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Mapping simple polygons:
The power of telling convex from reflex
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We consider the exploration of a simple polygon P by a robot that moves from vertex to vertex along edges
of the visibility graph of P. The visibility graph has a vertex for every vertex of P and an edge between two
vertices if they see each other, i.e., if the line segment connecting them lies inside P entirely. While located
at a vertex, the robot is capable of ordering the vertices it sees in counter-clockwise order as they appear on
the boundary, and for every two such vertices, it can distinguish whether the angle between them is convex
(≤ π) or reflex (> π). Other than that, distant vertices are indistinguishable to the robot. We assume that
an upper bound on the number of vertices is known.

We obtain the general result that a robot exploring any locally oriented, arc-labelled graph G can always
determine the base graph of G. Roughly speaking this is the smallest graph that cannot be distinguished
by a robot from G by its observations alone, no matter how it moves. Combining this result with various
other techniques allows to show that a robot exploring a polygon P with the above capabilities is always
capable of reconstructing the visibility graph of P. We also show that multiple identical, indistinguishable
and deterministic robots of this kind can always solve the weak rendezvous problem in which they need to
position themselves such that they mutually see each other, i.e., such that they form a clique in the visibility
graph.
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1. INTRODUCTION
Autonomous mobile robots are used for various tasks like cleaning, guarding, data retrieval,
etc. in unknown environments. Many tasks require coordination of the robots [Agmon and
Peleg 2007; Lin et al. 2007a; 2007b; Suzuki and Yamashita 1999] and exploration of the
environment [Das et al. 2007; Katsev et al. 2011; Panaite and Pelc 1999; Suri et al. 2008].
We mainly focus on the latter problem, more precisely on the problem of mapping unknown
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Table I. Summary of known results for visibility graph reconstruction as well as open problems.

initial results
sensors info movement solvable time source
angles n boundary yes poly [Disser et al. 2011]
angles – boundary yes poly [Disser et al. 2013]
cvv, boundary angles n boundary no [Bilò et al. 2012]
angle types boundary open
distances boundary open
pebble – free yes poly [Suri et al. 2008]
cvv, look-back – free no [Brunner et al. 2008]
look-back n̄ free yes poly [Chalopin et al. 2011]
angle types, look-back – free yes poly [Bilò et al. 2012]
angle types, directions – free yes poly [Bilò et al. 2012]
directions n̄ free yes? exp [Disser, Ghosh et al. 2013]
angle types n̄ free yes exp this paper
angle types – free open
distances free open
no sensors n free open

?This result holds even for polygons with holes.

polygons. However, we also show how a map of the environment can facilitate coordination
and allow robots to solve the weak rendezvous problem. The difficulty of the mapping
problem depends on the characteristics of the environment itself and on the sophistication
of the robots, i.e., on their sensory and locomotive capabilities. A natural question is how
much sophistication a robot needs to be able to solve the problem. The ultimate goal is to
characterize the difficulty of the mapping problem by finding minimal robot configurations
that allow a robot to create a map.

We consider robots operating in environments in the shape of simple polygons. For many
tasks, instead of inferring a detailed map of the geometry of the environment, it is enough
to obtain the visibility graph. The visibility graph has a node for each vertex of the polygon
and an edge connecting two nodes if the corresponding vertices see each other, i.e., if the
straight-line segment between them is contained in the polygon. The goal in this context
becomes to find minimal robot models that allow a robot inside a polygonal environment to
reconstruct the visibility graph of the environment. The information the robot can gather
must be sufficient to uniquely infer the visibility graph.

A variety of minimalistic robot models have been studied, focusing on different types of
environments and objectives [Ando et al. 1999; Brunner et al. 2008; Cohen and Peleg 2008;
Ganguli et al. 2006; Katsev et al. 2011]. The model considered here originates from [Suri
et al. 2008]. Roughly speaking, our robot is allowed to move along edges of the visibility
graph. While at a vertex, the robot sees the vertices visible from its current location in
counter-clockwise (ccw) order starting with its ccw neighbor along the boundary. Apart
from this ordering the vertices are indistinguishable to the robot. In each move the robot
may select one of them and move to it. The robot has no way of looking back, i.e., it has
no immediate way of knowing which vertex it came from among the vertices it sees now.
In this paper, the robot is assumed to be aware of an upper bound n̄ on the number of
vertices n.

Table 1 summarizes known results that are based on the robot model we use in this paper,
as well as open problems. Besides employing different sensors, the results differ in the robot’s
initial knowledge about n, its movement capabilities, and, in case of positive results, the
running times of the reconstruction algorithms. The first part of the table concerns robots
that are restricted to moving along the boundary only. It was shown that even with this
severe movement restriction robots can still reconstruct the visibility graph, as long as they
can measure the exact angle between any pair of visible vertices [Disser et al. 2011; 2013].
On the other hand, only measuring the angle between the two neighboring vertices along
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the boundary is not sufficient, even if the robot can distinguish whether any two visible
vertices are neighbors along the boundary (“cvv” in the table) [Bilò et al. 2012].

For robots that move across the polygon (as opposed to along the boundary), it is sufficient
to be able to mark a single vertex (e.g., with a pebble) in order to reconstruct the visibility
graph [Suri et al. 2008]. Without this powerful ability, not being capable to look back
makes it difficult for the robot to relate the information it collected so far to subsequent
observations. But even with a look-back sensor that allows to identify the vertex the robot
came from in its last move, some knowledge of n is required to solve the reconstruction
problem [Brunner et al. 2008; Chalopin et al. 2011]. A direction sensor that measures the
angle between the boundary and a global reference direction makes it possible to reconstruct
the visibility graph, even in the presence of holes [Disser, Ghosh et al. 2013]. In this paper,
we equip the robot with an angle-type sensor that distinguishes convex (≤ π) from reflex
(> π) angles. It was shown before that, even without knowledge of n, this sensor is powerful
enough to allow visibility graph reconstruction, as long as it is combined with a look-back
sensor or a direction sensor [Bilò et al. 2012]. In this paper, we show that these extra sensors
are not required, provided that the robot knows at least a bound on the number of vertices.
It remains an open problem whether the angle-type sensor is sufficient even when the robot
is restricted to moving along the boundary. Other interesting open problems are whether
knowledge of n on its own is already enough to reconstruct the visibility graph, and how a
distance sensor may be used for reconstruction.

