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e.Abstra
t. Given a set S of segments in the plane, the interse
tion graph of S is the graph with vertexset S in whi
h two verti
es are adja
ent if and only if the 
orresponding two segments interse
t. Weprove a 
onje
ture of S
heinerman (PhD Thesis, Prin
eton University, 1984) that every planar graphis the interse
tion graph of some segments in the plane.1 Introdu
tionIn this paper, we 
onsider interse
tion models for planar graphs. A segment model of a graph G maps everyvertex v ∈ V (G) to a segment v of the plane so that two segments u and v interse
t if and only if uv ∈ E(G).Although this graph family is simply de�ned, it is not easy to manipulate. A
tually, even if this 
lass of graphsis small (there are less than 2O(n log n) su
h graphs with n verti
es [15℄) a segment model may be long toen
ode (in the models of some of these graphs the endpoints of the segments need at least 2
√

n bits to be
oded [13℄). There are also interesting open problems 
on
erning this 
lass of graphs. For example, we knowthat de
iding whether a graph G admits a segment model is NP-hard [11℄ but it is still open whether thisproblem belongs to NP or not. Here we fo
us on a 
onje
ture proposed by S
heinerman [16℄, stating thatevery planar graph has a segment model.Many work has been done toward this 
onje
ture. Several proofs [3,5,9℄ have been given for bipartiteplanar graphs. The 
ase of triangle-free planar graphs was proved by de Castro et al. [1℄ and re
ently deFraysseix and Ossona de Mendez [4℄ proved it for every planar graph that has a 4-
oloring in whi
h everyindu
ed 
y
le of length 4 uses at most 3 
olors.Another approa
h to this problem has been proposed [12,14℄. Sin
e it is known [6℄ that planar graphsare interse
tion graphs of Jordan ar
s in the plane and sin
e two non-parallel segments interse
t at moston
e, it was asked whether planar graphs are interse
tion graphs of Jordan ar
s in the plane if every pair ofJordan ar
s s1 and s2 interse
t at most on
e and in a non-tangent way (i.e. around their interse
tion point wesu

essively meet s1, s2, s1 and s2). It was already known when tangent interse
tion are allowed; indeed everyplanar graph is the 
onta
t graph of tou
hing 
ir
les [10℄. The authors and O
hem [2℄ answered positively tothis question. This approa
h of S
heinerman's 
onje
ture was de
isive sin
e by improving the proof of thisresult it yields a proof of S
heinerman's 
onje
ture that we present here. However, the 
onstru
tion we givehere does not exa
tly 
orrespond to a stret
hing of the strings of the 
onstru
tion given in [2℄.The paper is organized as follows. In Se
tion 2 we give some de�nitions. In parti
ular we de�ne premodelsand we explain how to obtain a segment model from a premodel. In Se
tion 3 we 
onstru
t premodels for3-bounded W-triangulations, a family of plane graphs in
luding 4-
onne
ted triangulations. Then in Se
tion4 we �nally 
onstru
t segment models for general triangulations, whi
h implies the existen
e of segmentmodels for general planar graphs.2 PreliminariesA plane graph is an embedded planar graph. Given a plane graph G, let V (G), E(G) and F (G) be respe
tivelythe sets of verti
es, edges and inner fa
es of G. A near-triangulation is a plane graph in whi
h every inner fa
eis a triangle. A triangulation is a near-triangulation with a triangular outer fa
e. It is easy to see that everyplanar graph is the indu
ed subgraph of some triangulation. This implies that it is su�
ient to 
onsidertriangulations. Indeed if a planar graph G is isomorphi
 to the graph indu
ed by a set V (G) ⊆ V (T ) ofverti
es in a triangulation T , then by removing the segments 
orresponding to V (T ) \ V (G) from a segmentmodel of T , we 
learly obtain a segment model of G.



