a_{i,1}\lor\lnot b_{1,j})$
If $m_{i,j}=1$:

$$\begin{vmatrix} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} \ a_{0,1} \\ a_{1,0} \ a_{1,1} \\ a_{2,0} \ a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$
If $m_{i,j} = 1$: $(a_{i,0} \land b_{0,j})$

$$\begin{bmatrix} b_{0,0} \\ b_{1,0} \\ b_{1,1} \\ b_{1,2} \end{bmatrix}$$

$$\left| \begin{array}{c|c} a_{0,0} \\ a_{1,0} \ a_{1,1} \\ a_{2,0} \ a_{2,1} \\ \end{array} \right| \left| \begin{array}{c|c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ \end{array} \right|$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$
If $m_{i,j} = 1$: $(a_{i,0} \land b_{0,j}) \lor (a_{i,1} \land b_{1,j})$

$$\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \\ \vdots & \vdots & \vdots \\ 0 & 1 & 1 \end{vmatrix}$$

9/26

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$
If $m_{i,j} = 1$: $(a_{i,0} \land b_{0,j}) \lor (a_{i,1} \land b_{1,j})$

 $\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$ Or in CNF:

$$\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$igvee_\ell^k \mathcal{T}_{i,j}^\ell \wedge$$

$$igwedge_{i,j,\ell} \mathsf{T}^\ell_{i,j} \Rightarrow \mathsf{a}_{i,\ell} \wedge \mathsf{b}_{\ell,j}$$

If
$$m_{i,j} = 0$$
: $(\neg a_{i,0} \lor \neg b_{0,j}) \land (\neg a_{i,1} \lor \neg b_{1,j})$
If $m_{i,j} = 1$: $(a_{i,0} \land b_{0,j}) \lor (a_{i,1} \land b_{1,j})$

 $\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$ Or in CNF:

$$\begin{vmatrix} a_{0,0} \overline{a_{0,1}} \\ a_{1,0} \overline{a_{1,1}} \\ a_{2,0} \overline{a_{2,1}} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

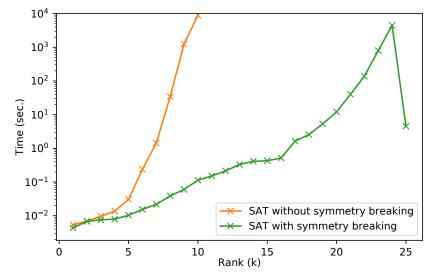
$$igvee_{\ell}^{\kappa} T_{i,j}^{\ell} \wedge \
onumber \ T_{i,j}^{\ell} \Rightarrow \mathsf{a}_{i,\ell} \wedge
onumber \
onumb$$

$$\bigwedge_{i,j,\ell} \mathcal{T}_{i,j}^{\ell} \Rightarrow a_{i,\ell} \wedge b_{\ell,j}$$

Symmetry breaking: $(b_{0,0}b_{0,1}...b_{0,j})_{binary} \leq ... \leq (b_{k,0}b_{k,1}...b_{k,j})_{binary}$

Benchmark

Execution time to factor the Zoo dataset (101 \times 28) :



MaxSAT Encoding

Si
$$m_{i,j}=0$$
: $\neg C_{i,j} \lor ((\neg a_{i,0} \lor \neg b_{0,0}) \land (\neg a_{i,1} \lor \neg b_{1,i}))$
Si $m_{i,j}=1$:

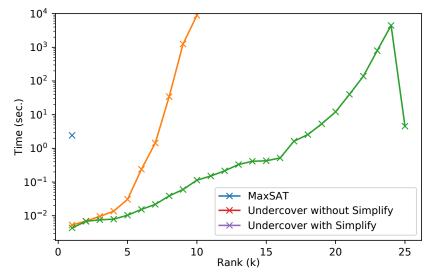
$$\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$$

$$\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$(
eg C_{i,j} \lor \bigvee_{\ell}^{k} T_{i,j}^{\ell}) \land$$
 $\bigwedge_{i,j,\ell} T_{i,j}^{0} \Rightarrow a_{i,\ell} \land b_{\ell,j}$ $Max(\sum_{i,j} C_{i,j})$