In contrast to most previous results our algorithm requires exponential time. This is due
to the difficulty of collecting all of the data available via the agent’s sensors. In settings where
movement is restricted to be along the boundary, collecting the data essentially requires to
visit each vertex once, which allows the corresponding reconstruction algorithms to be very
efficient. Similarly, the agent can systematically collect all data if it has a way to retrace
movements (e.g. via look-back sensor). In our setting, it is much more difficult to relate
observations made at different vertices, which essentially forces us to try all possible ways
of stitching together the collected data. The crucial point is that we can at all determine
the correct relation between the observations, even if this requires exponential time.

In the robot model we use, robots move along edges of the visibility graph and can locally
access some information about the edges. We can model this in the context of general robotic
exploration of edge-labeled graphs, where the edge-labeling is usually restricted to be locally
bijective at every vertex (i.e., no two edges incident to the same vertex have the same label).
In this more general context, robots are aware of the degree of the vertex they are located at
as well as of the labels of the edges incident to it. In every step, a robot selects an edge and
moves to its other end. It is known that two distinct edge-labeled graphs (of the same size)
can appear mutually indistinguishable to a robot, i.e., the reconstruction problem is not
always solvable [Angluin 1980; Boldi and Vigna 2002]. The rendezvous problem is generally
not solvable either [Chalopin et al. 2006; Yamashita and Kameda 1996]. In this paper we
show that while a robot cannot solve the reconstruction problem in general graphs, it can
always infer the minimum base graph of a (directed) graph G – the smallest graph among
all graphs indistinguishable from G by a robot (a thorough discussion of base graphs and
their properties can be found in [Boldi and Vigna 2002]). This result is of independent
interest. We will see later that polygon exploration can be transformed to the exploration
of a particular class of directed, arc-labeled graphs, where both the reconstruction problem
as well as the weak-rendezvous problem become solvable.

As it is impossible to reconstruct general graphs, it is natural to ask how much information
a robot can obtain about a graph. This information is encoded in the unique minimum base
graph. In general, the mapping from a graph to its minimum base graph is not one-to-one
in the sense that there are graphs which share the same minimum base graph. Our question
whether a robot with certain capabilities can reconstruct the visibility graph of a polygon
can be translated to whether the mapping is one-to-one for the class of visibility graphs
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with an appropriate labeling. As the main technical contribution of this paper we show that
if the labeling locally encodes the convexity information about every angle at a vertex, this
mapping becomes one-to-one. In other words, visibility graphs can always be reconstructed
from their minimum base graph if the type of every angle (convex or reflex) is known.
Combined with the result that a robot can reconstruct the minimum base graph even in
general graphs when an upper bound on the number of vertices is given, this solves the
reconstruction problem for visibility graphs in this setting.

2. THE VISIBILITY GRAPH RECONSTRUCTION PROBLEM
We consider the exploration of a (simple) polygon P by a robot that moves from vertex
to vertex along straight lines in P. Two vertices u, v that can be connected with a straight
line inside P (possibly touching its boundary1) are said to see each other. We define the
visibility graph Gvis = (V,E) of P to be a directed graph, where V is the set of vertices
of P and there is an arc from u to v (and vice versa) if u and v see each other. Whenever
convenient, we identify Gvis with its canonical straight-line embedding in the polygon. For
example, we speak of angles between arcs of Gvis, when we mean the angles between the
corresponding line segments of its straight-line embedding.

Depending on the additional capabilities we equip a robot with, the robot might or might
not be able to perform certain tasks. We focus on the visibility graph reconstruction problem
in which the robot has to uniquely infer Gvis. Here and throughout this paper we consider
isomorphic graphs to be the “same” graph, as we cannot hope to distinguish graphs further.
We also consider the weak-rendezvous problem in which multiple identical and deterministic
robots need to position themselves on vertices of the polygon that mutually see each other.

Before defining a specific robot model, we introduce some formalism for Gvis (cf. Fig-
ure 1). We fix a vertex v0 and denote the vertices of P in ccw order along the boundary by
v0, v1, . . . , vn−1. Note that v0, v1, . . . , vn−1, v0 is a Hamiltonian cycle in Gvis. By chain(vl, vr)
we denote the sequence (vl, vl+1, . . . , vr) and by chainv(vl, vr) we denote the subsequence
of chain(vl, vr) containing only the vertices visible to v. Here and throughout this paper
all indices are understood modulo n. For vi ∈ V let (u1, . . . , udi) := chainvi(vi+1, vi−1)
be the vertices visible to vi other than vi. We say that di is the degree of vi and define
visvi(x) := visvi(− (di + 1− x)) := ux, to be the x-th vertex visible to vi in ccw order or
equivalently the (di + 1− x)-th vertex visible to vi in clockwise (cw) order for 1 ≤ x ≤ di.
Conversely, we set Ovi(ux) := x or interchangeably Ovi(ux) = − (di + 1− x) for 1 ≤ x ≤ di.
For 1 ≤ x < y ≤ di we write Avi(x, y) = Avi(y, x) to denote the ccw angle between the
arcs (vi, ux) and (vi, uy) in that order. Furthermore, we define the angle type Tvi

(·, ·) as
follows: Tvi(x, y) = Tvi(y, x) = 1 if Avi(x, y) > π and Tvi(x, y) = Tvi(y, x) = 0 otherwise.
For convenience we set Tvi(x, x) = 0. A vertex vi is called reflex if Tvi(1, di) = 1 and convex
otherwise.