In all the paper, the bold notations 
orrespond to geometri
al obje
ts like points, segments or lines. Forexample we will usually denote by v the segment 
orresponding to a vertex v and by (v) the line prolongingthis segment. Furthermore sin
e we 
onsider �nite planar graphs, the segment sets we 
onsider are all �nite.Given a segment set S, its set of representative points RepS is the set that 
ontains the interse
tion pointsand the ends of the segments in S. A segment set S is unambiguous if every segment s ∈ S has distin
tendpoints, and if parallel segments of S do not interse
t. From now on we use the following de�nition ofmodel.De�nition 2.1. Given a segment set S, its interse
tion graph GS is the graph with vertex set S and wheretwo verti
es are adja
ent if and only if the 
orresponding segments interse
t. Furthermore if (1) S is un-ambiguous, if (2) the interse
tion of any three segments of S is empty, and if (3) every endpoint belongs toexa
tly one segment, then S is a model for any graph G isomorphi
 to GS.For the proof in Se
tion 4 we need some geometri
al stru
tures to represent the triangular inner fa
es. Toea
h triangular inner fa
e abc we will asso
iate a fa
e segment, abc, acb or bca.De�nition 2.2. Given an unambiguous segment set S and three pairwise interse
ting segments a, b and c,a fa
e segment f = abc is a segment [p,q] su
h that:� p is the interse
tion point of a and b, and going around p we 
onse
utively meet a, f and b,� q is an internal point of c that does not belong to any other segment of S, and� none of its internal points belongs to any segment of S.The points p and q are respe
tively 
alled the 
ross-end and the �at-end of abc.Note that the se
ond item implies that fa
e segments are non-trivial, i.e. p 6= q. Note also that in thisde�nition a and b play the same role, so a fa
e segment abc is also a fa
e segment bac but it is not a fa
esegment acb.De�nition 2.3. Given an unambiguous segment set S, two fa
e segments f1 and f2 on S are non-interferingif one of the following holds:- The segments f1 and f2 do not interse
t.- The segments f1 and f2 have the same 
ross-end p and this point is the interse
tion point of exa
tlytwo segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and f2 in distin
thalf-planes.De�nition 2.4. A full model of a near triangulation T is a 
ouple M = (S, F ) of segments sets su
h that:� S is a model of T .� F is a set of non-interfering fa
e segments on S su
h that for ea
h inner fa
e abc of T , F 
ontains oneof the following fa
e segments: abc,acb,bca.� S ∪ F is unambiguous.The next theorem is the main result of the paper.Theorem 2.5. Every triangulation T has a full model M = (S, F ).2.1 PremodelsIn our proofs, we use a di�erent kind of model. The main di�eren
e with full models is that more than twosegments of S 
an interse
t in a same point.In the following, we 
onsider a segment set S and a set F of non-interfering fa
e segments on S, where
S ∪ F is unambiguous. Let us denote the segments of S (resp. F ) by s1, s2, . . . (resp. f1, f2, . . . ). Given arepresentative point p, its in
iden
e sequen
e I(p) is the undire
ted 
ir
ular sequen
e of segments (from
S ∪ F ) we meet by going around p. This sequen
e is undire
ted be
ause it will make no di�eren
e going
lo
kwise or anti-
lo
kwise. By extension, the partial topologi
al in
iden
e sequen
e of p, I∗(p) is the sequen
eobtained in the following way. Prolong every segment that ends at p and 
onsider its new in
iden
e sequen
e.Then repla
e every o

urren
e of si and fi that was not in I(p) before by (si) and (fi). It is 
lear that I(p)is a subsequen
e of I∗(p) (i.e. I(p) ⊆ I(p)). We say that I(p) is of the form ([r1], r2, . . . , rk) for ri ∈ S ∪F ,if either I(p) = (r1, r2, . . . , rk), I(p) = (r2, . . . , rk), or I(p) ⊆ ((r1), r2, . . . , rk) ⊆ I∗(p).2



