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Abstract. Given a set S of segments in the plane, the intersection graph of S is the graph with vertex
set S in which two vertices are adjacent if and only if the corresponding two segments intersect. We
prove a conjecture of Scheinerman (PhD Thesis, Princeton University, 1984) that every planar graph
is the intersection graph of some segments in the plane.

1 Introduction

In this paper, we consider intersection models for planar graphs. A segment model of a graph G maps every
vertex v € V(G) to a segment v of the plane so that two segments u and v intersect if and only if uv € E(G).
Although this graph family is simply defined, it is not easy to manipulate. Actually, even if this class of graphs
is small (there are less than 20("1°6™) guch graphs with n vertices [15]) a segment model may be long to
encode (in the models of some of these graphs the endpoints of the segments need at least 2V7™ bits to be
coded [13]). There are also interesting open problems concerning this class of graphs. For example, we know
that deciding whether a graph G admits a segment model is NP-hard [11] but it is still open whether this
problem belongs to NP or not. Here we focus on a conjecture proposed by Scheinerman [16], stating that
every planar graph has a segment model.

Many work has been done toward this conjecture. Several proofs [3,5,9] have been given for bipartite
planar graphs. The case of triangle-free planar graphs was proved by de Castro et al. [1] and recently de
Fraysseix and Ossona de Mendez [4] proved it for every planar graph that has a 4-coloring in which every
induced cycle of length 4 uses at most 3 colors.

Another approach to this problem has been proposed [12,14]. Since it is known [6] that planar graphs
are intersection graphs of Jordan arcs in the plane and since two non-parallel segments intersect at most
once, it was asked whether planar graphs are intersection graphs of Jordan arcs in the plane if every pair of
Jordan arcs s; and ss intersect at most once and in a non-tangent way (i.e. around their intersection point we
successively meet s1, S2, 81 and s2). It was already known when tangent intersection are allowed; indeed every
planar graph is the contact graph of touching circles [10]. The authors and Ochem [2] answered positively to
this question. This approach of Scheinerman’s conjecture was decisive since by improving the proof of this
result it yields a proof of Scheinerman’s conjecture that we present here. However, the construction we give
here does not exactly correspond to a stretching of the strings of the construction given in [2].

The paper is organized as follows. In Section 2 we give some definitions. In particular we define premodels
and we explain how to obtain a segment model from a premodel. In Section 3 we construct premodels for
3-bounded W-triangulations, a family of plane graphs including 4-connected triangulations. Then in Section
4 we finally construct segment models for general triangulations, which implies the existence of segment
models for general planar graphs.

2 Preliminaries

A plane graph is an embedded planar graph. Given a plane graph G, let V(G), E(G) and F(G) be respectively
the sets of vertices, edges and inner faces of G. A near-triangulation is a plane graph in which every inner face
is a triangle. A triangulation is a near-triangulation with a triangular outer face. It is easy to see that every
planar graph is the induced subgraph of some triangulation. This implies that it is sufficient to consider
triangulations. Indeed if a planar graph G is isomorphic to the graph induced by a set V(G) C V(T) of
vertices in a triangulation T', then by removing the segments corresponding to V(T') \ V(G) from a segment
model of T', we clearly obtain a segment model of G.



In all the paper, the bold notations correspond to geometrical objects like points, segments or lines. For
example we will usually denote by v the segment corresponding to a vertex v and by (v) the line prolonging
this segment. Furthermore since we consider finite planar graphs, the segment sets we consider are all finite.
Given a segment set S, its set of representative points Repg is the set that contains the intersection points
and the ends of the segments in §. A segment set S is unambiguous if every segment s € S has distinct
endpoints, and if parallel segments of S do not intersect. From now on we use the following definition of
model.

Definition 2.1. Given a segment set S, its intersection graph Gg is the graph with vertex set S and where
two vertices are adjacent if and only if the corresponding segments intersect. Furthermore if (1) S is un-
ambiguous, if (2) the intersection of any three segments of S is empty, and if (3) every endpoint belongs to
exactly one segment, then S is a model for any graph G isomorphic to Gg.

For the proof in Section 4 we need some geometrical structures to represent the triangular inner faces. To
each triangular inner face abc we will associate a face segment, abc, acb or bca.

Definition 2.2. Given an unambiguous segment set S and three pairwise intersecting segments a, b and c,
a face segment f = abc is a segment [p, q] such that:

— p is the intersection point of a and b, and going around p we consecutively meet a, f and b,
— q is an internal point of c that does not belong to any other segment of S, and
— none of its internal points belongs to any segment of S.

The points p and q are respectively called the cross-end and the flat-end of abc.

Note that the second item implies that face segments are non-trivial, i.e. p # . Note also that in this
definition a and b play the same role, so a face segment abc is also a face segment bac but it is not a face
segment acb.

Definition 2.3. Given an unambiguous segment set S, two face segments f; and f2 on S are non-interfering
if one of the following holds:

- The segments f1 and fs do not intersect.

- The segments £, and f5 have the same cross-end p and this point is the intersection point of exactly
two segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and fs in distinct
half-planes.

Definition 2.4. A full model of a near triangulation T is a couple M = (S, F) of segments sets such that:

— S is a model of T

— F is a set of non-interfering face segments on S such that for each inner face abc of T, F' contains one
of the following face segments: abc, ach, bca.

— SUF is unambiguous.

The next theorem is the main result of the paper.

Theorem 2.5. Every triangulation T has a full model M = (S, F).

2.1 Premodels

In our proofs, we use a different kind of model. The main difference with full models is that more than two
segments of S can intersect in a same point.

In the following, we consider a segment set S and a set F' of non-interfering face segments on S, where
S U F' is unambiguous. Let us denote the segments of S (resp. F') by s1,892,... (resp. f1,fa,...). Given a
representative point p, its incidence sequence Z(p) is the undirected circular sequence of segments (from
S U F) we meet by going around p. This sequence is undirected because it will make no difference going
clockwise or anti-clockwise. By extension, the partial topological incidence sequence of p, Z*(p) is the sequence
obtained in the following way. Prolong every segment that ends at p and consider its new incidence sequence.
Then replace every occurrence of s; and f; that was not in Z(p) before by (s;) and (f;). It is clear that Z(p)
is a subsequence of Z*(p) (i.e. Z(p) € Z(p)). We say that Z(p) is of the form ([r1],re,...,r)) forr; € SUF,
if either Z(p) = (r1,r2,...,1%), Z(p) = (r2,...,r%), or Z(p) € ((r1),re,...,rx) € Z*(p).



Let us define types for the representative points, depending on their incidence sequence. These types
are not always entirely determined by the incidence sequence and we will have to assign a type (among the
possible ones) to each representative point. Furthermore, these types are in correspondence with some graphs
we also describe here.

— A point is a segment end if its incidence sequence is (s1). The corresponding graph is the single vertex
S1.

— A point is a flat face segment end if its incidence sequence is (s1,f1,s1). The corresponding graph is the
single vertex si.

— A point may be a crossing if it has an incidence sequence of the form (s, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,
S1, [f2],82). The corresponding graph is the edge s1ss2.

— A point may be a path—(s1, S2, ..., Sk)—point with k& > 2, if it has an incidence sequence of the form
(s1,82,...,8k, (81), (82)) (See Figure 1). Such a typed point is in correspondence with path—(s1, sz, ..., Sk),
the graph with vertex set {s1,..., s} and edge set {s;s;+1 | 1 <1i < k}.

S1 S2 Sk S1 S2 Sk

Fig. 1. A path—(s1, s2,..., sx)—point, its partial realization, and its corresponding graph

— A point may be a fan-si1<(sa,...,si)—point with k > 2, if it has an incidence sequence of the form
(s1,[fi],s2,... 8k, (s1), [f1], (s2)) (See Figure 2), with f; = sisax. Note that since f; is a face segment
it occurs at most once in the incidence sequence. Such a typed point is in correspondence with fan—s;<
(s2,...,8k), the graph with a vertex s; dominating a path (ss,...,sg).

S2 S3 Sk
Fig. 2. A fan-s1<(s2, ..., sg)—point, its partial realization , and its corresponding graph
— A point may be a fan-path-s1<(s2,...,8;) - (Siy...,s)—point with 2 < ¢ < k, if it has an incidence
sequence of the form (si,...,s;,...,8k,(s1), (s;)) (See Figure 3). Such a typed point is in correspondence
with fan-path—-si1<(s2,...,8;) (si,...,sk), the graph with a path (s2,..., sx) and a vertex s; dominating

the subpath (so,...,s;).
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Fig. 3. A fan-path-s1<(s2,...,s:) - (si,..., Sk)-point, its partial realization, and its corresponding graph
— A point may be a path-fan—(s;—1,...,82,81) - $1< (84, - .., 8)—point with 2 < i < k, if it has an incidence
sequence of the form (si,...,s;,...,8,(s1), (s;)) (See Figure 4). Such a typed point is in correspondence

with path-fan—(s;—1,...,S2,81) s1<¢(si, ..., Sk), the graph with two paths (s1,...,s;,-1) and (s;, ..., sk),
where s; dominates the second path.

Si—1 S2 S1
S1
S2 Sk Si Si41 Sk
Si
Fig. 4. A path-fan—(s;—1,...,s2,51) - s1<9(8s, ..., Sg)—point, its partial realization, and its corresponding graph
— A point may be a double-fan—s1<(sa,...,s;) » $i<¢(Sit1,- .., Sk, s1)—point with 2 < i < k, if it has an
incidence sequence of the form (si,...,s;,...,sk, (s1),(s;)) (See Figure 5). Such a typed point is in cor-
respondence with double-fan—s1<(sa,..., ;) $i<¢(Sit+1,---, Sk, S1), the graph with two paths (sa,...,s;)
and ($;41,.-.,58k, $1), where s1 and s; respectively dominate the first and the second path.

/ S1 Sk Si+1
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S2
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Fig.5. A double-fan—s1<(s2,...,s:) - i< (Si+1, ..., Sk, S1)—point, its partial realization, and its corresponding graph

Actually, the graphs we considered here are plane graphs, and their inner faces are the grey faces in the
figures. As in [4], we need a bipartite digraph to describe the constraints between segments and representative
points.



Definition 2.6. Given a segment set R, the constraints digraph Constg is the bipartite digraph with vertex
sets R and Repr, and where r € R and p € Repgr are linked if and only if p € r. More precisely, there is an
arc from p to r if p is an endpoint of r, otherwise (when p is an internal point of r) the arc goes from r to
p-

Informally this graph describes the fact that the position of a segment is determined by its endpoints, and
determines the position of its internal representative points.

Definition 2.7. Given a segment set S, a set F' of non-interfering face segments on S and a function T that
assigns a type to each representative point, the triple M = (S, F,7) is a premodel of a near-triangulation T
if the following holds:

- The set SU F is unambiguous and the digraph Constsyr is acyclic.
- A vertex a € V(T) if and only ifa € S.
- An edge ab € E(T) if and only if a and b intersect in a point p such that the graph corresponding to
T(p) contains the edge ab.
- A face abe € F(T) if and only if one of the following holds:
- either there exists a face segment abc, acb or bca in F,
- or, a,b and c intersect in a point p such that abc is an inner face of the graph corresponding to 7(p).

Note that a premodel M = (S, F,7) of a near-triangulation 7" has a bounded number of representative
points. There are at most 2|V(T)| segment ends, at most F(7T') flat face segment ends, and at most E(T)
points of another type (since each of them corresponds to at least one edge of T').

Remark 2.8. If a premodel M = (S, F, 7) of a near-triangulation T has 2|V (T)| + |F(T)| + |E(T)| represen-
tative points, then (S, F') is a full model of T'.

2.2 Local Perturbations

In this subsection we describe how to transform a premodel M = (S, F, ) of a near triangulation T into a
full model M’ = (S’, F’) of T. In the following the segments denoted by r; are segments of S U F. Let us
define three basic moves: prolonging, gliding and traversing.

Lemma 2.9 (prolonging). Consider a premodel M = (S, F,T) of a near triangulation T with an intersection
point p which is the end of a segment s; € S. If for every segment so € S that has an end in p, there is
no directed path from so to s1 in Constsyr, it is possible to prolong s1 across p without creating a cycle
in Constgrup (where S’ is the new segment set). Furthermore, if the type 7(p) is still applicable to p then
(S’, F,7) remains a premodel of T

Proof. Consider a point q in the line (s1) across p and let S’ be as S except that we replace p by q as an
endpoint for s;. We choose q in such a way that s; does not intersect a new segment, and S’ U F' remains
unambiguous. Now it is easy to see that Consts:yp is very similar to Constsyr, we just have replaced the
arc ps; by the arc s1p, added a vertex for q, and added an arc gs;. Since the face segments have out-degree
zero in Constg:yr, a cycle in this digraph should necessarily pass through s;, p and a segment s, € S that
has an end in p. Thus, according to the conditions on Constsyr, it is clear that Constg/yp is acyclic. O

Remark 2.10. Consider a premodel M = (S, F,7) with a point p that is the intersection of exactly two
segments from S, s; and s,. By prolonging all the segments that end at p we obtain a segment set S’ such
that Consts/yp remains acyclic.

A segment set R is flexible if every representative point p is internal for at most two segments of R. Note
that according to the defined types for every premodel M = (S, F, 1), the set S U F is flexible.

Definition 2.11. A move of a segment set R = {r; = [a;,b;] | 1 <@ < |R|} is a segment set R’ such that
R' = {r, =[al,b]] | 1 <i < |R|}. An interpolation of this move is a continuous function defined fort € [0, 1]
that gives a move R' of R such that R = R and R' = R'.

Lemma 2.12 (gliding). Consider a flexible and unambiguous segment set R such that Constpr is acyclic,
and a representative point p of R. If the segments r1,rs,...,1r; are consecutive around p, if all the segments
ro,...,r; have an end at p and are in the same half-plane delimited by (s1) (See Figure 6), and if in Constg
the vertex r1 cannot be reached from any r; with 2 < j < i, then there ezists a move R' with an interpolation
R such that for every t €]0,1]:



- The set R! is unambiguous and Constg: is acyclic.

- The point p splits into two representative points pl and pb, which incidence sequence are respectively
(ri,rh, ... vt rt) and the incidence sequence of p without the occurrences of rs, ... rt.

- For every representative point q # p of R there is a representative point q' in R with ezactly the same
topological incidence sequence.

- There is no other representative point (i.e. |Repgt| = |Repr| + 1).