Benchmark

Execution time to factor the Zoo dataset (101 \times 28) :



Idea for scaling up: Undercover Factorization

Definition: A matrix M' "undercover" a matrix M ($M' \leq M$) if:

$$\forall i,j: \neg M_{i,j} \Rightarrow \neg M'_{i,j}$$

Idea for scaling up: Undercover Factorization

Definition: A matrix M' "undercover" a matrix M ($M' \leq M$) if:

$$\forall i,j: \neg M_{i,j} \Rightarrow \neg M'_{i,j}$$

Definition: $(A_{m \times k}, B_{k \times n})$ is an optimal k-undercover for M if:

- $A \circ B < M$
- For every $(A'_{m\times k}, B'_{k\times n})$ such that $A'\circ B'\leq M$ we have $|A'\circ B'|_1\leq |A\circ B|_1$

Idea for scaling up: Undercover Factorization

Definition: A matrix M' "undercover" a matrix M ($M' \leq M$) if:

$$\forall i,j: \neg M_{i,j} \Rightarrow \neg M'_{i,j}$$

Definition: $(A_{m \times k}, B_{k \times n})$ is an optimal k-undercover for M if:

- $A \circ B < M$
- For every $(A'_{m \times k}, B'_{k \times n})$ such that $A' \circ B' \leq M$ we have $|A' \circ B'|_1 < |A \circ B|_1$

Advantages:

- Simpler formulas
- Opportunity to use an iterative approach

Plan

- Introduction
- (Max)SAT Encoding
- Undercover Factorization
- 4 Block-Optimal Undercover

Undercover Encoding

Si
$$m_{i,j}=0$$
: $((\neg a_{i,0} \lor \neg b_{0,0}) \land (\neg a_{i,1} \lor \neg b_{1,i}))$
Si $m_{i,j}=1$:

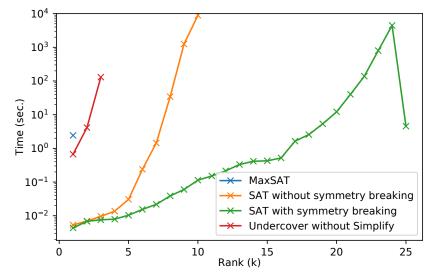
$$\left| \begin{array}{c} b_{0,0} \ b_{0,1} \ b_{0,2} \\ b_{1,0} \ b_{1,1} \ b_{1,2} \end{array} \right|$$

$$\left| \begin{array}{c} a_{0,0} \ a_{0,1} \\ a_{1,0} \ a_{1,1} \\ a_{2,0} \ a_{2,1} \end{array} \right| \left| \begin{array}{cccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right|$$

$$(
eg C_{i,j} \lor \bigvee_{\ell}^{k} T_{i,j}^{\ell}) \land$$
 $\bigwedge_{i,j,\ell} T_{i,j}^{0} \Rightarrow a_{i,\ell} \land b_{\ell,j}$
 $Max(\sum_{i,j} C_{i,j})$

Benchmark

Execution time to factor the Zoo dataset (101 \times 28) :



How Most MaxSAT Solvers Work

Input: A SAT formula ϕ and a set of soft clauses ${\cal S}$

- 1: $cost \leftarrow 0$
- 2: while $SAT(\phi \cup S) = false$ do
- 3: $C \leftarrow unsat_core(\phi \cup S)$
- 4: $\mathcal{S} \leftarrow \mathcal{S} \setminus \mathcal{C}$
- 5: $S \leftarrow S \cup \{(\sum_{v \in C} v) \geq |C| 1\}$
- 6: $cost \leftarrow cost + 1$
- 7: end while
- 8: **return** cost