Let us de�ne types for the representative points, depending on their in
iden
e sequen
e. These typesare not always entirely determined by the in
iden
e sequen
e and we will have to assign a type (among thepossible ones) to ea
h representative point. Furthermore, these types are in 
orresponden
e with some graphswe also des
ribe here.� A point is a segment end if its in
iden
e sequen
e is (s1). The 
orresponding graph is the single vertex
s1.� A point is a �at fa
e segment end if its in
iden
e sequen
e is (s1, f1, s1). The 
orresponding graph is thesingle vertex s1.� A point may be a 
rossing if it has an in
iden
e sequen
e of the form (s1, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,
s1, [f2], s2). The 
orresponding graph is the edge s1s2.� A point may be a path�(s1, s2, . . . , sk)�point with k ≥ 2, if it has an in
iden
e sequen
e of the form
(s1, s2, . . . , sk, (s1), (s2)) (See Figure 1). Su
h a typed point is in 
orresponden
e with path�(s1, s2, . . . , sk),the graph with vertex set {s1, . . . , sk} and edge set {sisi+1 | 1 ≤ i < k}.

s2 sks1

s1 s2 sk s1 s2 skFig. 1. A path�(s1, s2, . . . , sk)�point, its partial realization, and its 
orresponding graph� A point may be a fan�s1⊳� (s2, . . . , sk)�point with k ≥ 2, if it has an in
iden
e sequen
e of the form
(s1, [f1], s2, . . . , sk, (s1), [f1], (s2)) (See Figure 2), with f1 = s1s2x. Note that sin
e f1 is a fa
e segmentit o

urs at most on
e in the in
iden
e sequen
e. Su
h a typed point is in 
orresponden
e with fan�s1⊳�
(s2, . . . , sk), the graph with a vertex s1 dominating a path (s2, . . . , sk).
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Fig. 2. A fan�s1⊳� (s2, . . . , sk)�point, its partial realization , and its 
orresponding graph� A point may be a fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point with 2 ≤ i ≤ k, if it has an in
iden
esequen
e of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 3). Su
h a typed point is in 
orresponden
ewith fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk), the graph with a path (s2, . . . , sk) and a vertex s1 dominatingthe subpath (s2, . . . , si). 3
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Fig. 3. A fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point, its partial realization, and its 
orresponding graph� A point may be a path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point with 2 ≤ i ≤ k, if it has an in
iden
esequen
e of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 4). Su
h a typed point is in 
orresponden
ewith path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk), the graph with two paths (s1, . . . , si−1) and (si, . . . , sk),where s1 dominates the se
ond path.
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Fig. 4. A path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point, its partial realization, and its 
orresponding graph� A point may be a double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point with 2 ≤ i ≤ k, if it has anin
iden
e sequen
e of the form (s1, . . . , si, . . . , sk, (s1), (si)) (See Figure 5). Su
h a typed point is in 
or-responden
e with double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1), the graph with two paths (s2, . . . , si)and (si+1, . . . , sk, s1), where s1 and si respe
tively dominate the �rst and the se
ond path.
sis2

s1 sk si+1

s1

s2 sk

s1

s2

sisi
skFig. 5. A double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point, its partial realization, and its 
orresponding graphA
tually, the graphs we 
onsidered here are plane graphs, and their inner fa
es are the grey fa
es in the�gures. As in [4℄, we need a bipartite digraph to des
ribe the 
onstraints between segments and representativepoints. 4



De�nition 2.6. Given a segment set R, the 
onstraints digraph ConstR is the bipartite digraph with vertexsets R and RepR, and where r ∈ R and p ∈ RepR are linked if and only if p ∈ r. More pre
isely, there is anar
 from p to r if p is an endpoint of r, otherwise (when p is an internal point of r) the ar
 goes from r to
p.Informally this graph des
ribes the fa
t that the position of a segment is determined by its endpoints, anddetermines the position of its internal representative points.De�nition 2.7. Given a segment set S, a set F of non-interfering fa
e segments on S and a fun
tion τ thatassigns a type to ea
h representative point, the triple M = (S, F, τ) is a premodel of a near-triangulation Tif the following holds:- The set S ∪ F is unambiguous and the digraph ConstS∪F is a
y
li
.- A vertex a ∈ V (T ) if and only if a ∈ S.- An edge ab ∈ E(T ) if and only if a and b interse
t in a point p su
h that the graph 
orresponding to