- Every segment r' € R! (resp. representative point q° € Repg:) that is not reachable from any p} in

Consth, is static, that is v* =1 (resp. ' = q).

Fig. 6. gliding of r2,...,r; on ry.

Proof (of Lemma 2.12). Consider a segment x € R which internal representative points have an incidence
sequence of the form (x,y,x,y) for some y € R. Since Constg is acyclic, such segment necessarily exists.
Now we proceed by induction on |R| and consider as the initial case, the case where i = 2 (only one segment
ro is gliding on rq) and x = ry. Since R is finite there exists a real € > 0 such that (1) every representative
point q ¢ x of R verifies dist(q,x) > ¢ and (2) every segment y # x incident to the other end of = verifies
dist(p, (y)) > € (where dist is the Euclidean distance). It is now clear in Figure 7 that there is a convenient
move R’ (with an interpolation R') in which only x is modified. Actually just one end of x moves continuously
on ry from p to pi, a point of ry such that dist(p,p1) < €. Let us now verify that R’ and R' follow the
requirements of the lemma. Consider any ¢ €]0, 1].

Fig. 7. Around x = r2 when ¢ = 2.

- The condition (2) in the definition of € ensures us that R! is unambiguous. Moreover, since Const R\ {x*,pt}
is a subdigraph of Constg that is acyclic, any cycle of Constp: should pass through xt. But since all its
internal representative points have out-degree zero in Constg: (because we are about to show that their
incidence sequence is of the form (x!,y?,x!,y?)) there is no such cycle and Constr: is acyclic.

- It is clear, since only one segment is moving, that the incidence sequences of p} and p} are as expected.



- Similarly it is clear that for every representative point q ¢ x the topological incidence sequence of q
remains unchanged. For the representative points q # p on x, the definition of € ensures us that their
topological incidence sequences remain unchanged, that is of the form (x¢,y?, x!, y?).

- We clearly have |Repg:| = |Repr| + 1.

- It is clear in the construction that every segment y' # x’ of R (resp. representative point q' # p! that
is not internal in x!) is static.

For the induction step (when i > 2 or x # r3), we apply the induction hypothesis on R_ = R\ x. This is
possible since R_ is flexible and unambiguous, and since Constr_ is a subdigraph of Constg, thus acyclic.
Let the ends of x be q; and g2, and assume here that these points are still representative points in R_ (we
later explain how to proceed if it is not the case). Thus the points q} and g} belongs to Rep’ for every
t € [0,1] (if g1 = p, let g} = p! or p, whether x € {ra,...,r;} or not) and let x* = [q}, q}]. Consider now
the interpolation defined by R = Rt Ux?.

Claim (1). Consider three points moving continuously on the plane (three continuous functions from [0, 1]
to the points of the plane). If these points are non-collinear for ¢ = 0, then there exists a value t; €]0, 1] such
that they are non-collinear for every t € [0, ¢1].

This implies the following claims.

Claim (2). Since R® = R is unambiguous, there is a value t5, with 0 < ¢t < 1, R? is unambiguous for every
t € [0,t3]. Furthermore, t2 can be such that for every segment y € R (x included) and every representative
point q € Repr_, if q ¢ (y) then q’ ¢ (y*) for every t € [0, t2].

There is also an interval where x does not intersect undesired segments.
Claim (8). There is a value t3, with 0 < ¢35 < 1, such that |Repg: N x| is constant for every ¢ €]0, t3].

Now by taking t* = min{ts, 3} we have a move R*" and an interpolation R***", that follows the requirements
of the lemma. Indeed, for every ¢ €]0,¢*]:

- The set R! is unambiguous (by Claim (2)), and Constg: is acyclic. Indeed a cycle should necessarily
pass through x but all its internal representative points have out-degree zero in C'onst .

The incidence sequence of p; and ps are convenient. The only segment that could behave badly is x
but this does not occur. If x is not incident to p Claim (3) ensures us that p!} and p} ¢ x'. Otherwise
(when q; = p) the definition of qf ensures us that x' is incident to the convenient point, p! or p5, and
Claim (2) ensures us that its position around this point remains correct (since qf ¢ (y*) for any y* # x*
incident to p} or pb).

By the induction hypothesis the only representative points, distinct from p} and p}, that may not have
the same topological incidence sequence (as in R) are the representative points on x. Claims (2) ensures
us that these sequences remain unchanged.

We have |Repgr:| = |Repgr| + 1 by the induction hypothesis and Claim (3).

By induction hypothesis, every segment rt # x* of R? (resp. representative point q’ that is not internal
in x') that is not reachable from p! in Consty is static. If x! (resp. an internal point q' of x!, at the
intersection with some segment denoted y') is not reachable, it is also the case of q} and q} (resp. x*
and y?). Thus these points (resp. segments) are static implying that x? (resp. q') is static.

t

If the point q; is not a representative point of R_, this means that q; belongs to zero or one segment y
of R_ (as an internal point). In the first case, let g} unchanged (q} = q1), and in the second case, let g be
the intersection point of the lines (x) and (y*). Then we put q} in Repgr_ for the computation of ¢5. If qs is
not a representative point of R_ we proceed similarly. Then the proof would work as described above. O

Lemma 2.13 (traversing). Consider a flezible and unambiguous segment set R such that Constg is acyclic,
and a representative point p of R which incidence sequence is (ri,...,r;,...,X;,T1, j41,..., g, ;) with
2 <i<j<k (See Figure 8). There exists a move R’ with an interpolation R* such that for every t €]0,1]:

- The set R! is unambiguous and Constg: is acyclic.
- The point p splits into i representative points p}, for 1 <1 < i, which incidence sequence are (v}, rh, ... rt)
for 1 =1, (v, x},vi,v) for 1 <1 <i, and (r{,r},... x5, v, vj01,...,vp, 1)) for | =i
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Fig. 8. traversing

- For every representative point q # p of R there is a representative point q' in R' with ezactly the same
topological incidence sequence.

- There is no other representative point (i.e. |Repr:| = |Repr|+1i—1).

- Every segment r € R (resp. representative point q € Repr) that is not reachable from pt in Constge is
static, that is v* =1 (resp. " = q).

Since the proof of this lemma is very similar to the proof of Lemma 2.12, we omit it here.

Given an intersection point p in a premodel M = (S, F, 1) of T', a partial realization of p is an operation
that combines a basic move at p and the addition of new face segments (eventually none), and that yields
another premodel M’ = (8’, F',7’) of T. A simple example of a partial realization at p is prolonging a
segment s across p, choosing s in such a way that 7(p) still applies and that the constraints digraph remains
acyclic. Such a partial realization is called a mazimization of p, and if p is already internal in two segments
we say that this point is mazimal. In a premodel, we say that a point p is simple if it is either a segment
end, a flat face segment end, or a maximal point without any segment of S ending here (at p). Otherwise,
we say that this point is special.

Proposition 2.14. Consider a premodel M = (S, F,7) of a near-triangulation T. Every special point p of
M that is mazimal admits a partial realization.

Proof. Note that since p is special and maximal there are at least three segments from S intersecting at p.
We distinguish five cases according to the type of p.

If this point is a path—(s1, s, ..., sx)—point we do a gliding of {ss,...,s;} on s2 to a new representative
point q (by Lemma 2.12 since p is not an end of s2). Let p and q be respectively typed as the crossing
point of s; and s9, and as a path—(ss, ..., si)-point (See Figure 1). Under these conditions the gliding keeps
the constraints digraph acyclic and preserves the topological incidence sequence of the other representative
points (so that their type can remain unchanged). Thus, since the graph that corresponded to p (the path
(s1,...,8k)) is the union of the graphs corresponding to p and to q, we are done.

If this point is a fan—s;<(sa,. .., s;)—point we do a traversing of {ss,...,s;} along so and through s; to
a new representative point q. We add the face segments s;s;s;—1, with 3 <14 < k, and we let q be typed as a
path—(sa, ..., sk)—point (See Figure 2). Under these conditions the traversing keeps the constraints digraph
acyclic and preserves the topological incidence sequence of the other representative points. Thus since the
graph that corresponded to p (the fan—si<(sa, ..., s)) is the union of the graphs corresponding to the new
crossing points, to the new face segments, to p and to q, we are done.

If this point is a fan-path-s1<(sa,..., ;) - (si,..., sk)—point with 2 < i < k, we consider that i < k.
Otherwise we could consider this point as a fan-point, a case we already considered. Here we do a gliding
of {Sit1,...,8k} on s; to a new representative point q and we let the points p and g be respectively typed
as a fan—sj<(sa,...,s;)—point and as a path—(s;, ..., sx)-point (See Figure 3). Under these conditions the
gliding keeps the constraints digraph acyclic and preserves the topological incidence sequence of the other
representative points. Thus since the graph that corresponded to p is the union of the graphs corresponding
to p and to q, we are done.

If this point is a path-fan—(s;_1, ..., s2,51) - s1<4 (s, ..., sk)—point with 2 < i < k, we consider that i < k.
Otherwise we could consider this point as a path-point, a case we already considered. Here we do a traversing
of {s;+1,...,s,} through s; and on s; to a new representative point q. We add the face segments s1s;jsj_1,



with ¢ < j < k, and we respectively let p and q be respectively typed as a path—(s;,s1,...,s;—1)-point
and as a path—(s;,...,si)-point (See Figure 4). Under these conditions the traversing keeps the constraints
digraph acyclic and preserves the topological incidence sequence of the other representative points. Thus
since the graph that corresponded to p is the union of the graphs corresponding to the new crossing points,
to the new face segments, to p and to q, we are done.

If this point is a double-fan—s1< (s2, ..., ;) - $i<(Sit1,-. ., Sk, s1)—point with 2 < i < k, we consider that
2 < i. Otherwise we could consider this point as a fan-point, a case we already considered. Here we do a
traversing of {sa,...,s;_1} along s; and through s; to a new representative point q. We add the face segments
S18jSj+1, with 2 < j < 4, and we respectively let p and q be typed as a path—(s;,...,s2)—point and as a
fan-s;< (S1,Sky - --,Si+1)-point (See Figure 5). Under these conditions the traversing keeps the constraints
digraph acyclic and preserves the topological incidence sequence of the other representative points. Thus
since the graph that corresponded to p is the union of the graphs corresponding to the new crossing points,
to the new face segments, to p and to q, we are done.

This concludes the proof of the proposition. O

Given a special point p in a premodel M = (S, F,7) of T, a total realization of p is a sequence of
partial realizations such that every edge (resp. face) of the graph corresponding to 7(p) corresponds now to
a crossing point (resp. to a face segment).

Definition 2.15. Consider a special point p of a premodel M = (S, F,7) and let {s1,...,s,} C S be the
set of segments that have an end at p. This special point is free if for any pair of segments s; and s; with
1 <i<j <k, there is no path in the constraints digraph of M linking s; and s;.

It is clear that a free special point can be maximized (Cf. Lemma 2.9). In the proof above one can observe
that if the point p is free, then the new special points (after the partial realization) are also free, thus we
have that:

Remark 2.16. In a premodel M, every free special point admits a total realization.

Since the constraints digraph of a premodel is acyclic we have that:

Remark 2.17. If a premodel has k > 0 special points, then one of them is free, and thus partially (totally)
realizable.

Now let us note that any partial realization increases the number of representative points. Since a pre-
model with the maximum number of representative points is a full model (Cf. Remark 2.8), we have the
following corollary.

Corollary 2.18. Any premodel M = (S, F,7) of a near-triangulation T admits a sequence of partial real-
izations that yield a full model M' = (S", F') of T.

The total realizations preserve the freeness of special points.

Lemma 2.19. Consider a premodel M = (S, F, ) with a special point p. There exists a total realization of
p such that in the obtained premodel M' = (S',F',7'), every special point q # p of M is preserved (i.e.
there is no partial realization at q) and every free special point q # p of M remains free.

Proof. 1t is clear that a total realization of p minimizing the number of partial realization preserves every
representative point p’ # p of Repsur. Now to prove that q is still free we show that for every pair of
segments r; and ry from S U F there is a path from r; to ro in Constg/yps only if there was one in
Constgyur.

Since every p’ # p of Repgsur is preserved, for every segment r € S U F, the arc p’r (resp. rp’) belongs
to Constsyr if and only it belongs to Consts/ypr/. Thus a new path from r; to ro should necessarily pass
through one of the new representative points, say p* € Reps:ur \ (Repsur \P). Since p* is simple (otherwise
the realization would not be total) we consider three cases according to 7/(p*).

- If p* is a segment end, it has no in-neighbor in Constg/yps, and thus it cannot be part of a path from
ri; to ro.



- If p* is a flat face segment end, it has a unique out-neighbor in Consts/yp/ and it is a face segment f.
Being a face segment f has no out-neighbor, thus we just have to show that f # ro. According to the
descriptions of maximization and the realizations used in the proof of Proposition 2.14 it is clear that f
is new (f € F’\ F) and thus f # rs.

- If p* is a maximal crossing point, all its out-neighbors in Constg/p/ are face segments. Being face
segments none of them has an out-neighbor, thus we just have to show that they are distinct from ry. If
one of them is ro, since p* is the cross end of this face segment, the other end of r; is a flat face segment
end, and thus q is not free in M.

This concludes the proof of the lemma. O

This lemma and Remark 2.16 imply the following corollary.

Corollary 2.20. Consider a premodel M = (S, F,7) with a set P C Repsur of free special points. There
exists a sequence of total realizations that totally realizes every p € P and preserves every point of Repsur \ P.

2.3 Global transformations

It is folklore that under a linear transformation of the plane, collinear points remain collinear. Furthermore
if this linear transformation is injective, the image of an half-plane remains an half-plane. Thus we have the
following lemma.

Lemma 2.21. For any premodel M = (S, F,T) of a near triangulation T and any injective linear transfor-
mation of the plane ¢, the triple M' = (¢(S), p(F),T) remains a premodel of T.

This is useful since the plane admits many such transformations.

Lemma 2.22. For any two triplets of points in general position (i.e. non-collinear points), (p1,P2,P3)
and (qi1,q2,93), there is an injective linear transformation of the plane ¢ such that ¢(p;) = q;, for every
i€ {1,2,3}.

3 The case of 4-connected triangulations.

3.1 Particular Premodels

Let T be a near-triangulation. A chord of T' is an edge not incident to the outer face but which ends are on
the outer face. A separating 3-cycle C'is a cycle of length 3 such that some vertices of T lie inside C' whereas
other vertices are outside. It is well known that a triangulation is 4-connected if and only if it contains no
separating 3-cycle.

