Quantum Support Vector Machines

Iordanis Kerenidis¹, Anupam Prakash¹ and Dániel Szilágyi¹

¹CNRS, IRIF, Université Paris Diderot, Paris, France.

June 28, 2019
Quantum Computing

- Quantum states (qudits) are unit vectors in Hilbert space \mathbb{C}^d.

$$|\phi\rangle = \sum_{i \in [d]} \beta_i |i\rangle.$$

- The measurement M in the standard yields a probabilistic outcome,

$$\Pr[M(|\phi\rangle) = i] = |\beta_i|^2.$$

- Multi-qudit quantum systems are represented by a tensor product $|\phi_1, \phi_2\rangle$.

- Quantum computers can apply unitary operations to states and perform measurements.

- Hadamard gate:

$$H |0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H |1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$
It is easy to create exponential sized superpositions,

\[H^n |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{i \in [2^n]} |i\rangle. \]

What speedups do quantum computers offer over the best known classical algorithms?

- Exponential speedups: Integer factoring, discrete logarithms [Shor], sampling from solutions to structured sparse linear systems. [Harrow, Hassidim and Lloyd].
- Quadratic speedups: Finding a marked element in a database of \(N \) items in time \(O(\sqrt{N}) \) [Grover].
- Significant polynomial speedups: Recommendation systems [KP16], quantum machine learning, quantum optimization?
Quantum Machine Learning

- Input encoding: How to encode a classical vector $x \in \mathbb{R}^n$ into quantum state? How to encode matrices $A \in \mathbb{R}^{n \times n}$?

- Quantum linear algebra: Given encodings, there are efficient quantum linear algebra algorithms to obtain states $|Ax\rangle$, $|A^{-1}x\rangle$ and $|\Pi_Ax\rangle$ where $\Pi_A(x)$ is the projection of x onto $Col(A)$.

- Output extraction: How to obtain classical information from the quantum state? (i) Measure in standard basis to sample. (ii) Perform quantum state tomography with ℓ_∞ or ℓ_2 norm guarantees.

Iordanis Kerenidis, Anupam Prakash, and Dán QML workshop, Marseille, 2019
QRAM data structures

- QRAM (Quantum Random Access Memory) is a powerful memory model for quantum access to arbitrary datasets.

- Given $x_i, i \in [N]$ stored in the QRAM, the following queries require time $\text{polylog}(N)$,

 $|i, 0\rangle \rightarrow |i, x_i\rangle$

- Weaker quantum memory models are applicable only for well-structured datasets and are not suitable for general ML problems.

Definition

A QRAM data structure for storing a dataset D of size N is efficient if it can be constructed in a single pass over the entries (i, d_i) for $i \in [N]$ and the update time per entry is $O(\text{polylog}(N))$.
Input Encodings

- **Encoding vectors:** There are efficient QRAM data structures for storing vector \(v \in \mathbb{R}^n \) that allow \(|v\rangle \) to be prepared in time \(O(\log^2 n) \).

- **Encoding matrices:** A matrix \(A \in \mathbb{R}^{n \times n} \) is encoded as a unitary block encoding, that is,

\[
U_A = \begin{pmatrix} A/\mu(A) & \cdot \\ \cdot & \cdot \end{pmatrix}
\]

- How to construct block encodings for \(A \) and what \(\mu(A) \) can be achieved?

- The optimal value of \(\mu(A) \geq \|A\| \), any minor of a unitary matrix has spectral norm at most 1.
For quantum linear algebra, it is standard to normalize so that $\|A\| = 1$.

Theorem (KP16, KP17)

There are efficient QRAM data structures for storing $A \in \mathbb{R}^{n \times n}$, such that with access to these data structures a block encoding for A with $\mu(A) \leq \sqrt{n}$ can be implemented in time $O(\text{polylog}(n))$.