τ(p) 
ontains the edge ab.- A fa
e abc ∈ F (T ) if and only if one of the following holds:- either there exists a fa
e segment abc, acb or bca in F ,- or, a,b and c interse
t in a point p su
h that abc is an inner fa
e of the graph 
orresponding to τ(p).Note that a premodel M = (S, F, τ) of a near-triangulation T has a bounded number of representativepoints. There are at most 2|V (T )| segment ends, at most F (T ) �at fa
e segment ends, and at most E(T )points of another type (sin
e ea
h of them 
orresponds to at least one edge of T ).Remark 2.8. If a premodel M = (S, F, τ) of a near-triangulation T has 2|V (T )|+ |F (T )|+ |E(T )| represen-tative points, then (S, F ) is a full model of T .2.2 Lo
al PerturbationsIn this subse
tion we des
ribe how to transform a premodel M = (S, F, τ) of a near triangulation T into afull model M′ = (S′, F ′) of T . In the following the segments denoted by ri are segments of S ∪ F . Let usde�ne three basi
 moves: prolonging, gliding and traversing.Lemma 2.9 (prolonging). Consider a premodel M = (S, F, τ) of a near triangulation T with an interse
tionpoint p whi
h is the end of a segment s1 ∈ S. If for every segment s2 ∈ S that has an end in p, there isno dire
ted path from s2 to s1 in ConstS∪F , it is possible to prolong s1 a
ross p without 
reating a 
y
lein ConstS′∪F (where S′ is the new segment set). Furthermore, if the type τ(p) is still appli
able to p then
(S′, F, τ) remains a premodel of T .Proof. Consider a point q in the line (s1) a
ross p and let S′ be as S ex
ept that we repla
e p by q as anendpoint for s1. We 
hoose q in su
h a way that s1 does not interse
t a new segment, and S′ ∪ F remainsunambiguous. Now it is easy to see that ConstS′∪F is very similar to ConstS∪F , we just have repla
ed thear
 ps1 by the ar
 s1p, added a vertex for q, and added an ar
 qs1. Sin
e the fa
e segments have out-degreezero in ConstS′∪F , a 
y
le in this digraph should ne
essarily pass through s1, p and a segment s2 ∈ S thathas an end in p. Thus, a

ording to the 
onditions on ConstS∪F , it is 
lear that ConstS′∪F is a
y
li
. ⊓⊔Remark 2.10. Consider a premodel M = (S, F, τ) with a point p that is the interse
tion of exa
tly twosegments from S, s1 and s2. By prolonging all the segments that end at p we obtain a segment set S′ su
hthat ConstS′∪F remains a
y
li
.A segment set R is �exible if every representative point p is internal for at most two segments of R. Notethat a

ording to the de�ned types for every premodel M = (S, F, τ), the set S ∪ F is �exible.De�nition 2.11. A move of a segment set R = {ri = [ai,bi] | 1 ≤ i ≤ |R|} is a segment set R′ su
h that
R′ = {r′i = [a′

i,b
′
i] | 1 ≤ i ≤ |R|}. An interpolation of this move is a 
ontinuous fun
tion de�ned for t ∈ [0, 1]that gives a move Rt of R su
h that R0 = R and R1 = R′.Lemma 2.12 (gliding). Consider a �exible and unambiguous segment set R su
h that ConstR is a
y
li
,and a representative point p of R. If the segments r1, r2, . . . , ri are 
onse
utive around p, if all the segments

r2, . . . , ri have an end at p and are in the same half-plane delimited by (s1) (See Figure 6), and if in ConstRthe vertex r1 
annot be rea
hed from any rj with 2 ≤ j ≤ i, then there exists a move R′ with an interpolation
Rt su
h that for every t ∈]0, 1]: 5