Definition 3.1. A W-triangulation T is a 2-connected near-triangulation containing no separating 3-cycle.
Such o W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1,...,ap), (b1,...,bq),
and (c1,...,¢.), that satisfy the following conditions (see Figure 9):

— a1 = ¢, by = ap, and c; = by.
— the paths are non-trivial (i.e. p>2,q>2, andr > 2).
— there exists no chord a;a;, b;b;, or c;c;.

This 3-boundary of T will be denoted by (a1,...,ap)-(b1,...,bq)-(c1,...,¢r).

In the following, we will use the order on the three paths and their directions, i.e. (a1,...,ap)-(b1,...,bq)-
(c1,...,¢) will be different from (b1, ..., bq)-(c1,...,¢r)-(a1,...,ap) and (ap,...,a1)-(¢r, ..., c1)-(bg, ..., b1).

Lemma 3.2. Let T be a W-triangulation and consider a cycle C of T'. The subgraph defined by C and the
edges inside C (according to the embedding of T') is a W-triangulation.

Proof. Consider the near-triangulation 7”7 induced by some cycle C of T' and the edges inside C'. By definition,
T has no separating 3-cycle and consequently 77 does not have any separating 3-cycle. It is then sufficient
to show that T is 2-connected, i.e. T' does not have any cut vertex. Consider a vertex v of T', all the faces
incident to v are triangles, except at most one (the outer face). Consequently, there exists a path that contains
all the neighbors of v, and so T'\ v is connected. O
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Fig. 9. A 3-bounded W-triangulation 7.

Property 1 Consider any W-triangulation T 3-bounded by (a1, ..., ap)-(b1,...,bq)-(c1,...,¢r).

(1) If p =2 (see Figure 10, left), for any triangle BCD, there exists a premodel M = (S, F,7) of T contained
in the triangle BCD such that
— every special point p of M is a point of by = ¢; = [BC], az = by = [BD] or ¢, = a1 = [CD],
— B is a path—(by,ba, ..., by)—point,
— C is a path—(c1,ca, . . ., ¢ )—point,
— D is a fan-ax<(dy, . .., ds,a1)—point (where dy,ds, ..., ds are inner vertices of T') such that there is
a face segment incident only if s =0 (i.e., D is a fan—as<(a1)).
(2) If p > 2 (see Figure 10, right), for any triangle ABC there exists a point D inside this triangle and a
premodel M = (S, F,7) of T contained in the polygon ABCD such that
— every special point p of M is a point of a, = b1 = [AB], by = ¢1 = [BC], [CD] (that is contained
in a1 = ¢,) or [AD] (that is contained in as),
— A is a path—(as, . .., ap)—point.
— B is a path—(by,ba, ..., by)—point,
— C is a path—(c1, ca, . . ., ¢ )—point,
— D is the crossing point of a1 and ay (with possibly one face segment incident to it corresponding to
the inner face of T incident to ajas),

Fig. 10. Property 1 for one W-triangulation 7" with p = 2 and one with p > 2.

Note that in both cases, at most one face segment is incident to D, since ajas is incident to exactly one
inner face of T'. Furthermore since path—points cannot have incident face segments, there is no face segment
incident to A, B, C (resp. B, C) when p > 2 (resp. p = 2).
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Given the description of M we can deduce that almost every special point is free. A special point p
that is not free has two incident segments s; and s; of S such that there is a directed path in Constsyr
from s; to si. By a geometrical argument this path passes through some other segments of S U F'. But since
face segments have out-degree zero in this digraph, these other segments also belong to S and let us denote
(s1,P1,82,P2, - - - ,Sk) with & > 3 the considered path. Then since the points p; are on the polygon bounding
M (since they are special), and since p; is an internal point of s; and the end of s; 1 we have when p = 2 (resp.
p > 2) that {s1,...,sk—1} C {a1,b1,c1} ands; ¢ {a;,by,c1} fori > 1 (resp. {s1,...,s6-1} C {as,as,by,c1}
and s; ¢ {b1,c1} for i > 1). This implies the following remark.

Remark 3.3. When p = 2 (resp. p > 2), every special point p of M (resp. p # B of M) is free. Furthermore,
if B is not free (when p > 2) then there is a path in Constgyr of the form (by, p1, a1, p2, b;) or of the form
(bQ’ P1,a2,P2, bl)

Property 1 is sufficient to prove Theorem 2.5. However, in our proof of Property 1, we need Property 2
(defined below) that is defined for some particular W-triangulations.

Consider a W-triangulation T' # K3 that is 3-bounded by (a1, ..., ap)-(b1,...,bq)-(c1,...,¢) such that
T does not contain any chord a;b; or a;c;. Let D C V;(T') be the set of inner vertices of T that are adjacent
to some vertex a; with ¢ > 1. Since T is a 3-bounded W-triangulation, the set D induces a connected graph.
Since T has at least 4 vertices, no separating 3-cycle, and no chord a;a;, a;b;, or a;cj, then a; and as (resp.
b1 and bs) have exactly one common neighbor in V(T)\ {¢1} (resp. V(T)\ {a1}) that will be denoted a (resp.
dy). Since a is in D, the set D U {a;} also induces a connected graph. The adjacent path of T with respect
to the 3-boundary (a1, ..., ap)-(b1,...,bq)-(c1,...,¢) is the shortest path linking d; and a; in T[D U {a1}]
(the graph induced by D U {a;}). This path will be denoted (di,ds,...,ds,a1). Note that, by definition of
the adjacent path, there exists no edge d;d; € E(T) with 2 <i+1 < j <'s, and no edge a1d; € E(T) with
1 <i < s (See Figure 11).

T

Fig. 11. the adjacent path of 7" and the graph Ty, q;.

For each edge d,a, € E(T) with x € [1,s] and y € [2,p], we define Ty,,, as the W-triangulation lying
inside the cycle C' = (a1,ds, ..., ds,ay,...,ap,b2,...,bg,c2,...,¢.). We now state the property on such
particular triangulations that we use to prove Property 1.

Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, ..., ap)-(b1,...,by)-(c1,...,¢r),
without any chord a;b; or a;c;, and which adjacent path is (di,ds, ..., ds,a1). Consider the W-triangulation
Td,a, for some edge dya, of T.

1. If y = p (see Figure 12 left), for any triangle BCD, there exists a premodel M = (S, F,T) of Tg4,a,
contained in the triangle BCD such that
— every special point p of M is a point of by = ¢c1 = [BC], a, = by = [BD] or ¢, = a1 = [CD],
— B is a path—(b1,bs, ..., by)—point,
— C is a path—(c1,ca, . . ., ¢ )—point,
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— D is a fan-path-ap<(di, ..., dg) - (ds, ..., ds, a1)—point.
2. If y < p (see Figure 12 right), for any triangle ABC there exists a point D inside this triangle and a
premodel M = (S, F,7) of T4,q, contained in the polygon ABCD such that
— every special point p of M is a point of a, = by = [AB], b, = ¢1 = [BC|, a1 = ¢, = [CD] or [AD]
(that is contained in a,),

— A is a path—(ay, .. ) —point,

— B is a path— (bl,bg, ..., bg)—point,

— C is a path—(c1,ca, . . ., ¢, )—point,

— D is a path—(ay, ds, .. ds, a1)-point whose incidence sequence is (ay,dg,...,ds,a1,a,,dy)

Fig. 12. Property 2 for one W-triangulation Ty,, with y = p and one with y < p.

Note that if p > y (resp. p = y), there is no face segment incident to A, B, C,D (resp. B, C, D). Note
that when y > p, in a premodel (M, S, 7) of Ty,,, satisfying conditions of Property 2, D is an internal point
of the segments d, and a,,.

With a similar argument as for Remark 3.3 we obtain the following remark.

Remark 3.4. Consider a premodel M satistying Property 2. If y = p, any special point of M is free. If y < p,
any special point of [bAD] or [DC] is free.

Remark 3.5. According to Lemmas 2.21 and 2.22, it is sufficient to show that there exists a set of points
B,C,D (or A,B,C,D) such that conditions of Property 1 (resp. Property 2) hold.

Let us now prove these two properties by doing a “crossed” induction.

Theorem 3.6. Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tq,a, ).

3.2 Proof of Theorem 3.6

We prove Theorem 3.6 by induction on the number of edges of 1" (for Property 1) or Ty,q, (for Property 2).
Our proof is based on a decomposition of 4-connected triangulations already used in [7,18].
The following lemma proves the initial step of the induction.

Lemma 3.7. Property 1 (resp. Property 2) holds for any W-triangulation T' (resp. Ty, q,) with at most three
edges.

13



Proof. There is only one W-triangulation with so few edges, the graph Kj.

This implies that there is no W-triangulation Ty, ,, with at most 3 edges, so Property 2 obviously holds
by vacuity.

For Property 1, we have to consider all the possibles 3-boundaries of K3. All these 3-boundaries are
equivalent. Let V(K3) = {a,b,c} and consider the 3-boundary (a,b)-(b, ¢)-(c,a). Given any triangle BCD,
let a=CD, b =DB and ¢ = BC. We add a face segment abc from D to an internal point of [BC|. The
types of B, C, D are as follows: B is a path—(b, ¢)—point, C is a path—(¢, a)—point and D is a fan—b< (a)—point,
with the face segment abc incident to it.

It is easy to check that we have defined a premodel of K3 that satisfies Property 1. O

We prove the inductive step for Property 1 with the following lemma.

Lemma 3.8. For any integer m > 3, if Property 1 holds for any W-triangulation T such that |E(T)| < m
and Property 2 holds for any W-triangulation Tq,a, such that |E(Tg4,q,)| < m, then Property 1 holds for any
W-triangulation T such that |E(T)| = m.

xQy

Case 1: Proof of Property 1 for a W-triangulation T such that |E(T)| = m.
Let (a1,...,ap)-(b1,...,bg)-(c1,...,¢r) be the 3-boundary of T' considered. We distinguish different cases
according to the existence of a chord a;b; or a;c; in T

(Case 1.1) either there exists a chord a1b;, j € [2,¢9 — 1],

(Case 1.2) or there exists a chord a;b;, with i € [2,p — 1] and j € [2,]
(Case 1.3) or there exists a chord a;c;, with i € [2,p] and j € [2,7 — 1]
( ) k

Case 1.4) or there is no chord a;b; or a;cy, with i € [1,p],j € [1,q],k € [1,r].

Note that all the cases are considered since there is no chord aib, = crc1, a;b1 = a;ap, apb; = b1b;,
aicj = crcj, apcy = biby or a;c, = a;a; and since a chord a;c; is a chord a;b,.

Case 1.1: There is a chord a1bj, with 1 < j < q (see Figure 13).

Fig. 13. Case 1.1: Chord a1b;.

Let T} (resp. T2) be the subgraph of T that lies inside the cycle (a1, b;, ..., bg, 2, ..., ¢) (resp. (a1, az,. ..,
bi,...,bi,a1)). By Lemma 3.2, 71 and T are W-triangulations. Since 7" has no chord agay, biby, or cicy,
(bi, cr)-(cry .. yc1)-(bg, ..., b;) (resp. (a1,...,ap)-(b1,...,b;)-(bja1)) is a 3-boundary of T} (resp. Ts). Further-
more, since ayas ¢ E(T1) (resp. cica ¢ E(Tz)), Ty (resp. T3) has less edges than T" and Property 1 holds for
T, and T with the mentioned 3-boundaries.

If p = 2 we want to construct a premodel M = (S, F,7) of T contained in a triangle BCD while if p > 2
we want it to be contained in a concave polygon ABCD. In both cases, consider three points B, C and D
and let E be an inner-point of the segment [CD].

Counsider a premodel My = (S, F1, 1) of T3 satisfying Property 1 contained in BCE where the points
B, C and E are respectively a path—(b;, . . ., bg)—point, a path—(cy, . .., ¢,)-point, and a fan-b;< (a4, . . .)-point
(if E is a fan—b;< (a1 )—point, there can be face segment incident to it).

If p = 2 (see Figure 14 left), consider a premodel My = (Sa, Fs, 72) of T satisfying Property 1 contained
in BED where the points B, E and D are respectively a path—(by, ..., b;)—point, a path—(b;, a1)—point, and
a fan-bi<(ay, ..., )-point.
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If p > 2 (see Figure 14 right), there exists a point A and a premodel My = (Sa, F5, 72) of Ts satisfying
Property 1 contained in ABED and where the points A, B, E and D are respectively a path—(as, ..., ap)—
point, a path—(by, ..., b;)—point, a path—(b;, a1 )—point, and the crossing-point of a; and as.

By using Lemma 2.12, if necessary, we can ensure that except B, E, there is no representative point p;
of M1 and py of M5 that are exactly at the same position on b;.

Note that in both cases (p = 2 and p > 2) the two segments a; (resp. b;) of S; and Sz form now a single
segment a; (resp. b;). Consider now M = (5, F, 7) where S = S;USs (up to the identification of the two a;s
and of the two b;s), F = F1UF,, 7(p) = 71(p) (resp. 7(p) = 72(p)) for any point p € Reps,ur, \{B, E} (resp.
p € Reps,ur, \ {B,E}), and where 7(E) and 7(B) are defined as follows: B is now a path—(b1, ..., by)—point
and E remains a fan-b;< (ay,...)-point (as in M;); this is possible since around E, we just have prolonged
ag.

Fig. 14. Case 1.1: when p = 2 (left) or p > 2 (right).

Since V(T') = V(Th)UV (Tz) and V(T1) NV (Tz) = {a1,b;}, every vertex v € V(T') corresponds to exactly
one segment v in S. Note that E(T') = E(T1)UE(T») and that E(T1)NE(T2) = {a1b;}. Note also that an edge
wv is in the graph corresponding to E (resp. B) in M if and only if uv is an edge of the graph corresponding
to E (resp. B) in My (resp. in M; or in M3). Thus the edges of T are exactly the edges represented (either
by a face segment or in a special point) in M. Since F(T') = F(T1)UF(13), since F(T1)NF(Tz) = (), since no
face segment has been added or removed, since 7(E) has not been modified and since B is a path—point (and
thus no face is represented in B), the faces represented in M are exactly the union of the faces represented
in M7 and M, i.e., the faces of T'.