We note that $\mu(A) < \sqrt{n}$ can be much less than $O(\sqrt{n})$ for low rank matrices and matrices with bounded ℓ_1 norms for rows/columns.
Quantum linear algebra

- Let $\kappa(A) = \lambda_{\max}(A)/\lambda_{\min}(A)$ be the condition number of matrix A.
- Given efficient block encodings for A, there are efficient quantum linear algebra procedures. [KP16, KP17, CGJ18].
- Theorem: A state ϵ-close to $|Ax\rangle$ or $|A^{-1}x\rangle$ in the l_2 norm can be generated in time $O(\kappa(A)\mu(A)\log(1/\epsilon))$.
- Theorem: The norm $\|Ax\|$ or $\|A^{-1}x\|$ can be estimated to relative error ϵ in time $O(\frac{\kappa(A)\mu(A)}{\epsilon} \log(1/\epsilon))$.
- As μ is sublinear, quantum linear algebra provides large gains in efficiency over the classical $O(n^3)$ for many classes of matrices.
The quantum states $|A^{-1}x\rangle$ are not the same as the output for classical linear system solvers.

If we measure $|A^{-1}x\rangle$ in the standard basis, we obtain a sample from the squared ℓ_2 distribution for the state. [Recommendation systems].

Using Chernoff bounds, with $O(1/\epsilon^2)$ samples we can recover an approximation $\|x - \tilde{x}\|_\infty \leq \epsilon$.

There is an ℓ_2-tomography algorithm with $O(n \log n/\epsilon^2)$ and approximation $\|x - \tilde{x}\|_2 \leq \epsilon$. [KP18].

The ℓ_2 tomography algorithm is used for quantum optimization using the interior point method.
Interior Point Method overview

- Interior point methods are widely used for solving Linear programs (LP), Second Order Cone Programs (SOCP) and Semidefinite Programs (SDP).
- Running time for SDP algorithms will be given in terms of dimension n, number of constraints m and error ϵ.
- The classical IPM starts with feasible solutions (S, Y) to the optimization problem and updates them $(S, Y) \rightarrow (S + dS, Y + dY)$ iteratively.
- The updates (dS, dY) are obtained by solving a $O(n + m)$ dimensional linear system called the Newton linear system.
- After $O(\sqrt{n} \log(1/\epsilon))$ iterations, the method converges to feasible solutions (S, Y) with duality gap at most ϵ, that is solutions are ϵ close to the optimal.
Quantum SDP algorithms

- Does quantum linear algebra offer speedups for optimization using IPMs?
- Quantum SDP algorithms using multiplicative weights method were proposed recently [Brandao-Svore 17].
- After many improvements, the best running time for a quantum SDP algorithm [AG19] using this framework is,

\[
\tilde{O} \left(\left(\sqrt{m} + \sqrt{n} \left(\frac{Rr}{\epsilon} \right) \right) \left(\frac{Rr}{\epsilon} \right)^4 \sqrt{n} \right).
\]

- For Max-Cut and scheduling LPs, the complexity is at least \(O(n^6)\) [AGGW17, Theorem 20].
Quantum SDP algorithms

- We provided a quantum interior point method with complexity $\tilde{O}(\frac{n^{2.5}}{\xi^2} \mu \kappa^3 \log(1/\epsilon))$ for SDPs and $\tilde{O}(\frac{n^{1.5}}{\xi^2} \mu \kappa^3 \log(1/\epsilon))$ for LPs. [KP18].
- The output of our algorithm is a pair of matrices (S, Y) that are ϵ-optimal ξ-approximate SDP solutions.
- The parameter μ is at most $\sqrt{2n}$ for SDPs and $\sqrt{2n}$ for LPs.
- The parameter κ is an upper bound on the condition number of the intermediate solution matrices.
- If the intermediate matrices are 'well conditioned', the running time scales as $\tilde{O}(n^{3.5})$ and $\tilde{O}(n^2)$.
- Does this provide speedups in practice?
The SOCP is an optimization problem over the product of Lorentz cones \(\mathcal{L}_k \),

\[
\mathcal{L}_k = \left\{ \mathbf{x} = (x_0; \tilde{x}) \in \mathbb{R}^k \mid \|\tilde{x}\| \leq x_0 \right\}.
\]