- The set Rt is unambiguous and ConstRt is a
y
li
.- The point p splits into two representative points pt
1 and pt

2, whi
h in
iden
e sequen
e are respe
tively
(rt

1, r
t
2, . . . , r

t
i, r

t
1) and the in
iden
e sequen
e of p without the o

urren
es of rt

2, . . . , r
t
i.- For every representative point q 6= p of R there is a representative point qt in Rt with exa
tly the sametopologi
al in
iden
e sequen
e.- There is no other representative point (i.e. |RepRt | = |RepR| + 1).- Every segment rt ∈ Rt (resp. representative point qt ∈ RepRt) that is not rea
hable from any pt

1 in
ConsttR is stati
, that is rt = r (resp. qt = q).

r1

r2 ri

r1

r2 ri

p p1 p2

Fig. 6. gliding of r2, . . . , ri on r1.Proof (of Lemma 2.12). Consider a segment x ∈ R whi
h internal representative points have an in
iden
esequen
e of the form (x,y,x,y) for some y ∈ R. Sin
e ConstR is a
y
li
, su
h segment ne
essarily exists.Now we pro
eed by indu
tion on |R| and 
onsider as the initial 
ase, the 
ase where i = 2 (only one segment
r2 is gliding on r1) and x = r2. Sin
e R is �nite there exists a real ǫ > 0 su
h that (1) every representativepoint q /∈ x of R veri�es dist(q,x) > ǫ and (2) every segment y 6= x in
ident to the other end of x veri�es
dist(p, (y)) > ǫ (where dist is the Eu
lidean distan
e). It is now 
lear in Figure 7 that there is a 
onvenientmove R′ (with an interpolation Rt) in whi
h only x is modi�ed. A
tually just one end of x moves 
ontinuouslyon r1 from p to p1, a point of r1 su
h that dist(p,p1) < ǫ. Let us now verify that R′ and Rt follow therequirements of the lemma. Consider any t ∈]0, 1].

r′2 = x′

p

q

r2 = x

r3

p

r′1r1

ǫ

r4

Fig. 7. Around x = r2 when i = 2.- The 
ondition (2) in the de�nition of ǫ ensures us that Rt is unambiguous. Moreover, sin
e ConstRt\{xt,pt
2
}is a subdigraph of ConstR that is a
y
li
, any 
y
le of ConstRt should pass through xt. But sin
e all itsinternal representative points have out-degree zero in ConstRt (be
ause we are about to show that theirin
iden
e sequen
e is of the form (xt,yt,xt,yt)) there is no su
h 
y
le and ConstRt is a
y
li
.- It is 
lear, sin
e only one segment is moving, that the in
iden
e sequen
es of pt

1 and pt
2 are as expe
ted.6



- Similarly it is 
lear that for every representative point q /∈ x the topologi
al in
iden
e sequen
e of qremains un
hanged. For the representative points q 6= p on x, the de�nition of ǫ ensures us that theirtopologi
al in
iden
e sequen
es remain un
hanged, that is of the form (xt,yt,xt,yt).- We 
learly have |RepRt | = |RepR| + 1.- It is 
lear in the 
onstru
tion that every segment yt 6= xt of R (resp. representative point qt 6= pt
1 thatis not internal in xt) is stati
.For the indu
tion step (when i > 2 or x 6= r2), we apply the indu
tion hypothesis on R− = R \x. This ispossible sin
e R− is �exible and unambiguous, and sin
e ConstR−

is a subdigraph of ConstR, thus a
y
li
.Let the ends of x be q1 and q2, and assume here that these points are still representative points in R− (welater explain how to pro
eed if it is not the 
ase). Thus the points qt
1 and qt