We know that Consts,ur, and Consts,ur, are acyclic. Let Const) (resp. Const)) be the digraph
Consts,ur, (resp. Consts,yr,) where the arc from E to a; has been replaced by an arc from a; to E
(this corresponds to the fact that E is no longer an end of a;). Since E is free in M, it is easy to see that
Const} is acyclic. Moreover, the internal special points of b; remain free (there is no directed path from
any segment ending on b; to b; or E since E is free). Since E is also free in My, Const, is acyclic and the
internal special points of b; remain free.

The digraph Constgyr is the union of Const} and Const/, where the two vertices corresponding to a;
(resp. b;, B, E) have been identified. Since Const| and Const}, are acyclic, any cycle of Constsyr must
contain at least two vertices among a;, b;, B, E. Note that B has no predecessor and thus is not in any cycle.
Moreover, a; has no predecessor except C (that has no predecessor) in Const] and any cycle containing
E contains a; and any cycle containing b; contains E or B. Consequently, there is no cycle containing a
directed path going from Const] to Constl through a;,b;, B or E and thus, Constgyr is acyclic. For any
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internal special point p of b; that is in M; (resp. Ms), the segments ending in p are all in M (resp. all in
M); thus they remain free in M, since they were free in My (resp. Ms).

In order to obtain a premodel of T satisfying Property 1, we just realize the special points of M that are
some inner points of b, (this is possible by Corollary 2.20 since they are free).

Case 1.2: There is a chord a;bj, with 1 < i <p and 1< j <q (see Figure 15).

Fig. 15. Case 1.2: Chord a;b;.

If there are several chords a;b;, we consider one which maximizes j, i.e., there is no chord a;b; with
Jj < k <gq.Let Ty (resp. T») be the subgraph of T that lies inside the cycle (a1, as, ..., a;,bj, ..., bg, 2, ..., ¢r)
(resp. (g, ..., ap,ba,...,bj,a;)). By Lemma 3.2, T} and T are W-triangulations. Since T" has no chord a,ay,
baby, cxCy, Or a;by with k > j, (a1,...,a:)-(ai, bj, ..., bg)-(c1,...,cr) (vesp. (a;, b5)-(bs, ..., b1)-(ap,...,a;))
is a 3-boundary of Tj (resp. T3). Furthermore, since biby ¢ E(T}) (resp. ajas ¢ E(T3)), Ty (resp. Ts) has
less edges than 7" and Property 1 holds for 77 and 75 with the mentioned 3-boundaries. We know that p > 2
and we want to construct a premodel M = (S, F,7) of T contained in some concave polygon ABCD.

If i = 2, let My = (S1, F1,71) be a premodel of T} satisfying Property 1 that is contained in a triangle
BCD where the points B, C and D are respectively a path—(a;, b;, . .., bg)-point, a path—(c1, ..., ¢ )-point,
and a fan—as< (aq, . ..)—point.

If i > 2 let My = (S1,F1,71) be a premodel of T3 satisfying Property 1 that is contained in a concave
polygon ABCD and where the points A, B, C and D are respectively a (as, . .., a;)-point, a (a;, bj, ..., by)-
point, a (¢, ..., ¢ )-point, and the crossing-point of a; and az.

In both cases (i = 2 or i > 2), we want to do a gliding of a; along b;. If b; has no end on a; or if a;
has no end on a;, the conditions of Lemma 2.12 are satisfied and we can do a gliding of a; on b; inside the
polygon (See Figure 16).

Otherwise, we cannot use Lemma 2.12, since there exists a directed path from a; to b; in Consts,ur,.
However, consider the intersection point I of a; and a; (Iis an end of a;). It is easy to see that any segment
s # a; ending in I does not have any internal special point. Note also that only a; appears twice in the
incidence sequence of I. Consequently, we can prolong a; after I and keep a flexible segment set S U F' with
an acyclic constraints digraph. Once we have prolonged a;, we can apply Lemma 2.12 to do a gliding of a; on
b;. After that, we erase the part of a; that is outside the polygon (at this moment, the constraints digraph
is no longer acyclic). Let E be the new intersection of a; and b;. If j < ¢, we do a prolonging of a; after E
(on the other side of b;).

We know that Constg,ur, is acyclic. Let Const] be the new constraints digraph obtained after the
previous transformation. If j = ¢, the ends of b, are not internal points of a; and thus Const] is still acyclic
(we have done a gliding according to Lemma 2.12). If j < ¢, Constg,ur, differs from Consts,up, by the facts
that the arc from B to a; has been removed and that an arc from b; to the new point E, an arc from a; to
E and an arc from a; to its new end have been created. Since E has no successor and since the new end of
a; has no predecessor, we have not created any cycle. Then, if 1 = 2, we extend the segment a; after D to a
new endpoint A (See Figure 16, top right). Otherwise A is unchanged.

Let My = (S2,Fs,72) be a premodel of T contained in ABE and where the points A, B and E
are respectively a path—(a;, ..., ap)-point, a path—(b1,...,b;)-point, and a fan-b;<(a;,...)-point. By using
Lemma 2.12, we can ensure that except B, E, A, there is no representative points p; of M; and ps of My
exactly at the same position on a; or b.
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Note that in both cases (i = 2 or i > 2), the two segments a; (resp. b;) of S7 and S form now a single
segment a; (resp. b;). Consider now M = (S, F,7) where S = S;1 U Sy (up to the identifications of the a;s
and of the b;s), F' = Fy U F5, 7(p) = 71(p) (resp. 7(p) = 72(p)) for any point p € Reps,ur, \ {A,B,E}
(resp. p € Reps,ur, \ {A,B,E}), and where 7(A4), 7(E) and 7(B) are defined as follows: A is now a path—
(a2, ...,ap)-point, B is now a path—(bi,...,bs)—point and E remains a fan-b;<(a;,...)-point (as in Ms);
this is possible since around E, we just have prolonged b; (resp. a; and b;) when i = ¢ (resp. 7 < q).

Fig. 16. Case 1.2: when ¢ = 2 (top) or 7 > 2 (bottom); in both cases, a model of T} is represented on the left and a
model of T (obtained from the model of T} and from a model of T3) is represented on the right.

Since V(T') = V(T1)UV (T2) and V(T1)NV (1) = {a;, b;}, every vertex v € V(T') corresponds to exactly
one segment v in S. Note that E(T) = E(T1) U E(T) and that E(Th) N E(T2) = {a;b;}. Note also that
an edge wv is in the graph corresponding to E (resp. A) in M if and only if wv is an edge of the graph
corresponding to E (resp. A) in M (resp. in My or Ms). Note that an edge uv # a;b; is represented in B in
M if and only if wv is represented in B in M7 or Ms. Thus the edges of T" are exactly the edges represented
(either by a face segment or in a special point) in M. Since F(T') = F(T1) U F(T3), since F(T1)NF (1) =0,
since no face segment has been added or removed, since 7(E) has not been modified and since A and B are
path points (and thus no face is represented in A, B), the faces represented in M are exactly the union of
the faces represented in M; and My, i.e., the faces of T'.
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We know that Consts,ur, and Consts,ur, are acyclic. Recall that Const] is the digraph corresponding
to (S1, Fi,71) once we have glided a; on b;.

When i = 2, we also replace the arc from D to a; by an arc from a; to D (since D is no longer an end of
a;). If j < ¢, both ends of a; are segment ends, there is no cycle going through a; and thus there is no cycle
going through D, since D was free in My; consequently, Const} is acyclic. If j = ¢, the digraph Const}
corresponds to the digraph obtained from Constg,ur, if we extend b, after B and ay after D. Since, B and
D are free in M, (we are in the cases where M is contained in the triangle BCD), it is easy to see that
Const} is acyclic.

Let Const}, be the digraph obtained from Consts,ur, where the arc from E to a; and the arc from E to
b, have been replaced by an arc from a; to E and an arc from E to b;. Since E is free in My, Const, is
acyclic.

The digraph Constgyr is the union of Const| and Const), where the two vertices corresponding to a;
(resp. bj, A, B, E) have been identified. Since Const} and Const}, are acyclic, any cycle of Constsur
must contain at least two vertices among a;, bj, A, B, E. Note that A and B have no predecessors, that the
predecessors of a; are A and a segment end, that the predecessor of E is a;. Consequently, there is no cycle
going through a;, A, B or E and thus Constsyr is acyclic. For the same reasons as in Case 1.1, the special
points belonging to a; and b; remain free.

In order to obtain a premodel of T satisfying Property 1, we have to realize some special points of M.
When ¢ > 2, we realize the special points appearing on a; and b; except A, B and E; this is possible since
they are free by Corollary 2.20. If j < ¢, we realize E (if j = ¢, E is on the border of the polygon).

When 7 = 2, we first realize the special points appearing on b; except B and the special points appearing
on [DE] (that is contained in a;), except D and E; this is possible since they are free by Corollary 2.20.
If j < g, we realize E. If there is a face segment incident to D, then D is a fan—as< (a1)—point and then it
is sufficient to prolong a; to realize it (it is easy to see it keeps Constsyp acyclic, since the predecessors
of a; are its new endpoint and C). Otherwise, since D is a fan-as< (a1, d}, ..., d. )—point, the first step of
the realization of D (as explained in Proposition 2.14) is done by making a traversing of as by the segments

f,....d}, along a; (that has been prolonged). Thus, we realize D inside the polygon ABCD.

Once these realizations have been done, we have obtained a premodel contained in a concave polygon

ABCD that satisfy Property 1.

Case 1.3: There is a chord a;cj, with 1 < i <p and 1< j <r (see Figure 17).

C1 :bq

b1 = ap

Fig. 17. Case 1.3: Chord aic;j.

If there are several chords a;c;, we consider one which maximizes 4, i.e., there is no chord ayc; with
it < k < r. Let T\ (resp. T») be the subgraph of 7' that lies inside the cycle (ai,as,...,a:,¢;,...,¢)
(resp. (¢j,@i,...,ap, b2, ... bg,c2,...,¢;)). By Lemma 3.2, T and T, are W-triangulations. Since T" has no
chord agay, byby, cpcy or agc; with k > i, (a1,...,a;)-(ai, ¢;)-(¢j, ..., ¢r) (resp. (¢j, @i, ..., ap)-(b1,...,0q)-
(c1,...,¢j))is a 3-boundary of T; (resp. T»). Furthermore, since b1bs ¢ E(T) (resp. a1as ¢ E(T3)), Th (resp.
T5) has less edges than T and Property 1 holds for 77 and 75 with the mentioned 3-boundaries.

We distinguish different cases depending on the values of 7 and p.

Case 1.3.1: i = p (See Figure 18, top left for i = p =2 and top right fori=1p > 2)

If i = p = 2,we want to construct a premodel M = (S, F,7) of T contained in some triangle BCD.
Consider three non collinear points B, C,D and let E be an inner point of the segment [BD]. Let M; =
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Fig.18. Case 1.3: when i = p (top) or ¢ < p (bottom) and when ¢ = 2 (left) or ¢ > 2 (right).

(S1, F1,71) be a premodel of T} satisfying Property 1 that is contained in the triangle ECD where the points
E, C and D are respectively a path—(a,, ¢;)-point, a path—(c;, ..., ¢, )-point, and a fan-a,< (a1, ...)-point.

If i = p > 2, we want to construct a premodel M = (S, F,7) of T contained in some concave polygon
ABCD. Consider three non collinear points A, B, C and let E be an inner point of the segment [AB]. Let
My = (51, F1,71) be a premodel of T; satisfying Property 1 that is contained in some concave polygon
ECAD for some point D where the points E, C, A and D are respectively a path—(a,, ¢;)-point, a path—
(¢j,...,cr)—point, a path—(aq, . .., ap)—point and the crossing of a; and as.

In both cases, let Mo = (S2, F», 72) be a premodel of T; satisfying Property 1 that is contained in the
triangle BCE where the points B, C and E are respectively a path—(b1, ..., bq)-point, a path—(ci,...,¢;)—
point, and a fan—c;< (ap, . . .)—point.

By using Lemma 2.12, we can ensure that except C,E, there is no representative points p; of M; and
p2 of My exactly at the same position on c;.

Note that the two segments c; (resp. a;,) of S and S> form now a single segment c; (resp. a,). Consider
now M = (S,F,7) where S = S; US> (up to the identification of the c;s and of the aps), F' = Fy U Fy,
7(p) = 71(p) (resp. 7(p) = m2(p)) for any point p € Reps,ur, \ {C,E} (resp. p € Reps,ur \ {C,E}),
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and where 7(C) and 7(E) are defined as follows: C is now a a path—(cq,...,¢,)-point and E remains a
fan—a,< (cj, . ..)—point (as in Ms): this is possible since around E, we just have prolonged a,,.

Since V(T') = V(T1) U V(T3) and V(Th) N V(T2) = {ap,c;}, every vertex v € V(T) corresponds to
exactly one segment v in S. Note that E(T) = E(Th1) U E(T>) and that E(T1) N E(T2) = {apc;}. Note
also that an edge uv is in the graph corresponding to E (resp. C) in M if and only if uv is an edge of the
graph corresponding to E (resp. C) in My (resp. in M; or in Ms). Thus the edges of T are exactly the
edges represented (either by a face segment or in a special point) in M. Since F(T) = F(Ty) U F(T»), since
F(Ty)NF(T3) = 0, since no face segment has been added or removed, since 7(E) has not been modified and
since C is a path point (and thus no face is represented in C), the faces represented in M are exactly the
union of the faces represented in M; and Mo, i.e., the faces of T.

We know that Consts,ur, and Consts,up, are acyclic. Let Const] (resp. Consty) be the digraph
Constg,ur, (resp. Consts,ur,) where the arc from E to a, has been replaced by an arc from a, to E
(this corresponds to the fact that E is no longer an end of a,). For the same reasons as in the proof of Case
1.1, Const} and Const), are acyclic and the internal special points of ¢; remain free.

The digraph Constgur is the union of Const] and Const), where the two vertices corresponding to a,
(resp. ¢, C, E) have been identified. Since Const] and Const), are acyclic, any cycle of Constsup must
contain at least two vertices among a,,, c;, C, E. Note that C has no predecessor and that any cycle containing
c; (resp. E) must contain E (resp. a,). Since a,, is not in any cycle, Constsur is acyclic. For the same reasons
as in the proof of Case 1.1, the internal special points of c¢; remain free in M.

In order to obtain a premodel of T satisfying Property 1, we just realize the special points of M that are
some inner points of ¢; (this is possible by Corollary 2.20 since they are free).