The exploration of Gvis can be reduced to the general problem of exploring a strongly
connected, directed and arc-labeled (multi-) graph2 G (from now on we use the word “graph”
to refer to such graphs). We write λ(e) to denote the label of an arc e. A robot exploring a
graph is assumed to be aware of the labels of all the outgoing arcs at its location. In every
move, the robot may choose one of those arcs and follow it to its target. A directed walk
is a sequence of arcs (e1, e2, . . .) such that the target of e1 is the source of e2 and so on. A
directed path is a directed walk which does not visit any vertex more than once. Every walk
p = (e1, e2, . . .) in the graph uniquely induces a label-sequence λ(p) = (λ(e1) , λ(e2) , . . .).
Conversely, any label-sequence Λ induces a set of walks Λ(G) such that λ(p) = Λ for all
p ∈ Λ(G). By Λ(v) we denote the set of walks in Λ(G) that start at v. If no two outgoing arcs

1Note that we do not make the usual assumption that vertices of the polygon are in general position.
2For the most part of the paper it might help to think of symmetric graphs, i.e., graphs where for every
directed edge (v, u) there is also a reverse edge (u, v).
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Fig. 1. In the example above we have chain(v3, v10) = (v3, v4, v5, v6, v7, v8, v9, v10) while chainv0 (v3, v10) =
(v3, v4, v7, v8). Similarly, chain(v10, v3) = (v10, v11, v0, v1, v2, v3) and chainv0 (v10, v3) = (v11, v0, v1, v2, v3).
We have visv0 (5) = visv0 (−3) = v7 and conversely Ov0 (v7) = 5 or − 3 because v7 is the fifth vertex that
v0 sees in ccw order and the third in cw order. Finally, we have Tv0 (2, 5) = 0 and Tv0 (6, 2) = 1, since v2
and v7 form a convex angle at v0 while v2 and v8 form a reflex angle.

of the same vertex share a label, we say the graph has a local orientation or is locally oriented.
Then, for every label-sequence Λ and vertex v we have Λ(v) = ∅ or |Λ(v)| = 1; in the latter
case we write Λ(v) to denote this unique walk. With “◦” we denote the concatenation of
label-sequences.

We can now introduce the robot model used in this paper in detail. As described above,
a robot is allowed to move along arcs of the visibility graph. In addition, while situated at
a vertex v of degree d, the robot can order all outgoing arcs in ccw order starting with the
arc to its ccw neighbor along the boundary, and it is aware of Tv(x, y) for all 1 ≤ x, y ≤ d.
We assume the robot to know an upper bound n̄ ≥ n on the total number of vertices n.
From now on, when we talk about a robot in a polygon, we refer to this robot model.

The exploration of P by a robot is in fact equivalent to the exploration of an arc-labeled
version of Gvis that encodes the information available to the robot in its labeling. In this
setting, upon entering a node u, the robot learns all the labels of arcs leaving u. The labeling
needs to encode the local orientation and the angle type information into the labeling of
the outgoing arcs at the corresponding vertex in Gvis. We introduce a labeling in which
each label is a sequence of integers. Let v be a vertex of the visibility graph with degree
d and (v, u) be an outgoing arc of v. We label (v, u) with the label (x0, x1, . . . , xd), where
x0 := Ov(u) and xi := Tv(x0, i), 1 ≤ i ≤ d. Note that by the definition of Ov our labeling is
a local orientation. Further note that the arcs (v, u) and (u, v) may be labeled differently.
It is immediate to check that a robot exploring the labeled graph Gvis encounters the exact
same information as a robot inside the polygon if both start at the same vertex. It is thus
sufficient to show that the labeled version of Gvis can be reconstructed in the framework of
exploring general graphs in order to show that a robot can indeed solve the visibility graph
reconstruction problem. From now on we write Gvis to denote the arc-labeled visibility
graph.

3. OVERVIEW OF THE ALGORITHM
The visibility graph reconstruction algorithm that we design in this paper combines several
old and new graph-theoretical and geometrical properties of visibility graphs as well as tech-
niques developed in earlier studies. Rather than formally introducing all relevant concepts
right away, this section aims to give an intuitive overview of the algorithm. We informally
describe the underlying techniques and defer their formal discussion to later sections. Note
that we are primarily interested in showing that a robot is at all capable of uniquely recon-
structing the visibility graph of any simple polygon. The algorithm we provide as a proof
does not need to be particularly efficient as long as it is guaranteed to terminate in finite
time. An algorithm that solves the weak-rendezvous problem is obtained as a byproduct.
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Fig. 2. Left: cutting away a class of vertices (ears) from P to obtain P ′. Middle: visibility graph Gvis of P.
Right: minimum base graph G?

vis of Gvis. Dashed edges are in P but not in P ′.

In Section 2 we argued that the exploration of P by a robot is equivalent to the explo-
ration of Gvis in the context of general graph exploration. In general and without any prior
knowledge of the graph, there can be infinitely many graphs that are compatible with the
observations of the robot no matter how far it moves, i.e., all these graphs are indistin-
guishable to the robot (consider for example the family of all cycles). However, it is known
[Boldi and Vigna 2002] that for every graph G, there is always a unique graph G? that is
indistinguishable from G and has minimum size (for a bidirected cycle, G? is a graph with
one node and two (directed) self-loops). We say G? is the minimum base graph of G. Using
the fact that Gvis is locally oriented and that an upper bound n̄ on n is known a priori, we
are able to show the following result.

Theorem 3.1. A robot in P can determine G?
vis.

The main ingredient for this theorem is the observation that given two candidate graphs
for G?

vis, the robot can eliminate one of them in finite time by following an appropriate
sequence of arc labels. It is then sufficient to iterate over pairs of graphs with size at most
n̄, discarding one of the two in every step. Once the robot has determined G?

vis, it has
extracted all the information it can possibly gather by moving around. Subsequent steps
of the algorithm can thus operate on G?

vis directly without further need of moving at all
in Gvis.