How Most MaxSAT Solvers Work

Input: A SAT formula ϕ and a set of soft clauses ${\cal S}$

- 1: $cost \leftarrow 0$
- 2: while $SAT(\phi \cup S) = false$ do
- 3: $C \leftarrow unsat_core(\phi \cup S)$
- 4: $\mathcal{S} \leftarrow \mathcal{S} \setminus \mathcal{C}$
- 5: $S \leftarrow S \cup \{(\sum_{v \in C} v) \geq |C| 1\}$
- 6: $cost \leftarrow cost + 1$
- 7: end while
- 8: return cost

Remark: A high cost implies a large number of calls to the solver

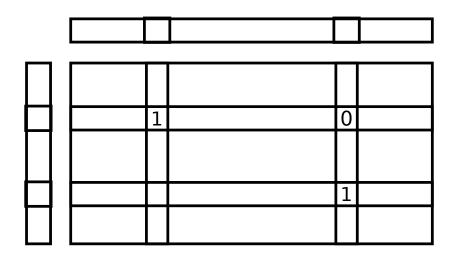
How Most MaxSAT Solvers Work

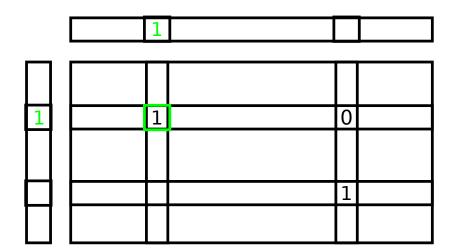
Input: A SAT formula ϕ and a set of soft clauses ${\cal S}$

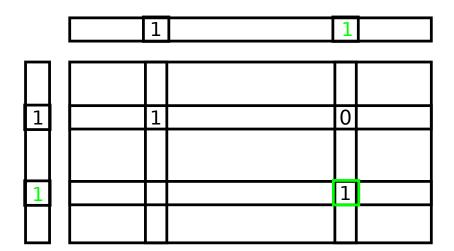
- 1: $cost \leftarrow 0$
- 2: while $SAT(\phi \cup S) = false$ do
- 3: $C \leftarrow unsat_core(\phi \cup S)$
- 4: $\mathcal{S} \leftarrow \mathcal{S} \setminus \mathcal{C}$
- 5: $S \leftarrow S \cup \{(\sum_{v \in C} v) \ge |C| 1\}$
- 6: $cost \leftarrow cost + 1$
- 7: end while
- 8: return cost

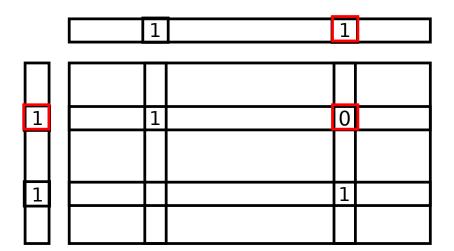
Remark: A high cost implies a large number of calls to the solver

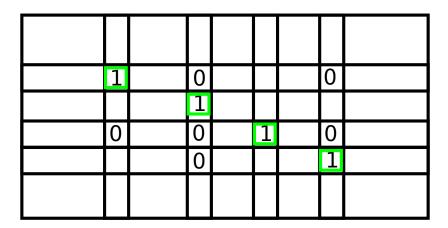
Idea: Do not start with a cost equal to zero (use domain knowledge to find unsat core quickly)



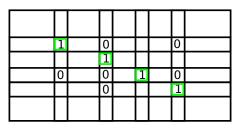








At most k 1s can be covered in a set of |I| 1s two by two incompatible

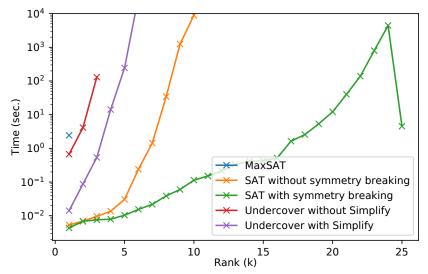


For each set *I* of 1s, two by two incompatible:

- $\forall M_{i,j}$, remove $c_{i,j}$ from the soft clauses set.
- ② add $(\sum_{M_{i,j} \in I} c_{i,j}) \ge k$ in the soft clauses set.
- Increment the cost of the MaxSAT formula by |I| k

Benchmark

Execution time to factor the Zoo dataset (101×28):



Plan

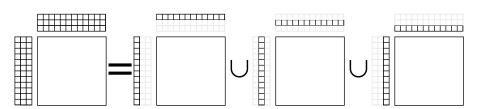
- Introduction
- (Max)SAT Encoding
- Undercover Factorization
- Block-Optimal Undercover

Definition : Two matrices $A_{m \times k}$, $B_{k \times n}$ are *block-optimal k*-undercover for a matrix M if :

$$\forall p \in [1, k] : (A_{:,p} \circ B_{p,:})$$
 is an optimal 1-undercovers for $X - \bigcup_{\ell \neq p} (A_{:,\ell} \circ B_{\ell,:})$

Definition : Two matrices $A_{m \times k}$, $B_{k \times n}$ are *block-optimal k*-undercover for a matrix M if :

$$\forall p \in [1, k] : (A_{:,p} \circ B_{p,:})$$
 is an optimal 1-undercovers for $X - \bigcup_{\ell \neq p} (A_{:,\ell} \circ B_{\ell,:})$



Definition : Two matrices $A_{m \times k}$, $B_{k \times n}$ are *block-optimal k*-undercover for a matrix M if :

$$\forall p \in [1, k] : (A_{:,p} \circ B_{p,:})$$
 is an optimal 1-undercovers for $X - \bigcup_{\ell \neq p} (A_{:,\ell} \circ B_{\ell,:})$

Theorem : A block-optimal k-undercover is a $\frac{1}{2}$ -approximation of the problem k-undercover

Definition : Two matrices $A_{m \times k}$, $B_{k \times n}$ are *block-optimal k*-undercover for a matrix M if :

$$\forall p \in [1, k] : (A_{:,p} \circ B_{p,:})$$
 is an optimal 1-undercovers for $X - \bigcup_{\ell \neq p} (A_{:,\ell} \circ B_{\ell,:})$

Theorem : A block-optimal k-undercover is a $\frac{1}{2}$ -approximation of the problem k-undercover

Algorithm OptiBlock : Compute an optimal 1-undercover of M and remove the 1s covered by the solution. Iterate k times saving the solutions to build A and B.

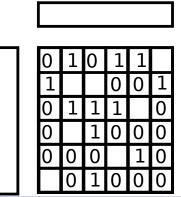
Theorem: The algorithm OptiBlock gives a 0.632-approximation

Method	# TOP	Time (min)
OptiBlock	46	544
CG (with timeout)	20	469
MP	18	372
GreConD +	9	107
Tile	9	220
IterEss	9	0.4
k-greedy	5	59
MEBF	0	4.0
Asso	0	96

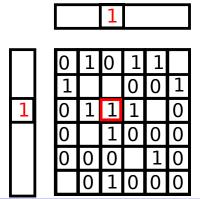
Table 1: Benchmark on 25^1 real data sets with three values of k (75 cases)

¹Datasets from UCI, namely: Audiology, Autism Screening Adult, Balance Scale, Breast Cancer, Car Evaluation, Chess (King-Rook vs. King), Congressional Voting Records, Contraceptive Method Choice, Dermatology, Hepatitis, Iris, Lung Cancer, Lymphography, Mushroom, Nursery, Primary Tumor, Solar Flare, Soybean (Large), Statlog (Heart), Student Performance, Thoracic Surgery, Tic-Tac-Toe Endgame, Website Phishing, Wine and Zoo.