Case 1.3.2: p>1i and i =2 (See Figure 18, bottom left)

Since p > i = 2, we want to construct a premodel M = (S, F, ) of T contained in some concave polygon
ABCD. Consider three non collinear points A, B, C and let My = (S2, F5, 72) be a premodel of T satisfying
Property 1 that is contained in some concave polygon ABCE for some point E and where the points A,
B, C, E are respectively a path—(as, ..., a,)-point, a path—(by, ..., by)—point, a path—(cy, ..., c;)-point and
the crossing of a; and c;.

Let D be an inner point of [AE] and let M; = (S, Fi,71) be a premodel of T satisfying Property 1
that is contained in the triangle ECD where the points E, C and D are respectively a path—(as, ¢;)—point,
a path—(c;j, ..., c,)-point, and a fan—as< (a1, ...)—point.

By using Lemma 2.12, we can ensure that except C, E (note that D is not a representative point of Ms),
there is no representative points p1 of M; and p» of M3 exactly at the same position on c; or as.

Note that the two segments c; (resp. az) of S and S» form now a single segment c; (resp. az). Consider
now M = (S,F,7) where S = S; US> (up to the identification of the c;s and of the ags), F' = F} U Fy,
7(p) = 11(p) (resp. 7(p) = 7=2(p)) for any point p € Reps,ur, \ {C,E} (resp. p € Reps,ur, \ {C,E}), and
where 7(C) and 7(E) are defined as follows: C is now a a path—(cy, ..., ¢, )-point and E remains the crossing
point of C; and ap (as in My). Note that D remains a fan-as<(ai,...)-point (as in M;): this is possible,
since around D, we just have prolonged as.

Since V(T') = V(T1) UV (T2) and V(T1 )NV (T2) = {az, ¢j }, every vertex v € V(T') corresponds to exactly
one segment v in S. Note that E(T) = E(Th) U E(T%) and that E(T1) N E(T>) = {asc;}. Note also that an
edge wv is in the graph corresponding to C in M if and only if uv is an edge of the graph corresponding to
C in M, or in M. Note that the edge aac; is represented by the crossing of a; and c; in E. Thus the edges
of T are exactly the edges represented in M. Since F(T') = F(11) U F(13), since F(T1) N F(1T3) = 0, since
no face segment has been added or removed and since C is a path point (and thus no face is represented in
C), the faces represented in M are exactly the union of the faces represented in M; and Ma, i.e., the faces
of T.

We know that Constg,ur, and Consts,ur, are acyclic. Let Const] be the digraph obtained from
Constg,ur, where the arc from D to ap, the arc from E to ap and the arc from E to c; have been re-
spectively replaced by an arc from a to D, an arc from as to E and an arc from c; to E (this corresponds
to the fact that D is not longer an end of a; and that E is not longer an end of as or ¢;). Since Consts,ur,
is acyclic and since D and E are free, it is easy to see that Const} is acyclic.

The digraph Constgyr is the union of Const| and Consts, r, where the two vertices corresponding to
ap (resp. ¢j, C, E) have been identified. Since Constys and Constg,ur, are acyclic, any cycle in Constgur
must contain vertices of Constg,up, and of Const] and thus, there must be at least two vertices among
ay, c;, C, E in any cycle of Constsyr.
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Note that C has no predecessor and that E has no successor, except possibly a face segment (that has
no successor); thus none of them is in any cycle. The predecessors of ¢; and ay different from C are both in
Constg,ur, (but not in Const}). Any cycle containing c¢; and a; would be a cycle in Constgs,ur,, which is
impossible. Consequently, Constsyp is acyclic and thus M is a premodel of T'. For the same reasons as in
the proof of Case 1.1, the internal special points of c¢; and ap remain free in M.

In order to obtain a premodel of T satisfying Property 1, we have to realize some special points of M.
We first realize the special points appearing on c¢; except C (they are all on [CE]) and the special points
appearing on DE (that is contained in as), except D (note that E is not a special point). This is possible
by Corollary 2.20.

If there is a face segment incident to D, then D is a fan—as< (a1 )—point and then it is sufficient to extend
a; to realize it. Otherwise, since D is a fan—as<(aq,d),. .., d.)—point, the first step of the realization of D
(according to the proof of Proposition 2.14) is done by making a traversing of as by the segments df,...,d’,
along a; (that has been prolonged) to create a path—(a1,d},...,d. )-point. Thus, we realize D inside the
polygon ABCD (this is possible since D is free).

Once these realizations have been done, we have obtained a premodel contained in a concave polygon
ABCD that satisfy Property 1.

Case 1.3.3: p>1i and i > 2 (See Figure 18, bottom right)

Since p > i > 2, we want to construct a premodel M = (S, F, ) of T contained in some concave polygon
ABCD. Consider three non collinear points A, B, C and let My = (S2, F5, 72) be a premodel of T satisfying
Property 1 that is contained in the concave polygon ABCE for some point E where the points A, B, C,
E are respectively a path—(a;,...,ap)-point, a path—(bi,...,bs)—point, a path—(ci,...,¢;)-point and the
crossing of a; and c;.

Let My = (S1, F1,71) be a premodel of T; satisfying Property 1 that is contained in the concave polygon
AECD for some point D where the points A, E, C and D are respectively a path—(as,...,a;)—point, a
path—(a;, ¢j)-point, a path—(c;, ..., ¢, )-point, and the crossing of a; and a,. By using Lemma 2.12, we can
ensure that except C, E, A, there is no representative points p; of M7 and ps of M5 exactly at the same
position on c; or a;.

Note that the two segments c; (resp. a;) of S and S, form now a single segment c; (resp. a;). Consider
now M = (S, F,7) where S = S; US> (up to the identification of the c;s and of the a;s), F' = F} U Fy,
7(p) = 11(p) (resp. 7(p) = 72(p)) for any point p € Reps,ur, \ {A, C,E} (resp. p € Reps,ur \ {A,C,E}),
and where 7(A), 7(C) and 7(E) are defined as follows: C is now a a path—(c1,...,¢,)—point, A is now a a
path—(as, ..., ap)—point, and 7(E) remains the crossing of a; and c¢; (as in Ma).

Since V(T') = V(T1) UV (T») and V(T1) NV (T2) = {a;, ¢}, every vertex v € V(T') corresponds to exactly
one segment v in S. Note that E(T) = E(T1) U E(T>) and that E(Th) N E(T») = {aic;}. Note also that
an edge wv is in the graph corresponding to A (resp. C) in M if and only if uv is an edge of the graph
corresponding to A (resp. C) in M, or in M. Note that the edge a;c; is represented by the crossing of a;
and c; in E. Thus the edges of T" are exactly the edges represented in M. Since F(T') = F(T1) UF(T3), since
F(Ty) N F(Ty) = 0, since no face segment has been added or removed and since A and C are path points
(and thus no face is represented in A or C), the faces represented in M are exactly the union of the faces
represented in My and Maj, i.e., the faces of T.

We know that Constg,ur, and Consts,ur, are acyclic. Let Const] be the digraph obtained from
Constg,ur, where the arc from E to a; and the arc from E to c¢; have been respectively replaced by
an arc from a; to E and an arc from c¢; to E (this corresponds to the fact that E is not longer an end of a;
or ¢;). Since Constg,ur, is acyclic and since E is free in My, Const} is acyclic.

The digraph Constsyr is the union of Const) and Consts,ur, where the two vertices corresponding to a;
(resp. ¢j, A, C, E) have been identified. Since Consty, and Consts,ur, are acyclic, any cycle in Constsur
must contain vertices of Constg,up, and of Const] and thus, there must be at least two vertices among
a;,cj, A, C,E in any cycle of Constsur. Note that A, C have no predecessor and that E has no successor,
except possibly a face segment (that has no successor); thus none of them is in any cycle. The predecessors
of ¢; and a; different from A, C are both in Consts,ur, (but not in Const}). Any cycle containing c¢; and
ay would be a cycle in Constgs,ur,, which is impossible. Consequently, Constsyr is acyclic and thus M is
a premodel of T'. For the same reasons as in the proof of Case 1.1, the internal special points of c¢; and a
remain free in M.

In order to obtain a premodel of 7" satisfying Property 1, we realize the special points appearing on c;
(resp. a;) except C (resp. A); this is possible by Corollary 2.20, since they are free.
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Case 1.4: There is no chord a;b;, with 1 < i < p and 1 < j < g, and no chord a;c;, with 1 < i < p and
1 <j <r (see Figure 19).

In this case we consider the adjacent path (di,...,ds,a1) (see Figure 11) of T with respect to its 3-
boundary, (ai,...,ap)-(b1,...,bq)-(c1,...,cr). Consider the edge dsa,, with 1 < y < p and which minimizes
y. This edge exists since, by definition of the adjacent path, d is adjacent to some vertex a, with y > 1.
The W-triangulation Ty, ,, has less edges than T' (aias ¢ E(T4,q,)), and thus Property 2 holds for Ty,q, .

Fig. 19. Case 1.4: No chord a;b; or a;c;.

Now we distinguish two cases according to the position of a,, the first is when y = 2 and the second is
when y > 2.

Case 1.4.1: y = 2.

In that case, E(T) = E(T4.a,) U {a1a2} and F(T) = F(Ty_a,) U {a1a2ds}.

If p =y = 2, for any non-collinear points B, C,D, there exists a premodel M’ = (S, F',7") of Ty.4,
contained in the triangle BCD that satisfies Property 2 and where B, C, D are respectively a path—
(b1,...,bg)—point, a path—(c1, ..., ¢, )—point and a fan-path—as< (d, ..., ds) - (ds, a1 )—point.

Now, we only change the type of D that is now a fan—as< (a1, ds, . .., dy)—point. This is possible since the
incidence sequence of D is (a2, ai,ds, ..., d1). Note that this modification only adds the edge a;as to the set
of represented edges and the face ajasds to the set of represented faces. Consequently, M is a premodel of
T and since there is no face segment incident to D (since it was a fan-path point), M satisfies Property 1.

If p > 2, for any non-collinear points A, B, C, consider a premodel M’ = (S’, F', ') of Ty,,, contained in
the concave polygon ABCE for some point E that satisfies Property 2 and where A, B, C, E are respectively
a path—(b1, ..., by)—point, a path—(as, . .., a,)—point, a path—(c1, .. ., ¢,)—point and a path—(as, ds, a1)—point.

We do a traversing of as by a; along ds and then we prolong a; (See Figure 20); this is possible by
Lemma 2.13, since Constgp: is acyclic. Let D be the crossing of a; and as and D’ be the crossing of
a; and dg. After this move, E is the crossing of ds and a; and is no longer a special point. We add a face
segment ajdsag from D’ to an inner point of [DE]. Let S (resp. F, 7) denotes the new segment set, (resp. the
new face segment set, the new type function). Note that S U F is contained in the concave polygon ABCD.

Note that this modification only adds the edge ajas to the set of represented edges and the face ajasds
to the set of represented faces. Indeed, there was no face represented in E and the edges dsa; and dsas
that were previously represented in E are now respectively realized in D’ and in E. Note that since we
have transformed a special point into different simple points (that cannot belong to any cycle), Constsyr is
acyclic and thus M = (S, F, 1) is a premodel of T" that satisfies Property 1 (since D is now the crossing of
a; and as).

Case 1.4.2: y > 2 (see Figure 21).

Let us denote eq, e, ..., e; the neighbors of d, strictly inside the cycle (ds, a1, as,...,a,), going “from
right to left” (see Figure 19). Since y is minimal we have e; # a;, forall 1 <i<tand 1 <j <y.

Let T} be the subgraph of T that lies inside the cycle (a1,...,ay,e1,...,€et,a1). By Lemma 3.2, T} is a
W-triangulation. Since the W-triangulation T" has no separating 3-cycle (ds, a1, €;), (ds, ay, €;) or (ds, €;, €;5),
there exists no chord a1, e;, aye; or e;e; in Th. So (az,ar)-(a1, €, ..., €1,ay)-(ay,...,a2) is a 3-boundary of
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Fig. 20. Case 1.4.1: when y =2 and p > 2.

T. Finally, since 77 has less edges than T (a1ds ¢ FE(11)), Property 1 holds for Ty with respect to the
mentioned 3-boundary.

Since p > y > 2, we want to construct a premodel M = (S, F, 7) of T' contained in some concave polygon
ABCD. Consider three non collinear points A, B, C.

If p =y (see Figure 21, left), let E be an inner point of [AB]. Consider a premodel M’ = (S, F',7") of
T4,a, satisfying Property 2 that is contained in BCE and where B, C, E are respectively a path—(by, ..., bg)—
point, a path—(c1,...,¢,)-point and a fan-path—a,<(di,...,ds) - (ds, a1)—point.

If p > y (see Figure 21, right), there exists a premodel M’ = (S, F',7') of Ty,,, satisfying Property 2
that is contained in a concave polygon ABCE for some E and where A, B, C, E are respectively a path—
(ay, . ..,ap)-point, a path—(b1,...,b,)—point, a path—(ci,...,c,)—point and a path—(a,, ds, a1 )-point. Note
that there is no face segment incident to E, since it is a path—point.

In both cases, let D be an inner point of [EC] and consider a premodel My = (Sy, Fy,71) of T} that is
contained in AED and where A, E, D are respectively a path—(as,...,a,)-point, path—(ay,e1,..., et a1)-
point and a fan—a;<(as,...)—point. By using Lemma 2.12, when y = p (resp. y > p) we can ensure that
except C,E (resp. A, C,E), there is no representative points p of M’ and p; of M; exactly at the same
position on a; (resp. aj, ay).

Note that the two segments a; (resp. a,) of S” and S; form now a single segment a; (resp. a,). Consider
now M = (S,F,7) where S = S’ US; (up to the identification of the a;s and of the a,s), FF = F' U Fy,
7(p) = 7'(p) (resp. 7(p) = 71 (p)) for any point p € Repsur \ {A,E} (resp. p € Reps,ur, \ {A,D,E})
and where 7(A), 7(D), 7(E) are defined as follows.

If p =y, A remains a path—(as,...,a,)—point as in My, D remains a fan-a;<(aq, ...)—point as in M,
(this is possible since around D we have only prolonged a;) and E is a double-fan-ap<(dy,...,ds) - ds<
(a1,et,...,e1,ap)-point (this is possible, since the incidence sequence of E is (ap,d1, ..., ds, a1, €, ..., €1,ap)
and since there is no face-segment incident to E).