We associate each vertex of Gvis with a vertex of G?
vis such that each vertex of G?

vis
represents a class of vertices of Gvis. For two vertices u, v of Gvis in the same class we have
Λ(u) 6= ∅ ⇔ Λ(v) 6= ∅ for all label-sequences Λ. Furthermore, the classes with which the
vertices of Gvis are associated repeat periodically along the boundary of the polygon and
in particular all classes have the same size. We define a unique order between the classes
and use a procedure similar to the one in [Chalopin et al. 2011] to show that at least one
of them forms a clique in Gvis. The idea is to repeatedly “cut off” ears of the polygon, i.e.,
vertices whose neighbors on the boundary see each other. Cutting off such an ear yields
a subpolygon of P and we can repeat the process on the subpolygon. However, the robot
cannot operate on Gvis directly as it only has access to G?

vis. The following lemma allows
the robot to cut off an entire class of vertices at a time, an operation that can be performed
in G?

vis simply by deleting the corresponding vertex (and adjusting the arc labels of its
neighboring vertices).

Lemma 3.2. Let v be an ear of P. Every vertex in the same class as v is an ear of P.

As every polygon has at least one ear, the robot can thus “cut off” an entire class of P in
order to obtain a new and smaller polygon P ′ (cf. Figure 2). By removing the corresponding
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vertex of G?
vis and updating the arc labels, it obtains a graph G′?vis that is indistinguishable

from the visibility graph of P ′. If this process is repeated, by always selecting for removal
the smallest class with respect to a unique order relation, eventually a situation is reached
in which only one (uniquely defined) class C? remains. As the corresponding subpolygon
must again have at least one ear, by the above lemma the entire class C? consists of ears
and the corresponding subpolygon thus is convex. A convex subpolygon is a clique in the
original visibility graph and we may conclude the following crucial theorem.

Theorem 3.3. There exists a uniquely defined class C? in Gvis whose vertices form a
clique.

The above yields an algorithm for multiple robots to weakly meet: As C? is unique, every
robot can determine C? and then simply position itself on a vertex of C?. We get

Theorem 3.4. Any number of robots in P can solve the weak-rendezvous problem.

Starting from the clique C?, we show that by sequentially “gluing” ears back to the
polygon, a robot can extend the initial clique and reconstruct the entire visibility graph
step by step. Every step relies on a recursive counting method that was introduced in [Bilò
et al. 2012]. In order to know how to glue ears back on, the robot explicitly needs to construct
C? by repeatedly cutting off ears and remembering in which order the classes are cut off in
the process.

Theorem 3.5. A robot in P can solve the visibility graph reconstruction problem.

4. FINDING THE MINIMUM BASE GRAPH
This section focuses on the problem of exploring a general, finite, strongly connected, locally
oriented directed (multi-) graph G = (V,E) with a robot. Again, we assume an upper bound
n̄ on the number of vertices n to be known and we do not impose a limitation on the memory
of the robot. We prove a generalization of Theorem 3.1 to general, locally oriented, directed
graphs (cf. Theorem 4.2).

Before we define the notion of the minimum base graph G? of G we need to introduce a
few graph-theoretical concepts. First, given an arc e from vertex u to vertex v, we denote by
s(e) the source of arc e, i.e., the vertex u, and by t(e) the target of arc e, i.e., the vertex v.
Note that in the following we allow graphs to have parallel arcs between a pair of vertices. A
morphism µ : G→ G′ from G to a graph G′ is a mapping from G to G′ that maps vertices
to vertices and arcs to arcs and maintains adjacencies and arc labels. More formally, if e
is an arc in G from u to v then s(µ(e)) = µ(u), t(µ(e)) = µ(v), and λ(e) = λ(µ(e)). An
opfibration ϕ : G → Ḡ with Ḡ =

(
V̄ , Ē

)
is a morphism such that for every arc ē ∈ Ē with

ū = s(ē) and for every vertex u ∈ ϕ−1(ū) in the preimage of ū there is a unique arc e with
source s(e) = u such that ϕ(e) = ē. We say that Ḡ is a base graph of G and G is a total
graph of Ḡ. Trivially, G is both its own base graph and total graph. If G has no base graph
smaller than itself, we say G is opfibration prime. An out-tree is a graph that has a root
vertex r such that there is exactly one directed walk from r to every other node.

We give the following properties without proof. For a detailed discussion and proofs, refer
to [Boldi and Vigna 2002].

Property 1. Let ϕ : G → Ḡ be an opfibration. For every label-sequence Λ and every
vertex v ∈ V we have that Λ(v) 6= ∅ iff Λ(ϕ(v)) 6= ∅.

Property 2. There is exactly one opfibration prime base graph of G. We call it the
minimum base graph of G and denote it by G?.
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Property 3. For every v ∈ V , there is a unique (but not necessarily finite) total graph
Hv of G that is an out-tree with root in ϕ−1(v), where ϕ is the opfibration mapping Hv to
G. We call Hv the universal total graph of G at v.

Property 4. A graph is opfibration prime iff all its universal total graphs are distinct.

Property 5. Two different opfibration prime graphs have different sets of universal
total graphs.

We can now show that if we have a local orientation, there is a label-sequence of finite
length that can be used to distinguish two rooted, opfibration prime graphs.

Lemma 4.1. Let Gv = (V,E), G′v′ = (V ′, E′) be two distinct, rooted, locally oriented
opfibration prime graphs. There is a finite label-sequence Λdiff for which Λdiff(v) 6= ∅ and
Λdiff(v′) = ∅ or vice versa.

Proof. First, consider the case that Gv and G′v′ are the same graph, rooted at different
vertices, i.e., G = G′. By Proposition 4, the universal total graphs Hv and Hv′ are distinct.
Let r, r′ be the roots of Hv, Hv′ , respectively. Because Hv and Hv′ are distinct and locally
oriented, there is a finite label-sequence Λdiff with Λdiff(r) 6= ∅ and Λdiff(r′) = ∅ or vice
versa. By Property 1, this implies Λdiff(v) 6= ∅ and Λdiff(v′) = ∅ or vice versa.