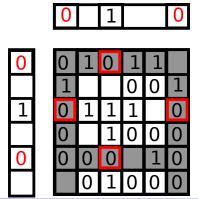
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



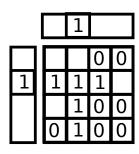
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- \odot Repeat k times



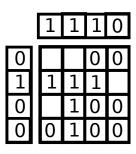
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



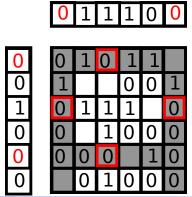
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



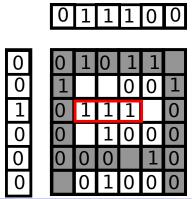
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



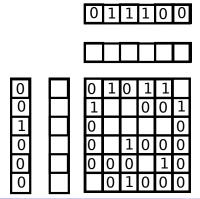
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



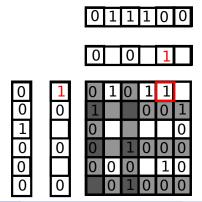
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



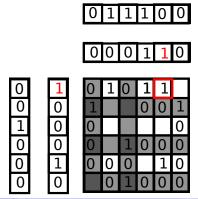
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



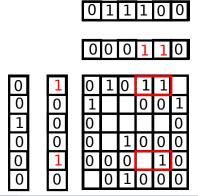
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times



- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- Repeat k times

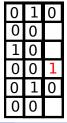


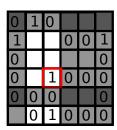
- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- \odot Repeat k times

			U	1		L	0	U
			0	0	0	1	1	0
0	1		0	1	0			
0	0		1			0	0	1
1	0		0					0
0	0		0		1	0	0	0
0	1		0	0	0			0
0	0			0	1	0	0	0

- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- \odot Repeat k times

0	1	1	1	0	0
0	0	0	1	1	0
0		1	0	0	0

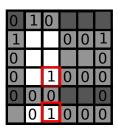




- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- \odot Repeat k times

0	1	1	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0

0	1	0
0	0	0
1	0	0
0	0	1
0	1	0
0	0	1



- Choose a "1" to cover
- Perform a 1-undercover that covers this "1" and remove the covered 1s
- \odot Repeat k times

			0					
			0	0	1	0	0	0
0	1	0	0					
0	0	0	1			0	0	1
1	0	0	0	1	1	1		0
0	0	1	0		1	0	0	0
0	1	0	0	0	0		1	0
$\overline{}$	$\overline{}$	1		$\overline{}$	7	$\overline{}$	$\overline{}$	7

Method	# TOP	Time (min)
OptiBlock*	45	98
OptiBlock	29	544
CG (with timeout)	19	469
MP	14	372
GreConD +	9	107
FastUndercover	8	3.5
Tile	7	220
IterEss	6	0.4
k-greedy	5	59
MEBF	0	4.0
Asso	0	96

Table 2: Benchmark on 25^2 real data sets with three values of k (75 cases)

²Datasets from UCI, namely: Audiology, Autism Screening Adult, Balance Scale, Breast Cancer, Car Evaluation, Chess (King-Rook vs. King), Congressional Voting Records, Contraceptive Method Choice, Dermatology, Hepatitis, Iris, Lung Cancer, Lymphography, Mushroom, Nursery, Primary Tumor, Solar Flare, Soybean (Large),

 Optimal factorization is possible for small matrices, but scaling up is complicated.

- Optimal factorization is possible for small matrices, but scaling up is complicated.
- Propose a performance guarantee algorithm that finds undercover factorization.

- Optimal factorization is possible for small matrices, but scaling up is complicated.
- Propose a performance guarantee algorithm that finds undercover factorization.
- Thanks to a MaxSAT encoding and some optimizations, the algorithm can work on large matrix.

- Optimal factorization is possible for small matrices, but scaling up is complicated.
- Propose a performance guarantee algorithm that finds undercover factorization.
- Thanks to a MaxSAT encoding and some optimizations, the algorithm can work on large matrix.
- The quality of the factorizations generated by our algorithm gave on average better results than the classical algorithms of the literature in our experiments.