If p > y, A is now a path—(as, . . ., ap)—point, D remains a fan-a;< (az, . . .)-point as in M (this is possible
since around D we have only prolonged a;) and E is a fan—d < (ay, €1, . . ., €, a1)—point (this is possible, since
the incidence sequence of E is (ds, ay, €1, . .., e, a1,ds, ay)).

Since V(T') = V(T1) UV (T4,q,) and V(T1) NV (T4,a,) = {a1,ay}, every vertex v € V(T') corresponds to
exactly one segment v in S. Note that E(T1) N E(Ty,q,) = 0 and that E(T) = E(T1)UE(T4,q,)U{dse; | i €
[1,t]} (See Figure 21). Any edge wv is represented in D (resp. A) in M if and only if uv is represented in D
(resp. A) in My (resp. in M’ or in M;). In both cases (y = p or y < p, see Figure 22), the edges represented
in E in M are exactly the edges represented in E in M’, the edges represented in E in M; and the edges
in {dse; | i € [1,t]}. Consequently, the edges represented in M are exactly the edges of T'.

Note that F/(T) = F(T1) U F(Tq,a, U {dsa1es,dsayer } U {dseieiq1 | i € [1,¢ — 1]} (See Figure 21). Since
the type of D has not been changed, the faces represented in D in M are exactly the faces represented in D
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Fig. 21. Case 1.4.2: when y = p (left) or when y < p (right).

in M. Since A is a path—point in M, M’ and M, no face is represented in A in M, M’ or M;. In both
cases (y = p or y < p, see Figure 22), the faces represented in E in M are exactly the faces represented in
E in M’, the faces represented in E in M; and the faces in {dse;ei11 | @ € [1,t — 1]} U {dsayer, dsarer}.
Consequently, the edges represented in M are exactly the edges of T

ay ay €1 €t ai

o —o—0 0 ©°

al €t €1 Qy

dl ds ail d1 ds
ds
o —o—0 0 ©° *—o—0
ar et €1 ay a1 ds ay
al et €1 Ay

Fig. 22. Case 1.4.2: the graph represented by E in M; (left), M’ (middle) and M (right) when y = p (top) or y < p
(bottom).

We know that Consts,r, and Consts/,p are acyclic. Let Const) be the digraph Consts, r, where the
arc from E to a, and the arc from D to a; have been respectively replaced by an arc from a, to E and
an arc from a; to D. If y = p, let Const}, be the digraph Constg:yrs where the arc from E to a, has been
replaced by an arc from a, to E. If y > p, Const, = Constgyps. For the same reasons as in the proof of
Case 1.1, Const} and Const} are acyclic and the internal special points of a; (resp. a; and a,) remain free
if y =p (resp. y > p).

The digraph Constgyr is the union of Const] and Const,, where the two vertices corresponding to a;
(resp. a,, A, C, E) have been identified. Since Const} and Const}, are acyclic, any cycle of Constsyr must
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contain at least two vertices among ai,a,, A, C,E. It is easy to see that a; (resp. a,, E) has no predecessor
in Const! except E (resp. A, a,). Thus, since A and C have no predecessor, Constgyr is acyclic.

In order to obtain a premodel of T satisfying Property 1, we have to realize some special points. If y = p
(resp. y < p), we first realize the special points of a; (resp. a; and a,) except D and E; this is possible since
these points are free. If D is a fan—a;< (a2)—point, then it is sufficient to prolong as to realize it. If D is a
fan—ai< (a9, d}, ..., d.,)—point, then we realize it according to Proposition 2.14. The first step is a traversing
of a; by df,...,d., along as; thus D is realized inside ABCD.

If y > p, we still have to realize the point E that is not necessary free (there may be an intersection
between one of the e; and az). Since E is a fan-ds< (ay, e1, . . ., e+, a1)-point, we first do a traversing of d, by
(é1,...,€t,a1) to obtain a path—(ay,ai, e, ...,e1)-point E'. We can prolong a; without changing the type
of E; it is possible since we know that a; has no predecessor in Const]. Since E was free in Const}, E' is a
free point and then it can be realized.

Once all these realizations have been done, we have obtained a premodel contained in a concave polygon
ABCD satisfying Property 1.

This completes the study of Case 1 and ends the proof of Lemma 3.8. O

We now prove the inductive step for Property 2 with the following lemma.

Lemma 3.9. For any integer m > 3, if Property 1 holds for any W-triangulation T such that |E(T)| < m
and Property 2 holds for any W-triangulation Ty, q, such that |E(T4,q,)| < m, then Property 2 holds for any
W-triangulation Tg,q, such that |[E(T)| = m.

Case 2: Proof of Property 2 for any W-triangulation Ty,q, such that |E(Tq,q,)| = m.

Recall that the W-triangulation Ty, ., is a subgraph of a W-triangulation 7" with a 3-boundary (ay, . . ., ap)-
(b1,...,bg)-(c1,...,cr). Moreover, T has no chord a;b; or a;c; and its adjacent path is (dy,...,ds, a1), with
s > 1. We distinguish two cases: either d,a, = dia, or dya, # diay.

Case 2.1: dyay = dya, (see Figure 23).

C1

b
b1 =ap

Fig. 23. Case 2.1: Tapa, = Tayay,-

Let T3y be the subgraph of T4,a, that lies inside the cycle (a1,ds,...,dy,ba, ... by, c2,...,¢r). By Lemma
3.2, Ty is a W-triangulation. This W-triangulation has no chord b;b;, c;c;, d;d;, or ai1d;. We consider two
cases according to the existence of an edge d;b; with 2 < i < q.

(1) If Ty has no chord dib; then (dy,ba,...,bg)-(c1,...,¢r)-(a1,ds,...,d1) is a 3-boundary of T;.

(2) If Ty has a chord d;b;, with 2 < i < ¢, note that ¢ > 2 and that there cannot be a chord baa; or bad;, with
1 < j < s (this would violate the planarity of Ty see Figure 23). So in this case, (ba,d1,...,ds,a1)-
(¢ry...,c1)-(bg,...,b2) is a 3-boundary of T7.

2y

Finally, since T} is a W-triangulation with less edges than Tgy,4, (b1b2 ¢ E(T1)), Property 1 holds for T}
with respect to at least one of the two mentioned 3-boundaries.

We want to construct a premodel M of T4,a, contained in a triangle BCD. Consider three non-collinear
points B, C, D.
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If we consider the 3-boundary mentioned in (1) and if ¢ = 2, consider a inner point E of [BD] and consider
a premodel M’ = (S’ F’, 7') contained in CDE satisfying Property 1 where C, D, E are respectively a path—
(c1y...,¢.)—point, a path—(a1,ds, . . .,d;)—point and a fan—bo< (dy,...)—point. In that case, we prolong by so
that its new end is B (See Figure 24, left).

Otherwise, consider a premodel M’ = (5, F’,7") satisfying Property 1 contained in a concave polygon
BCDE for some point E where B, C,D,E are respectively a path—(bs,...,b,)—point, a path—(c1,..., ¢ )—
point, a path—(ai,ds, ..., dy)-point and the crossing point of d; and by (See Figure 24, right).

In both cases, we add a new segment by from D to B and a new face segment bad;b; going from E to
an inner point of by.

Fig. 24. Case 2.1.

Consider now M = (S, F,7) with S = S’ U {by}, F = F' U {badibs}, 7(p) = 7/(p) for any p €
Repsup \ {B,D,E} and where 7(B), 7(D), 7(E) are defined as follows. B is a path—(b1, ..., b,)—point; this
is possible since its incidence sequence is (by,...,by). D is a fan-path-b1<(dy) - (di, ..., ds, a1)—point; this
is possible since its incidence sequence is (by,dy,...,ds,a;1). If in M’, E is the crossing of a; and as or is a
fan—bo< (d1 )-point, then in M, E is the crossing of a; and ap; it is possible since if there is a face segment
incident to E in M’, then d; or ds separates it from badib;. If in M, E is a fan—bo< (dy,d}, . . ., d. )—point
(with s’ > 1), then it remains a fan—bo< (d1,d}, . .., d., )—point; this is possible since its incidence sequence is
(bz,badiby,dy,d],...,d,,, by). In both cases, it is easy to see that the edges and the faces represented in
E have not been modified.

Since V(T4,q4,) = V(T') U {b1}, every vertex v € V(T') corresponds to exactly one segment v in S. Note
that E(Ty,4,) = E(T) U {bidy,b1ba}. It is easy to see that the edges represented in B (resp. D) in M
are exactly the edges represented in B (resp. D) in M’ and the edge b1bs (resp. bids). Since we have not
modified the edges represented in E, the edges represented in M are exactly the edges of Ty,4,. Note that
F(T4,a,) = F(T) U {bad1b1 }. Since we have added a face segment bad;b; and since we have not changed
the faces represented in B, D, E, the edges represented in M are exactly the faces of Ty, q,.

Since all the special points of M appear on [BC], [CD] or [BD], it is easy to see that Constsyr is acyclic
and thus, M is a premodel of Ty, ,, that satisfies Property 2.

Case 2.2: Tq,a, # Taya,-

In this case we consider an edge d.a,, € E(Tdmay) such that d.a., # dya,. Among all the possible edges
d,a,, we choose the one that first maximizes z and then minimizes w. Such an edge necessarily exists and
actually one can see that d, = d, or d, = d;41. Indeed, if d, = d; there is at least one edge dja, with
w >y, the edge dya,. If x > 1, it is clear by definition of the adjacent path that the vertex d,_; is adjacent
to at least one vertex a,, with w > y. By Lemma 3.2, T, ., is a W-triangulation. Since dyay ¢ E(Ty.a,, ),
the W-triangulation Ty, ,,, has less edges than Ty, ,,, and so Property 2 holds for Tjy_,,, .

26



We distinguish 4 cases according to the values of z and w.

(Case 2.1) z=zand w =y +1,
(Case 2.2) z=x—1and w =y,
(Case 2.3) z=zand w >y + 1,
(Case 2.4) z=2—1and w > y.

Case 2.2.1: Tq,a, # Tdya,, 2 =2 and w =y + 1 (see Figure 25).

c1 = bq

Fig.25. Case 2.2.1: z=zx and w =y + 1.

We want to construct a premodel M = (S, F,7) of Ty,,, contained in some concave polygon ABCD.
Consider three non-collinear points B, C, E.

If w = p (See Figure 26, top left), consider a premodel M’ = (S, F',7') of Ty, 4, satisfying Property 2
that is contained in BCE and where the points B, C, E are respectively a path—(by, ..., b,)-point, a path—
(c1,...,¢.)—point and a fan-path—a,<(d1,...,d;) - (dg,...,ds, a1)—point. We then prolong a,, after E to a
new point A (since E is free, it keeps the constraints digraph acyclic).

If w < p (See Figure 26, bottom left), consider a premodel M’ = (S’ F',7') of Ty, ., satisfying Prop-
erty 2 that is contained in a concave polygon ABCE for some point A and where the points A, B,C, E
are respectively a path—(ay, ..., ap)-point, a path—(b1,...,b,)—point, a path—(cq,. .., ¢ )—point and a path—
(aw,dy, ..., ds,a1)—point.

In both cases, we do a gliding of (d;41,...,ds,a1) on d,; this is possible and it keeps the constraints di-
graph acyclic from Lemma 2.12 since E is free. Let D be the new intersection point of d, and d, 11, ...,ds, a;z.
Then, we add a segment a, from A to D and we prolong it after D. Then, we add a face segment dxaway
from E to an inner point of [AE]. One can easily check that adding this segment and this face segment keeps
the constraints digraph acyclic.

Consider now M = (S, F,7) where S = S'"U{a, }, FF = F'U{dxaway }, 7(p) = 7/(p) for any p € Reps/ur\
{E, A} and where 7(A), 7(D) and 7(E) are defined as follows. A is now a path—(ay, @, ..., a,)-point. D is
a path—(ay, ds, . . ., ds, a1)-point; this is possible since its incidence sequence is (a,,dg, ... ,ds,a1,a,,d;). If
w = p, E is now a fan—a,,< (ds, . . ., d1)—point; this is possible since its incidence sequence is (a,,, dxaway, d,,
...,d1,ay). If w < p, E is now the crossing point of a,, and d,; if there is a face segment incident to E in
M/, either d, or a,, separates it from dyaway.

Note that in both cases, the edges represented in D and E in M are exactly the edges represented in E
in M’ and the edge d,a,. Note that no face is represented in D in M and that the faces represented in E
in M are exactly the faces represented in E in M’.

Since V(T4,a,) = V(T4.a,) U {ay}, every vertex v € V(T') corresponds to exactly one segment v in S.
Note that E(Tq,a,) = E(T4.a,)U{dsay, away}. Since dya, (resp. a,a,) are now represented in D (resp. A)
and since the other edges represented in M are exactly the edges represented in M’, the edges represented
in M are exactly the edges of Ty,4,. Note that F(Ty4,q,) = F(Ta.q,) U {dzaway}. Since we have added a
face segment dyxaway and since we have preserved the faces represented in M’, the faces represented in M
are exactly the faces of Ty, .

If w < p, we realize all the special points appearing on a,, (they are on [AE]). Then, in both cases, we
have constructed a premodel M of Ty, ,, that satisfies Property 2.
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Fig. 26. Case 2.2.1: when w = p (top) or w < p (bottom

C1 Ibq

Fig.27. Case 2.2.2: Tu,a, # Tiya,, 2 =7 —1and w=1y.

Case 2.2.2: z=x — 1 and w =y (see Figure 27).

If w = p, we want to construct a premodel M = (S,F,7) of Ty,q, contained in a triangle BCD.
(S",F',7") of Ty,4, satisfying Property 2 that is contained in BCD and where

,bg)—point, a path—(c1, ..., ¢.)-point and a fan-path-a,<

Consider a premodel M’ =
the points B, C, A are respectively a path—(bq, ...

(diy...,d;) - (ds,dy,...,ds,a1)—point.
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Let M = (S, F',7) where 7(p) = 7/(p) for any p € Repgur \ D and let D be a fan-path—a,<
(di,...,d.,dy) - (dg, ..., ds,a1)—point.

By changing the type of D, we have added the edge d,a, to the set of represented edges and the face
dyd.a, to the set of represented faces. Since V(Ty4,q4,) = V(Tu.a,), E(Ta,a,) = E(Ti.a,) U {dsay} and
F(T4q,a,) = F(T4.a,) U {d.d.ay,}, M is a premodel of Ty ,, .