Now assume that G 6= G′. By Proposition 5, and without loss of generality, we may
assume that there is a vertex u ∈ V , such that the universal total graph Hu of G at u is
not a universal total graph of G′. Let Λ1 be the label-sequence associated with the path
from v to u in G. This path exists since G is strongly connected. If Λ1(v′) = ∅, we have
found the desired label-sequence. Otherwise, let u′ be the vertex at which the path Λ1(v′)
ends. By our choice of u, we have Hu 6= Hu′ . By the same argument as above, there is a
label-sequence Λ2 with Λ2(u) 6= ∅ and Λ2(u′) = ∅ or vice versa. But then, the concatenated
label-sequence Λ1 ◦ Λ2 has the desired property.

The following theorem holds for directed graphs, i.e., for robots that cannot backtrack
their moves. Similar results are known for undirected graphs where robots can identify the
edge along which they reached their current location [Chalopin et al. 2011; Dereniowski and
Pelc 2012; Yamashita and Kameda 1996].

Theorem 4.2. A robot exploring any finite, directed, strongly connected, locally oriented
multi-graph G can determine G? if it knows an upper bound n̄ on the number of vertices of
G.

Proof. In the following, we describe a strategy for finding G? under the assumption
that the maximum degree ∆ of G is known, as well as the set L of all arc labels occurring
in G. Otherwise, we start with initial guesses of ∆ and L according to the observations of the
agent at its starting location. Whenever the agent makes an observation that is inconsistent
with its belief of ∆ and L, the agent updates its belief and restarts the whole procedure.
As both ∆ and L are finite, the number of times the agent needs to restart is finite.

Now, let vstart denote the vertex of G at which the robot is initially located, and let
v?start denote the corresponding vertex of G?. By Property 2, G? is unique. We will give an
algorithm that maintains a finite set C of rooted graphs. This set is always guaranteed to
contain G? rooted at v?start, provided that the belief of ∆ and L is correct. We begin by
setting C to contain all opfibration prime graphs of size at most n̄ and maximum degree ∆,
with arc-labelings from L and all possible roots.

While |C| > 1, we let G1
v1 , G

2
v2 be two rooted graphs in C and describe how to conclude

that either G1
v1 or G2

v2 can safely be eliminated from C. Once |C| = 1, the only graph left
will have to be G?. Observe that while the robot has not visited all nodes of G, more than
one consistent base graph remains in C (for different outgoing arcs at the unvisited node,
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different labels and multiplicities). Once |C| = 1, the agent must thus have visited all nodes
of G and hence have a correct belief of ∆ and L. In the following, let phist denote the walk
in G the robot has travelled along so far during the execution of the algorithm, and let
Λhist = λ(phist) be the associated label-sequence. Note that the robot is aware of Λhist but
not of phist, since it does not know the graph G, nor vstart. For a rooted graph G′v, we use
vhyp(v) to denote the last vertex on the walk Λhist(v) in G′, i.e., the vertex the robot would
currently be located at if it had started the algorithm at vertex v in graph G′.

Given two rooted, opfibration prime graphs G1
v1 , G

2
v2 , we argue how to conclude that

one of them cannot be G? rooted at v?start. First, we can check whether Λhist(v1) = ∅ or
Λhist(v2) = ∅; if one of the two is the case, we can discard the corresponding rooted graph
since it is not compatible with the observations the robot has made so far. Otherwise, we
consider G1 rooted at vhyp(v1) and G2 rooted at vhyp(v2). By Lemma 4.1, there is a label-
sequence Λdiff of finite length, for which Λdiff(vhyp(v1)) 6= ∅ and Λdiff(vhyp(v2)) = ∅ or vice
versa. The robot tries to move along a path corresponding to Λdiff . If that turns out not to
be possible because at some point no outgoing edge has the required label, it can discard
G1

v1 from C if Λdiff(vhyp(v1)) 6= ∅, and G2
v2 otherwise. If it successfully reached the end of

Λdiff , the robot can eliminate G1
v1 from C if Λdiff(v1) = ∅, and G2

v2 otherwise.

We obtain Theorem 3.1 immediately by applying Theorem 4.2 to Gvis. Note that the
results of this section are not restricted to visibility graphs.

5. IDENTIFYING THE CLIQUE C?

In this section we study structural properties of G?
vis = (V ?, E?) which we later use to show

Theorem 3.3.
Let ϕ : Gvis → G?

vis be the opfibration from Gvis to G?
vis. As G

?
vis is the minimum base of

Gvis, ϕ is unique. Every vertex v? of G?
vis corresponds to a set of vertices of Gvis. We write

Cv? := ϕ−1(v?) ⊆ V and say Cv? is the class of v?. For all v ∈ ϕ−1(v?), we set Cv := Cv? .
From the definition of opfibrations and the minimality of the base graph it follows that
every two vertices u, v of the same class Cu have the same degree d and that due to local
orientation we have Cvisu(i) = Cvisv(i) for all 1 ≤ i ≤ d. We may thus write Cu(i) := Cvisu(i).
Finally, we define B :=

(
Cv0 , Cv1 , . . . , Cvn−1

)
to be the sequence in which the classes appear

along the boundary.
As G?

vis is opfibration prime, by Property 4 every vertex has its unique universal total
graph. We use this and define a natural order O on the vertices of G?

vis and thus on the
classes of Gvis.

Lemma 5.1. The sequence B is periodical with period |V ?| and thus all classes have the
same size.

Proof. The boundary can be traced by following the first edge at every vertex, i.e., the
unique edge who’s label starts with ’1’. It follows that the image of the boundary under ϕ
consists of n/|V ?| copies of a Hamiltonian cycle of G?

vis. Hence, B is periodical with period
|V ?| and all classes have the size n/|V ?|.