The standard form of the SOCP is the following optimization problem:

\[
\begin{align*}
\min_{\mathbf{x}_1, \ldots, \mathbf{x}_r} & \quad \mathbf{c}_1^T \mathbf{x}_1 + \cdots + \mathbf{c}_r^T \mathbf{x}_r \\
\text{s.t.} & \quad A^{(1)} \mathbf{x}_1 + \cdots + A^{(r)} \mathbf{x}_r = \mathbf{b} \\
& \quad \mathbf{x}_i \in \mathcal{L}^{n_i}, \forall i \in [r],
\end{align*}
\]

(1)

The rank \(r \) is like the number of constraints while \(n \) is the dimension of the solution vector, classical IPM for SOCP has complexity \(O\left(\sqrt{r} n^\omega \log(n/\epsilon)\right) \).
Quantum IPM for SOCP

- Starts with initial feasible solution \((x, s, y)\) for primal-dual SOCP pair and solves the \((\text{Newton system})\) to compute the updates \((\Delta x, \Delta y, \Delta s)\):

\[
\begin{bmatrix}
A & 0 & 0 \\
0 & A^T & I \\
\text{Arw}(s) & 0 & \text{Arw}(x)
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
=
\begin{bmatrix}
b - Ax \\
c - s - A^T y \\
\sigma \mu e - x \circ s
\end{bmatrix} .
\] (2)

- The Newton linear system is much simpler than case of general SDPs.

- Converges in \(O(\sqrt{r} \log(1/\epsilon))\) iterations like the classical algorithm. General analysis using Euclidean Jordan algebras.
Quantum IPM for SOCP

- There is a quantum Algorithm that outputs a solution $x_i \in \mathcal{L}^{ni}$ that achieves an objective value that is within ϵ of the optimal value in time,

\[T = \tilde{O}\left(\sqrt{r} \log (\mu_0/\epsilon) \cdot \frac{n\kappa \zeta}{\delta^2} \log \left(\frac{\kappa \zeta}{\delta}\right)\right). \]

- $\zeta \leq \sqrt{n}$ is a factor that appears in quantum linear system solvers.
- κ is an upper bound on the condition number of the matrices arising in the interior point method for SOCPs.
- The parameter δ is a lower bound on how close are the intermediate iterates to the boundaries of the respective cones.
- How does this perform in practice?
Support Vector Machines

- The ℓ_1-regularized SVM for m data points of dimension n is the following optimization problem,

$$\min_{w, b, \xi} \|w\|^2 + C \|\xi\|_1$$

s.t.

$$y^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi_i, \forall i \in [m]$$

$$\xi \geq 0.$$ \hspace{1cm} (3)

- If $t = (t + 1; t; w)$ is in the Lorentz cone, then $2t + 1 > \|w\|^2$, the norm constraint becomes linear in t.

- The ℓ_1-SVM reduces to an instance of SOCP with rank $2m + 4$ constraints and dimension $3m + 2n + 7$.

- Experiments on random SVMs: Generate data points and separating hyperplane uniformly at random from $[-1, 1]^n$. Flip a p fraction of the labels. Shift by direction sampled from $N(0, 2I)$.

Iordanis Kerenidis, Anupam Prakash and Dán QML workshop, Marseille, 2019
Experimental results – accuracy and duality gap
Experimental results – accuracy with problem size
Experimental results – asymptotic speedup

- Observation
- Fitted model $\sim n^{2.57}$
Conclusions

- The quantum SVM algorithm achieves an asymptotic speedup on random SVM instances with running time $O(n^{2.557})$ as opposed to the classical IPM with running time $O(n^{3.5})$.
- This also indicates the potential for similar asymptotic speedups using quantum optimization for problems relevant in practice.