If w > p (See Figure 28), we want to construct a premodel M = (S, F, 1) of Ty, 4, contained in a concave
polygon ABCD. Consider three non-collinear points A,B,C and a premodel M" = (S, F',7") of Ty_q,
satisfying Property 2 that is contained in a concave polygon ABCE for some point E and where the points
A,B,C,E are respectively a path—(a,,...,a,)-point, a path—(bi,...,by)-point, a path—(ci,...,c,)-point
and a path—(ay, d., ds, ..., ds,a1)—point.

We do a gliding of (d,...,ds,a;) on a,; by Lemma 2.12, this is possible and it keeps the constraints
digraph acyclic, since E is free. Let D be the new intersection point of a, and d,,...,ds,a; (note that D
is free). Note that since E is not an end of d,, by choosing D close enough from E, one can ensure that
(d,,) and d, intersect. We prolong d, after D such that d, and d, intersect in some point D’. If necessary,
we extend d, and d, in such a way that D’ is not an end of d, or d,. Note that since D is free and since
the crossing between d, and d, is not a special point, when extending d,, we keep the constraints digraph
acyclic. Then, we add a face segment dxd,ay from D’ to an inner point of [ED] (that is contained in a,).

Let M = (S, F,7) with § = 5’, F = F'Udxd,ay, where for any representative point p € Reps:ur \ {E},
7(p) = 7(p’) and where 7(D), 7(D’) and 7(E) are defined as follows: D is a path—(ay, ds, ..., ds, a1)-point,
D’ is the crossing point of d, and d, and E is now the crossing point of d, and a,.

Fig. 28. Case 2.2.2: when y < p.

Since V(T4,a,) = V(T4.q,), every vertex v € V(Tq,q,) corresponds to exactly one segment v in S. Note
that E(Ty4,q4,) = E(Ta.q,) U {deay}. In M’, the edges {didiz1 | i € [x,s — 1]} U {d.d.,d.ay,dsa1} are
represented in E. In M, the edges represented in D are {d;d;+1 | i € [z,s — 1]} U {da,,dsa1}. Since the
edges d,d. and d.a, are represented respectively in D" and E in M, the edges represented in M are exactly
the edges of Ty,4,. Note that F(Ty,4,) = F(Ta.a,)U{dzd.ay}. Since no face is represented in E in M’ or in
D in M and since we have added a face segment dyd,ay, the faces represented in M are exactly the faces
Of Tdmay .

Since all the special points of M appear on AC, BC, CD or BD, M is a premodel of Ty, ,, that satisfy
Property 2.

Case 2.2.3: z=x and w > y+ 1 (see Figure 29).
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Fig. 29. Case 2.2.3: Td,a, #* Tdya,, 2 =2 and w >y + 1.

Let us denote e, e, . .., e; the neighbors of d, strictly inside the cycle (dg, ay, ..., ay), going “from right
to left” (see Figure 29). Since there is no chord a;a; we have ¢t > 1. Furthermore w being minimal we have
ei # aj, forall 1 <7 < tand y < j < w. Let T be the subgraph of Ty,,, that lies inside the cycle

(@y,...,au,e1,...,6,ay). By Lemma 3.2, T} is a W-triangulation. Since the W-triangulation Ty, ,, has no
separating 3-cycle (dg, aw, €;) or (ds, €;, €5), there exists no chord a,e; or e;e; in T7. With the fact that ¢ > 1,
we know that (e, ay)-(ay, ..., aw)-(aw,e1,...,e) is a 3-boundary of T7. Finally, since T; has less edges than

Ti,a, (deay ¢ E(T1)), Property 1 holds for T with respect to the mentioned 3-boundary.

We want to construct a premodel M = (S, F,7) of Ty,,, contained in some concave polygon ABCD.
Consider three non-collinear points B, C, E.

If w = p (See Figure 30, top left), consider a premodel M’ = (S, F',7') of Ty, 4, satisfying Property 2
that is contained in BCE and where the points B, C, E are respectively a path—(b1,...,bs)—point, a path—
(c1,...,¢r)—point and a fan-path—a,<(di,...,ds) - (dg, ..., ds,a1)—point. We then prolong a,, after E to a
new point A (since E is free, it keeps the constraints digraph acyclic).

If w < p (See Figure 30, bottom left), consider a premodel M’ = (S’, F',7') of Ty, ., satisfying Prop-
erty 2 that is contained in a concave polygon ABCE for some point A and where the points A, B,C,E
are respectively a path—(ay, ..., a,)-point, a path—(b1,...,b,)—point, a path—(cq, ..., ¢ )—point and a path—
(G, dy, ..., ds,ar)-point.

In both cases, as in Case 2.2.1, we do a gliding of (d,+1,...,ds,a1) on d,. Let D be the new intersection
point of d; and dg41,...,ds,a;. Since we have done exactly the same moves as in Case 2.2.1, for the same
reasons as before, the constraints digraph is still acyclic after these modifications.

Consider now an inner point F of [AD] and a premodel My = (S, Fi,71) of Ty satisfying Property 1
that is contained in AEF and where the points A, E, F are respectively a path—(ay, ..., a,)—point, a path—
(@w,€1,...,e)—point and a fan—a,< (e, ...)—point. By using Lemma 2.12, we can ensure that when w < p,
there are no representative points p; of M; and py of M’ exactly at the same position on a,,, except A and
E.

Then, we prolong a, after F in such a way that D is now an inner point of a, (See Figure 30, right). We
now add a face segment ayeydy from F to an inner point of [DE] (that is contained in d,).

Note that the two segments a,, of S; and S’ form now a single segment a,,. Consider now M = (S, F, 1)
where S = S U S; (up to the identification of the a,s), F' = F' U I} U{ayeidx}, 7(p) = 7/(p) (resp.
7(p) = 71 (p)) for any p € Repsur \ {A,E} (resp. p € Reps,um \ {A,E,F}) and where 7(A), 7(D), 7(E)
and 7(F) are defined as follows. A is now a path—(ay,...,ap)-point; this is possible, since its incidence
sequence is (ay,...,ay,...,a,). Asin Case 2.2.1, D is now a path—(ay,ds, ..., ds,a1)-point.

If w < p, Eis afan—-d,<(ay,ea,...,e)—point; this is possible since its incidence sequence is (d,, a.,, €1,
...yer,dg,ay). If w=p, Eis a double-fan—a,< (dy, . ..,dy) - dz< (e, ..., e1,ay,)-point; this is possible since
its incidence sequence is (a,,d1,...,ds, €, ...,€1,8y).

If F is a fan—a,< (e¢)—point in M1, then F is the crossing point of a, and e; in M; this is possible since
if there was a face segment incident to F in M, then e; separates it from ayeydy in M. Otherwise, there
is no face segment incident to F and F remains a fan—a,<(e;, ...)—point in M (as in M); this is possible
since its incidence sequence is (a,, aye¢dx, €, . . ., ay).

Since V(T4,a,) = V(T4,a,) UV (T1), every vertex v € V(Ty,q,) corresponds to exactly one segment v in
S. Note that E(T4,a,) = E(T4,q,)UE(T1)U{deay} U{de; | i € [1,t]} (See Figure 29). Note that the edges
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Fig. 30. Case 2.2.3 (z =z and y > w + 1): when w = p (top) or w < p (bottom).

represented in F in M are the edges represented in F in M and that an edge wv is represented in A in M
if and only if uwv is represented in A in M’ or M. One can check that in both cases (w = p or w < p), the
edges represented in D and E in M are exactly the edges represented in E in M’, in E in M3 and the edges
in {dya,} U {dse; | i € [1,t]}(See Figure 31). Note that F(Ty,q,) = F(T4,q,) U F(T1) U {ayeids, dpayer } U
{dyeieit1 | i € [1,t—1]} (See Figure 29). Note that the faces represented in F in M are the faces represented
in F in M; and that no face is represented in A (resp. D) in M’, M; or M (resp. M). One can check that
no face is represented in E in M and that the faces represented in E in M are exactly the faces represented
in E in M’ and the faces in {dzawe1} U {dyeieir1 | i € [1,¢ — 1]} (See Figure 31). Since we have added a
face segment ayeydy, the edges represented in M are exactly the edges of Tg,q, .
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Fig. 31. Case 2.2.3: the graphs represented in E in M; (top left), in E in M’ when w = p (top middle), in E in M’
when w < p (top right), in D in M (bottom left), in E in M when w = p (bottom middle) and in E in M when
w < p (bottom right).

We know that Constg,ur, is acyclic. Let Coonst] be the digraph obtained from Constg, r,, where the
arc from E to a,, and the arc from F to a, have been respectively replaced by an arc from a,, to E and an
arc from a, to F. Since E and F are free in M;, Const} is acyclic.

We know that Constg:ps is acyclic. Let Const’, be the digraph obtained from Consts:/,ps, where there
are two new vertices a, and D, where the arcs from E to d;, ¢ € [z + 1,s] and from E to a; have been
respectively replaced by some arcs from D to d;, i € [z + 1, s] and from D to a; and where there is an arc
from d, (resp. a,) to D. We also add a new vertex I representing the end of a, and an arc from I to a,.
Since E is free in M’ and since a, has only one predecessor (I) that has no predecessor in Consty, D is free
in Const}, and thus, Const), is acyclic.

Note that Constgup is the union of Const] and Const/, where the two vertices corresponding to a,, (resp.
ay, E, A) have been identified. Since Const] and Const}, are acyclic, any cycle of Constgup must contain
two vertices among a,,,a,, A, E. Since A has no predecessor, since A is the only predecessor of a,, (resp.
a,) in Const} and since the only predecessor of E in Const] is a,,, there is no cycle going from Const} to
Constly through any of these points and thus Constgyr is acyclic. For the same reasons as in the proof of
Case 1.1, the special points belonging to a,, when w < p remain free in Constsyp.

If w < p, we realize all the special points appearing on a,, (they are on [AE]), except A (but we realize
E). Then, in both cases, we have constructed a premodel M of Ty,,, that satisfies Property 2.

Case 2.2.4: z=x — 1 and w > y (see Figure 32).

C1 :bq

A

Fig. 32. Case 2.2.4: Tu,a, # Tiya,, 2 =2 — 1 and w > y.

Let us denote ey, ea, . .., e; the neighbors of d. strictly inside the cycle (d,dz, ay, . .., aw, d), going “from
right to left” (see Figure 32). Since z is maximal there is no edge d,a.,, so t > 1. Let us denote f1,..., f, the

32



neighbors of d, strictly inside the cycle (ds, ay, ..., aw,d.), going “from right to left” (see Figure 32). Note
that fi = e; and that w being minimal, there is no edge d.a,, so u > 1.

Since w is minimal (resp. z is maximal) we have e; # a; (resp. f; # a;), for all 1 <4 <t (resp. 1 < i < w)
and y < j < w. Let Ty be the subgraph of Tgy,,, that lies inside the cycle (Gy, - Qus€y. ety fo, ooy fus
ay). By Lemma 3.2, Ty is a W-triangulation. Since the W-triangulation Ty ., has no separating 3-cycle
(dz, aw, €i), (d=,€i,€5), (dg, fi, fj), or (dz, fi,ay), there exists no chord ae;, e;ej, fifj, or fia, in Ti. With
the fact that ¢t > 1 and v > 1, we know that (fi, fa,..., fu,ay)-(ay, ..., aw)-(aw, €1,...,e) is a 3-boundary
of T}. Finally, since 7' has less edges than Ty, 4, (dza, ¢ E(T1)), Property 1 holds for T with respect to the
mentioned 3-boundary.

We want to construct a premodel M = (S, F, 1) of Ty
Consider three non-collinear points B, C, E.

If w = p (See Figure 33, top), consider a premodel M’ = (S, F' 7'") of T,_,, satisfying Property 2
that is contained in BCE and where the points B, C, E are respectively a path—(by, ..., b,)-point, a path—
(c1y...,¢)—point and a fan-path—a.,<(ds,...,d;) - (ds, dy, . . ., ds, a1)-point. We then prolong a,, after E to
a new point A (since E is free, it keeps the constraints digraph acyclic).

If w < p (See Figure 33, bottom), consider a premodel M’ = (S’, F’,7") of T,_,, satisfying Prop-
erty 2 that is contained in a concave polygon ABCE for some point A and where the points A, B,C,E
are respectively a path—(a,...,ap)-point, a path—(b1, ..., by)—point, a path—(cy, ..., ¢, )-point and a path—
(aw,dz,dy, ..., ds,a1)-point.

In both cases, as in Cases 2.2.1 and 2.2.3, we do a gliding of (dy+1,...,ds,a1) on d,. Let D be the new
intersection point of d, and d;41,...,ds,a;. Since we have done exactly the same moves as in previous
cases, for the same reasons as before, the constraints digraph is still acyclic after these modifications.

If w = 1 (See Figure 33, left), let F be an inner point of [AD] and consider a premodel My = (S, F1,71)
of Ty satisfying Property 1 that is contained in AEF and where the points A, E, F are respectively a path—
(@y, ..., ay)-point, a path—(ay,e1,...,e:)—point and a fan-a,< (fi,...)-point. Then, we prolong a, after F
in such a way that D is an inner point of a,. We now add a face segment f;a,dy from F to an inner point
of [DE] (that is contained in d,). -

If u > 1 (See Figure 33, right), consider a premodel M; = (S1, Fy,71) of T} satisfying Property 1 that is
contained in a concave polygon DAEF for some point F and where the points A, D, E, F are respectively
a path—(ay, ..., a,)—point, a path—(fa,..., fu,ay), a path—(ay,e1,...,e)—point and the crossing point of
e; = f; and fy. We prolong a, after D. We now add a face segment f;fadx from F to an inner point of [DE]
(that is contained in d).

By using Lemma 2.12, we can ensure that when w < p, there are no representative points p; of M; and
p2 of M’ exactly at the same position on a,,, except A and E.

Note that the two segments a,, of S; and S’ form now a single segment a,,. If v = 1 (resp. v > 1),
consider now M = (S, F,7) where S = S’ U S; (up to the identification of the a,s), F = F' U F; U
{ayetdx} (resp. F' = F'U Fy U {fifadx} ) and where 7 is defined as follows. For any p € Reps:ur \ {A, E}

(resp. p € Reps,ur, \ {A,D,E,F}), 7(p) = 7/(p) (resp. 7(p) = 7i(p)) and 7(A),7(D),7(E) and 7(F)

.a, contained in some concave polygon ABCD.

are defined as follows. A is now a path—(a,,...,a,)—-point; this is possible, since its incidence sequence is
(ay,...,ay,...,8,). D is now a path-fan—(d, ..., ds, a1) - dz<(ay, fu, - - ., f2)-point; this is possible since its
incidence sequence is (d, ..., ds, a1, a,, f,,...,f2,d;, ay).

fw < p,Eisafan—d.<(ay,e1,...,e,d;)—point; this is possible since its incidence sequence is (d, a,, 1,
..oy e,de,d; ay). Ifw = p, Eis a double-fan—a,< (dy, ..., d,) - d.<(dy, €, . . ., €1, a,)—point; this is possible
since its incidence sequence is (a,,di,...,d,,d., e, ..., €1,a,).