We show that if a vertex from some class is an ear, then every vertex of the class is an
ear. Recall that an ear of Gvis is a vertex vi ∈ V for which vi−1 and vi+1 see each other.

Lemma 5.2. Let |V ?| > 2 and vx, vy ∈ V such that Cvx(2) = Cvy and Cvy (−2) = Cvx .
Then, Cvx+2

= Cvy and every vertex in Cvx+1
is an ear.

Proof. We first prove that for all vi ∈ V and u = visvi(2), we have that if vi =
visu(−2), then u = visvi(2) = vi+2 and thus vi+1 is an ear. For the sake of contradiction
assume for some vi ∈ V and u = visvi

(2) we have visu(−2) = vi but visvi(2) 6= vi+2.
Consider the subpolygon induced by chain(vi, visvi

(2)). This subpolygon has size at least
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Fig. 3. Visualization of the “zig-zag” sequence Z. As Z does not self-intersect, there is a point l0 from which
on Z’s entries do not change anymore. There are two cases how this point is reached: either sl0−1 is distinct
from sl0 (left) or they are the same (right).

four as visvi(2) /∈ {vi+1, vi+2}. In the visibility graph of the subpolygon, vi and visvi(2) are
neighbors on the boundary and both have degree two, which is a contradiction to the fact
that every polygon must admit a triangulation. Therefore visvi(2) = vi+2 and vi+1 is an ear
as its neighbors on the boundary see each other.

Because of the above observation, it is sufficient to show that for every v ∈ Cvx we have
visu(−2) = v, where u := visv(2). For the sake of contradiction assume in the following that
there is a vertex s0 ∈ Cvx with t1 := viss0 (2) and vist1(−2) 6= s0.

We define an infinite sequence Z = (s0, t1, s1, t2, . . .) where tl := vissl−1
(2) and sl :=

vistl(−2) for all l > 0. Obviously sl ∈ Cvx , tl+1 ∈ Cvy for all l ≥ 0. Intuitively, Z is the
zig-zag line obtained by alternately traveling along the first and the last non-boundary arc
in ccw order, starting at s0 (cf. Figure 3). It is immediate to see that for any fixed index
l′ > 0 we have sl, tl ∈ chain(sl′ , tl′) for all l ≥ l′. Hence the part of the boundary in which
these vertices lie becomes smaller and smaller and from some index l0 > 0 on we have
sl = sl0 and tl = tl0 for all l ≥ l0 (we set l0 to be the smallest such index). Let 0 ≤ i, j < n
be such that vi = sl0 , vj = tl0 . We then have visvi(2) = vj and visvj (−2) = vi. Thus, by
the above observation, vi+1 is an ear and vj = vi+2. As vi ∈ Cvx

and vj ∈ Cvy , this implies
Cvx+2 = Cvy . It remains to show that every vertex in Cvx+1 is an ear.

We have to consider two cases. Either sl0−1 is distinct from sl0 or it is the same vertex
(cf. Figure 3). We assume sl0−1 6= sl0 and omit the discussion of the second case which
is essentially analogous (the same arguments hold for the other case if we switch the roles
of s and t and reverse the boundary order). Let 0 ≤ k < n such that vk = sl0−1. As
visvk(2) = vi+2, we have that vk does not see any vertex in chain(vk+2, vi+1) (note that
this chain is not empty as vk 6= vi) and thus as vk+1 ∈ Cvx+1

is in the same class as (the
ear) vi+1, the interior angle of the polygon at vk+1 is strictly smaller than π. Since all
vertices in chain(vi+3, vk) ∪ chain(vk+2, vi+1) lie on the same side of the line through vk
and vi+2 and are separated by vi+2 (cf. Figure 4), no vertex in chain(vi+3, vk) can see any
vertex in chain(vk+2, vi+1). Let X ⊂ Cvx be the set of vertices of Cvx in chain(vi+3, vk)
and let Y ⊂ Cvy be the set of vertices of Cvy in chain(vi+3, vk). As |V ?| > 2, Cvx , Cvx+1 ,
and Cvx+2 = Cvy are all different and thus X and Y are disjoint. Note that because B is
periodical with period |V ?| (Lemma 5.1) we have |X| = |Y |+ 1.

We define the (undirected) bipartite graph Bxy = (Cvx ∪ Cvy , Exy) with the edge-set
Exy = {{u, v} ∈ Cvx × Cvy | (u, v) ∈ E}. In Bxy all vertices need to have the same degree d
as |Cvx | =

∣∣Cvy

∣∣ and all vertices in either class have the same degree. We have |X| = |Y |+1,
we have that vertices in X can only have edges to vertices in Y ∪ {vi+2} and that vertices
in Y can only have edges to vertices in X. For all vertices to have the same degree, vi+2

cannot have any edges leading to Cvx\X. This is a contradiction to the fact that vi+2 sees
vi which is not in chain(vi+3, vk) and thus not in X.
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Fig. 4. No vertex in chain(vi+3, vk) can see any vertex in chain(vk+2, vi+1).

We can now consider arbitrary values of |V ?| and prove Lemma 3.2. We will need the
following property of the shortest curve between two vertices of P.

Theorem 5.3 ([Lee and Preparata 1984]). Let s, t ∈ V . There is a unique shortest
curve p from s to t that lies in P. This curve is a chain of straight-line segments connected
at reflex vertices of P, and the two line segments at any vertex of p form a reflex angle. We
say p is the (euclidean) shortest path in P between s and t.

Proof of Lemma 3.2. In the following we let vi ∈ V be an ear and show that all
vertices in Cvi are ears.

First consider the case |V ?| > 2. As (vi−1, vi+1) ∈ E, we have visvi−1
(2) = vi+1 and

visvi+1
(−2) = vi−1, and thus Cvi−1

(2) = Cvi+1
and Cvi+1

(−2) = Cvi−1
. By Lemma 5.2 all

vertices in Cvi are ears. Now consider the case |V ?| = 1. In that case, since vi is convex, so
are all vertices in Cvi , as convexity is encoded in the arc-labeling. As |V ?| = 1, this means
that the polygon is convex and thus all vertices are ears.

It remains to consider the case |V ?| = 2. Let Cvj
6= Cvi be the second class in Gvis. Again,

vi is convex and thus all vertices in Cvi are. For the sake of contradiction assume that there
is a vertex vx ∈ Cvi which is not an ear. Then vx−1 and vx+1 do not see each other, and
by Lemma 5.1, vx−1, vx+1 ∈ Cvj . Let p be the shortest path in P between vx−1 and vx+1.
By Theorem 5.3, all vertices on p are reflex. This means that all vertices on p must be from
Cvj and thus all vertices of Cvj must be reflex. Moreover, every vertex u in Cvj has two
neighbors u′, u′′ in Cvj such that the angle between (u, u′) and (u, u′′) is reflex. If we cut
off vi from P, we do not affect this property (every vertex u in Cvj still has two neighbors
from Cvj forming a reflex angle) and we thus obtain a new polygon in which all vertices
in Cvj are still reflex (i.e., cutting off an ear cannot make a vertex of Cvj convex). We can
continue to obtain smaller and smaller subpolygons by selecting ears and cutting them off,
maintaining the property that all vertices in Cvj are reflex. Thus, in this process, we never
cut off a vertex of Cvj . This is a contradiction, as every polygon has at least one ear and
thus the above process has to cut off all vertices eventually.

Proof of Theorem 3.3. Lemma 3.2 allows us to employ the following procedure re-
peatedly until only one class C? remains: In step i = 1, . . . , |V ?| − 1, select the class C(i)

which is smallest w.r.t. the order O among all classes of ears. We remove C(i) from the
polygon by deleting the corresponding vertex from G?

vis and updating the arc labels of its
neighborhood accordingly. Removing class C(i) in that way produces a (not necessarily min-
imum) base graph G?

i of the visibility graph G(i)
vis of the subpolygon P(i) obtained by cutting

off all ears in C(i). Since the minimum base graph of G(i)
vis is also a (minimum) base graph

of G?
i , all vertices of Gvis corresponding to a single vertex of G?

i (i.e., to a class of Gvis) fall
into the same class of G(i)

vis. As P(i) has again at least one ear, Lemma 3.2 guarantees the
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existence of a class of G(i)
vis that contains only ears. Each of the remaining classes of Gvis

contains vertices from a single class of G(i)
vis, thus one of them contains only ears of P(i).

This allows us to repeat our procedure.
If we repeat the procedure |V ?|−1 times, we are finally left with a single class C(|V ?|) = C?

and the sequence (C(1), C(2), . . . , C(|V ?|−1)), which is fixed by our order relation O. As C?

again corresponds to a subpolygon and thus must contain at least one ear, every vertex
in C? must be an ear. Therefore the corresponding subpolygon is convex and C? forms a
clique in Gvis.

The existence of a clique gives us a way of computing n from n̄ using G?
vis. By Lemma 5.1

we have n = |V ?| · |C|, where C is any class of Gvis. If we inspect the number of self-loops
of every vertex of G?

vis, we are sure to encounter at least one vertex with |C| − 1 self-loops,
which corresponds to a clique in the visibility graph, and thus |C| is equal to the maximum
number of self-loops of any vertex plus one.

By Theorem 3.1, a robot can determine G?
vis in finite time. Furthermore it can identify

which of the classes consist of ears: If |V ?| ≤ 2, a class of convex vertices only contains ears,
and for |V ?| > 2 the robot can use Lemma 5.2. The robot can hence execute the above
procedure explicitly and we obtain

Theorem 5.4. A robot in P can determine the lexicographically smallest sequence C =
(C(1), C(2), . . . , C(|V ?|)), such that for every 1 ≤ i ≤ |V ?|, all vertices in C(i) are ears in the
subpolygon obtained by removing the vertices in

⋃i−1
j=1 C

(j) from P.

6. RECONSTRUCTING GVIS

In the following, we assume that G?
vis and the sequence C = (C(1), C(2), . . . , C(|V ?|)) from

Theorem 5.4 have already been determined. For all 1 ≤ i ≤ |V ?| we denote by G
(i)
vis =

(V (i), E(i)) the subgraph of Gvis induced by
⋃|V ?|

j=i C
(j). By definition of C, G(i)

vis is the
visibility graph of a subpolygon of P, and we denote this subpolygon by P(i). As C(|V ?|) =

C?, by Lemma 5.1 we have that G(|V ?|)
vis is the complete graph on n/|V ?| vertices. We will

show that G(i)
vis can be inferred from G

(i+1)
vis , suggesting a way to reconstruct Gvis = G

(1)
vis .

First, we need one more lemma that was used before in [Bilò et al. 2012].

Definition 6.1. Let vi, vh be two vertices that do not see each other, and vb be the first
vertex other than vi on the (euclidean) shortest path from vi to vh (and thus vb is reflex).
We say vh is hidden from vi by vb.

Lemma 6.2. Let G(i+1)
vis be given, as well as a vertex vj ∈ V (i), a vertex vy ∈ V (i+1)

visible to vj in P, and the index b = Ovy (vj). It is possible to determine the number of
vertices in C(i) hidden from vj by vy in P.

Proof. By construction, two vertices of P(i) see each other in P if and only if they see
each other in P(i). In particular, the shortest path in P between two vertices of P(i) only
bends at vertices of P(i+1), since the vertices of C(i) are convex in P(i). We can thus restrict
ourselves to counting the number of vertices in C(i) hidden from vj by vy in P(i), using the
fact that no vertex in C(i) is hidden by another vertex of C(i).