If F is the crossing of f; and f; in My, then F remains the crossing of f; and f; in M; this is possible,
since if there was a face segment incident to F in M, then either f; or f separates it from f;fady in M.
If F is a fan—a,< (f1)-point in M, then F is the crossing point of a, and f; in M; this is possible since if
there was a face segment incident to F in M, then f; separates it from aye¢dy in M. Otherwise, there is
no face segment incident to F and F is a fan-a,<(f1,...)-point in My; it remains a fan-ay<(f1,...) in M;
this is possible since its incidence sequence is (a,, ayfidx, f1,. .., a,).

Since V(T4,a,) = V(T4.a, ) UV (T1), every vertex v € V(Ty,4,) corresponds to exactly one segment v in
S.

Note that E(Ty4,q,) = E(Ti.a,)U E(T1) U {dsay,eidy} U{defi | i € [2,u]} U{d.fi | i € [1,£]} (See
Figure 32). Note that the edges represented in F in M are the edges represented in F in M; and that an
edge uv is represented in A in M if and only if uv is represented in A in M’ or M;. One can check that
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Fig. 33. Case 2.2.4: M = (S, F, ¢).

in any case, the edges represented in D and E in M are exactly the edges represented in E in M’ in D in
My, in E in M, and the edges in {d,a,,de:} U{dsfi | i € [2,u]} U{d.fi | i € [1,t]} (See Figure 34 when
w = p and Figure 35 when w < p).

Note that F(Tq,a,) = F(Ta,q,)VF(T1)U{awd.e1,drd e, dpay fu }U{dzeieirn | i€ [1,t=1]}U{ds fi fit1 |
i € [1,u — 1]} (See Figure 32). Note that the faces represented in F in M are the faces represented in F in
M and that no face is represented in A in M’, My or M. One can check that no face is represented in D
or E in M; and that the faces represented in D and E in M are exactly the faces represented in E in M/,
and the missing faces except a, fid, if v =1 and fi fad, if © > 1 (See Figure 34 when w = p and Figure 34
when w < p). Since we have added a face segment ayfidy if v = 1 and a face segment f1fody, the edges
represented in M are exactly the edges of Ty, 4, -

We know that Constg,ur, is acyclic. Let Coonst] be the digraph obtained from Constg, r,, where the
arc from E to a,, has been replaced by an arc from a,, to E and where the arc from F to a, (resp. from D
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o—0 0 0o o—0 0 ©°
Ay fu f2 Ay €1 et
[
dl dz d:z: ds ai
al ds d:c dl dz
ay  fu fa aw €1 e de

Fig. 34. Case 2.2.4 when w = p: the graphs represented in D in M; (top left), in E in M; (top middle), in E in M’
(top right), in D in M (bottom left) and in E in M (bottom right).

*—o 0o *—o—0° *—o—0 0 0o
Qy fu f2 Qw €1 €t A dz dz ds ai

al ds dm
Hm A
ay  fu fa aw €1 er  dg

Fig. 35. Case 2.2.4 when w < p: the graphs represented in D in M; (top left), in E in M; (top middle), in E in M’
(top right), in D in M (bottom left) and in E in M (bottom right).

to a,) has been replaced by an arc from a, to F (resp. a, to D) when u =1 (resp. u > 1). Since E and F
(resp. D) are free in My, Const} is acyclic.

We know that Consts:yp is acyclic. Let Const), be the digraph obtained from Constg/ g, where there
are two new vertices a, and D, where the arcs from E to d;, i € [r + 1, s] and from E to a; have been
respectively replaced by some arcs from D to d;, i € [x 4+ 1, 5] and from D to a; and where there is an arc
from d, (resp. a,) to D. We also add a new vertex I representing the end of a, and an arc from I to a,.
Since E is free in M’ and since a, has no predecessor in Const,, D is free in Const, and thus, Const} is
acyclic.

Note that Constgup is the union of Const} and Const, where the two vertices corresponding to a,, (resp.
ay, E, A, D) have been identified. Since Const} and Const), are acyclic, any cycle of Consts,r must contain
two vertices among a,,, ay, A, D, E. Since A has no predecessor in Const/, since A is the only predecessor
of a,, (resp. a,) in Const] and since the only predecessor of E (resp. D) in Const} is a,, (resp. ay), there
is no cycle going from Const} to Const!, through any of these points and thus Constgyr is acyclic. For the
same reasons as in the proof of Case 1.1, the special points belonging to a,, if w < p remain free in M.

If w < p, we realize all the special points appearing on a,, (they are on [AE]), except A (but we realize
E). Then, we have to partially realize D in order to obtain a path—(ay,ds, ..., ds, a1)-point. If u = 1, we are
done. Otherwise, by using Lemma 2.13, we do a traversing of d, by (fu,..., f2) along a,, we add the face
segments corresponding to d, f,a, and d, f; fiy1 for i € [2,u—1], as explained in the proof of Proposition 2.14
and then we realize the path—(ay, fu, ..., f2)-point.

Once these realizations have been done, we have constructed a premodel M of Ty, ., that satisfies
Property 2.

This completes the study of Case 2 and ends the proof of Lemma 3.9. O

4 Proof of Theorem 2.5

We prove that every triangulation 7" has a full model (S, F') by induction on the number k of separating
3-cycles in T'. If k = 0 the triangulation T is a W-triangulation 3-bounded by (a,b)-(b, ¢)-(¢, a), where a, b
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and ¢ are the vertices on its outer-boundary. Then Property 1 provides us a premodel M = (S, F,7) of T
and by Corollary 2.18 we obtain a full model (S’, F”) of T'.

Ifk>1,1let C = (a,b,c) be a 3-cycle such that the triangulation 7”7 induced by the vertices on and inside
C does not contain any separating 3-cycle. Let T} be the triangulation obtained by removing all the vertices
that lie strictly inside the cycle C. Let T be the subgraph of 7" induced by all the vertices of T' that lie
strictly inside the cycle C. By definition of C, T5 is either (A) a single vertex v or (B) a W-triangulation
(see Figure 36). In 71, the cycle C' delimits a face and is no more a separating 3-cycle. Since T; has one

Fig. 36. The cases (A) and (B).

separating 3-cycle less than 7', the induction hypothesis implies that 77 admits a full model M = (S, F).
Since abc is an inner face of T} there is a corresponding face segment, say acb, in F' and let respectively
B and C be its flat end and its cross end. Note that there might be an other face segment incident to C.
If it exists we denote it acd since it would correspond to a face acd adjacent to the edge ac in T;. Since F
is non-interfering we know that (a) or (c) separate acb and acd in distinct half-planes. Here we assume,
without loss of generality that the line (a) separates them. Now let ¢ > 0 be a real such that for every
representative point p € Repsyur \ {B, C} we have dist(p,acb) > €, and let the region R, be the set of
points at distance at most e from acb. The definition of € implies that (1) the only segments intersecting
R. are a, b, ¢, acb and eventually acd if it exists; and that (2) the endpoints of a, b and ¢ (resp. the flat
end of acd) are not in R.. Since there is no inner face abc in T' we remove acb from F' and we add some
segments and face segments in R, to obtain a full model of the whole 7.

acb

, "=—acd N /= acd

Fig. 37. Case (A): Modifications inside R..

Case (A): Ty is a single vertex v. Since acb and acd (if it exists) are non-interfering, it is easy to draw in
the region R. a segment v that only intersect a, b, and c; and three face segments vba, vcb, and acv such
that the set {vba,vcb,acv,acd} is non-interfering (see Figure 37). Now it is clear that from the model M
of T1 we have added a segment for v, three crossings for va, vb and ve, removed the face segment of acb, and
added the face segments of vba, acv and wvcb; thus we have a full model of T
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Fig. 38. Case (B): Modifications inside R..

Case (B): Ty is a W-triangulation. Let a1,as,...,a, be the neighbors of a inside the cycle (a,b,c) going
from ¢ to b excluded. Similarly let by, bo, ..., b, (resp. c1,ca,...,c) be the neighbors of b (resp. ¢) inside the
cycle (a,b,c) going from a to ¢ (resp. from b to a) excluded. It is clear that a1 = ¢, b1 = a,, and ¢; = b,
Furthermore, since there is no separating 3-cycle inside C, we have that:

- p,q, and r > 2.
— (a1,a2,...,ap,ba,... by, ca,...,cp) is a cycle, thus Ty is a W-triangulation.
— T5 has no chord agay, byby, or c;cy, with y > x4 1.

Thus T> is a W-triangulation 3-bounded by (a1, as,...,a,)-(b1,b2,...,by)-(c1,¢2,...,¢-). Here we choose
this particular 3-boundary because of the assumption that (a) separates acb and acd (if it exists). We
now apply Property 1 with respect to this 3-boundary and this implies that if p = 2 (resp. p > 2) then
T> has a premodel M’ = (S’, F’,7') inside the triangle BCD (resp. the polygon ABCD), where A is a
point of aN R, (See Figure 38) and D is an internal point of [A, B] (resp. a point strictly inside ABC). If
p = 2 we prolong b; = [BD] across D until reaching A and note that since D is free, then the constraints
digraph of M’ remains acyclic (Cf. Lemma 2.9). Note also that according to the definition of R., the full
model M and the premodel M’ only intersect at A, B and C. Now we are going to merge M and M’
in order to construct a premodel M* = (S*, F* 7*) of the whole T. To do this, let S* = SU S’ and
F* = (F'\ acb) U F’ U {ajaza,ab;b,bc;ic}; where ajaza goes from D to a point of [A, C], abib goes
from A to a point of b N R., and bcic goes from B to a point of ¢ N R, (See Figure 38). Observe that
F* is non-interfering, in particular we see that ajasa does not interfere with another face segment f at D,
since f would be inside ABCD. We now define 7* as follows. Let A be a fan-a<(ap,...,as)-point, let B
be a fan—b< (b, ..., b1)-point, and let C be a fan-c<(a, ¢, ..., c1)-point. If p > 2 the point D remains the
crossing point of a; and as, even with its new incident face segment. If p = 2 the point D was either a
fan—ag< (dy, . .., ds,a1)-point (for some vertices di,...,ds) or a fan—as< (a;)-point. In the first case let D
be a fan—as< (a1,ds, . . ., d1)—point (possible since it has no incident face segment in M’). In the second case
let D be the crossing point of a; and as with one or two incident face segments. Note that in both case
the graph corresponding to D remains unchanged. For the other representative points of M* let their type
remain as in M or M’.
We now verify that M™ is a premodel of T

- It is clear that S* U F™* is unambiguous and we show here that Constg«yp« is acyclic. Indeed this digraph
arises from the union of Consts r and Constg: r (where S’ has a segment as prolonged until A when
p = 2) by adding the vertices corresponding to the new face segments and their flat end point, and adding
the arcs incident to these vertices. But since the face segments have out-degree zero in the constraints
digraphs, there is no cycle in Constg-yp+- passing through a face segment. Thus a cycle would be in the
union of Constgyp and Constg/yp:. These two digraph being acyclic, this cycle should successively pass
through a segment of Consts/yps, through one of the points A, B and C, and through a segment of
Constgyp. But this is impossible since in Constg/yps the only points that intersect M, A, B and C,
have in-degree zero.
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- Since V(T) is the disjoint union of V(731) and V(7T:) we have that a vertex v € V(T) if and only if
v EeS*.

- Note that E(T) = E(Th) U E(Ty) U{aar = ac, } U{aas, ..., aa,} U{bby, ..., bby} U{cci, ..., cer}, that A
was not a representative point in M (resp. was either an end point or a path—(as, ..., a,)—point in M’)
and that now it is a fan—a< (ap, . . ., a2)-point, that B was a flat face segment end in M (resp. was a path—
(b1,...,by)—point in M') and that now it is a fan—b< (b, . . ., by )—point that C was the crossing point of a
and ¢ in M (resp. was a path—(ci, ..., ¢.)-point in M’) and that now it is a fan—c< (a, ¢, . .., ¢1)—point.
Since the other representative points remain with the same corresponding graphs, one can easily check
(see Figure 39) that E(T) is exactly the set of edges induces by M*.

- Note that F(T) = (F(T1) \ acb) U F(Ts) U {aiaza,abib,beict U {aaaivy | 2 < i < p}U{bbibit1 | 1 <
i < pyU{cciciy1 | 2 < i < p} U {ace,}. According to the face segments added in F* (the ones in
F*\ (FUF")), the faces induced by A, B and C, and since the other representative points remain with
the same corresponding graphs, one can easily check (see Figure 39) that F'(T') is exactly the set of faces
induced by M*.

a®

Fig. 39. The graphs corresponding to A, B and C in M (left), M’ (center) and M* (right).

Finally since T" has a premodel M*, Corollary 2.18 implies that it has a full model, proving Theorem 2.5.
O

5 Conclusion

West conjectures that every planar graph is the intersection graph of segments using only four directions
[17]. Furthermore if the segment set is unambiguous, parallel segments induce a stable set, and the four
directions would correspond to a four coloring of the planar graph. This conjecture is true for some families
of planar graphs. Indeed, every bipartite planar graph has a representation with two directions [9,3,5] and
every triangle free planar graph (that is 3-colorable by Grotzsch’s theorem) has a representation with three
directions [1].

De Fraysseix and Ossona de Mendez proposed [4] the following generalization of Scheinerman’s Conjec-
ture: “Every planar linear hypergraph is the intersection hypergraph of segments in the plane.”, where a linear
hypergraphs is an hypergraph such that two hyperedges intersect in at most one vertex. This generalization
does not holds since the second author found a counterexample [8].

In our proof we need the constraints digraph to be acyclic in order to perform local perturbations on the
segment set, like gliding or traversing. We wonder whether this condition is necessary: is it always possible
to do local perturbations in any flexible segment set R (with possibly cycles in Constg)? The flexibility of
R is required since Pappus’s construction gives us a segment set with only one point that is internal in 3
segments, and such that some glidings are impossible.
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