We give an algorithm to count the number of vertices in C(i) hidden from vj by vy in
P(i) (cf. Figure 5). Let H = Hdirect ∪Hindirect be set of these vertices, where Hdirect are the
ones visible to vy and Hindirect are the ones not visible to vy. Since b = Ovy (vj) is given,
we know which arc of G?

vis corresponds to (vy, vj). Hence, by inspecting G?
vis, we can obtain

the arc-labels of all arcs at vy in G(i)
vis that form a reflex angle with (vy, vj). We can infer
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Fig. 5. We can count the vertices of C(i) hidden from vj by vy by counting the vertices of C(i) that form a
reflex angle with vj at vy (light grey region) and repeating the method recursively on the other (non-C(i))
vertices that form reflex angles with vj at vy (dark grey).

|Hdirect|, since G?
vis encodes to which class each arc-label at vy leads. It remains to show

how to determine |Hindirect|.
Let U ⊆ V (i+1) be the set of vertices of G(i+1)

vis that are visible to vy and form a reflex
angle with vj at vy. Since G

(i+1)
vis is given and since vy ∈ V (i+1), we can infer the identities

of the vertices in U . Every vertex of Hindirect is hidden from vy by exactly one vertex of U .
Conversely, every vertex of C(i) that is hidden from vy by a vertex of U is part of Hindirect.
We are given G(i+1)

vis , hence, for every u ∈ U , we know the index b′ = Ou(vy). We can thus
use our algorithm recursively for vy and every vertex u ∈ U ⊆ V (i+1) to obtain Hindirect.

Lemma 6.3. Let 1 ≤ i < |V ?|. It is possible to determine G(i)
vis from G

(i+1)
vis .

Proof. The set of vertices V (i) of G(i)
vis is given by V (i) = C(i) ∪ V (i+1). It remains

to show how to construct E(i). Let A be the set of arcs in Gvis between vertices of C(i)

and V (i+1), and B be the set of arcs between vertices of C(i). We will first show how to
construct A using the information contained in G(i+1)

vis and G?
vis. After having determined

A, we can apply the same approach in order to obtain B. This completes the proof as
E(i) = E(i+1) ∪A ∪B.

Note that every arc in Gvis has a counterpart of opposite orientation. In order to construct
A it is thus sufficient to consider e ∈ V (i+1)×C(i) and show how to decide whether e ∈ A or
e /∈ A. Deciding which elements of C(i)×V (i+1) are in A is then immediate. Equivalently, we
can consider vj ∈ V (i+1) with degree d in G(i)

vis and 1 ≤ k ≤ d such that visvj (k) ∈ C(i), and
show how to “identify” visvj (k), i.e., how to find the index x such that vx = visvj (k) in G(i)

vis.
If k = 1, we have x = j+1 and if k = d, we have x = j−1 because vj sees its two neighbors
on the boundary. Now assume 1 < k < d. We will show that vy := visvj (k − 1) cannot lie in
C(i). For the sake of contradiction assume that vy ∈ C(i). In P(i) all vertices of C(i) are ears
and thus convex. By Lemma 5.1 and i < |V ?|, there is more than one class and thus there is
a vertex vz ∈ chain(vy+1, vx−1) which is not visible to vj . The (euclidean) shortest path in
P from vj to vz must visit vx or vy, which is a contradiction to both vertices being convex
(Theorem 5.3). We can deduce that vy /∈ C(i) and thus (vj , vy) ∈ E(i+1) is part of G(i+1)

vis and
has already been identified, i.e., the index y is known. Because of Lemma 5.1, it is sufficient
to know how many vertices of C(i) are in chain(vy+1, vx−1) in order to find x. All these
vertices are hidden from vj by vy, again because vx is convex. Either chain(vy+1, vx−1) is
empty, or all vertices hidden from vj by vy are in chain(vy+1, vx−1). We can distinguish these
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cases by inspecting G?
vis, as knowing G

(i+1)
vis allows us to infer which edge in G?

vis corresponds
to (vy, vj). In the first case there trivially are no vertices of C(i) in chain(vy+1, vx−1). In
the second case, since we know b = Ovy (vj) as vj ∈ V (i+1), we can use Lemma 6.2 to count
the number of vertices of C(i) in chain(vy+1, vx−1) hidden from vj by vy to determine x
(cf. Figure 5). Once we have determined all arcs in A, we can easily obtain their labels by
inspecting G?

vis: For every vertex in V (i+1), the corresponding vertex of G?
vis gives us the

different arc labels that belong to arcs leading to vertices of C(i). Since we already identified
all those vertices, we know which label belongs to which arc.

Using the fact that the arcs in A have already been identified, we can apply the exact same
approach to construct B. More precisely, for each vj ∈ C(i) with degree d, and 1 < k < d

such that vx := visvj (k) is in C(i), we can infer the index x by counting (Lemma 6.2) the
number of vertices in C(i) hidden from vj by vy := visvj (k − 1). We can do this because
again vy /∈ C(i), and because the edge (vy, vj) ∈ A has been identified before.

Theorem 3.5 follows directly from Theorem 5.4, Lemma 6.3 and the fact that G(|V ?|) is
the complete graph on n/|V ?| vertices.

7. OUTLOOK
We gave a visibility graph reconstruction algorithm for an agent that is able to distinguish
convex from reflex angles. The algorithm first determines the minimum base graph, then
finds a class that forms a clique, and starting from this clique constructs the visibility graph
by repeatedly adding classes of ears and determining the induced edges of the visibility
graph.

Note that knowledge of an upper bound n̄ on the number of vertices is required only in
the first step to find the minimum base graph. In addition, the exponential running time of
our algorithm is caused by this step. On the other hand, we do not rely on the geometric
meaning of the angle data to find the minimum base graph at all. It would be interesting
to see whether a specialized method for finding the base graph exists that makes use of the
angle data to avoid an exponential running time or to eliminate the need to know n̄.

Table 1 lists other configurations of sensors for which the reconstruction problem remains
open. Most prominently, we do not even know whether knowledge of n̄ alone suffices.
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