2 belongs to Rept
− for every

t ∈ [0, 1] (if q1 = p, let qt
1 = pt

1 or pt
2 whether x ∈ {r2, . . . , ri} or not) and let xt = [qt

1,q
t
2]. Consider nowthe interpolation de�ned by Rt = Rt

− ∪ xt.Claim (1). Consider three points moving 
ontinuously on the plane (three 
ontinuous fun
tions from [0, 1]to the points of the plane). If these points are non-
ollinear for t = 0, then there exists a value t1 ∈]0, 1] su
hthat they are non-
ollinear for every t ∈ [0, t1].This implies the following 
laims.Claim (2). Sin
e R0 = R is unambiguous, there is a value t2, with 0 < t2 ≤ 1, Rt is unambiguous for every
t ∈ [0, t2]. Furthermore, t2 
an be su
h that for every segment y ∈ R (x in
luded) and every representativepoint q ∈ RepR−

, if q /∈ (y) then qt /∈ (yt) for every t ∈ [0, t2].There is also an interval where x does not interse
t undesired segments.Claim (3). There is a value t3, with 0 < t3 ≤ 1, su
h that |RepRt ∩ x| is 
onstant for every t ∈]0, t3].Now by taking t∗ = min{t2, t3} we have a move Rt∗ and an interpolation Rt×t∗ , that follows the requirementsof the lemma. Indeed, for every t ∈]0, t∗]:- The set Rt is unambiguous (by Claim (2)), and ConstRt is a
y
li
. Indeed a 
y
le should ne
essarilypass through x but all its internal representative points have out-degree zero in ConstRt .- The in
iden
e sequen
e of p1 and p2 are 
onvenient. The only segment that 
ould behave badly is xtbut this does not o

ur. If x is not in
ident to p Claim (3) ensures us that pt
1 and pt

2 /∈ xt. Otherwise(when q1 = p) the de�nition of qt
1 ensures us that xt is in
ident to the 
onvenient point, pt

1 or pt
2, andClaim (2) ensures us that its position around this point remains 
orre
t (sin
e qt

2 /∈ (yt) for any yt 6= xtin
ident to pt
1 or pt

2).- By the indu
tion hypothesis the only representative points, distin
t from pt
1 and pt

2, that may not havethe same topologi
al in
iden
e sequen
e (as in R) are the representative points on x. Claims (2) ensuresus that these sequen
es remain un
hanged.- We have |RepRt | = |RepR| + 1 by the indu
tion hypothesis and Claim (3).- By indu
tion hypothesis, every segment rt 6= xt of Rt (resp. representative point qt that is not internalin xt) that is not rea
hable from pt
1 in ConstR is stati
. If xt (resp. an internal point qt of xt, at theinterse
tion with some segment denoted yt) is not rea
hable, it is also the 
ase of qt

1 and qt
2 (resp. xtand yt). Thus these points (resp. segments) are stati
 implying that xt (resp. qt) is stati
.If the point q1 is not a representative point of R−, this means that q1 belongs to zero or one segment yof R− (as an internal point). In the �rst 
ase, let qt

1 un
hanged (qt
1 = q1), and in the se
ond 
ase, let qt

1 bethe interse
tion point of the lines (x) and (yt). Then we put qt
1 in RepR−

for the 
omputation of t2. If q2 isnot a representative point of R− we pro
eed similarly. Then the proof would work as des
ribed above. ⊓⊔Lemma 2.13 (traversing). Consider a �exible and unambiguous segment set R su
h that ConstR is a
y
li
,and a representative point p of R whi
h in
iden
e sequen
e is (r1, . . . , ri, . . . , rj , r1, rj+1, . . . , rk, ri) with
2 < i ≤ j ≤ k (See Figure 8). There exists a move R′ with an interpolation Rt su
h that for every t ∈]0, 1]:- The set Rt is unambiguous and ConstRt is a
y
li
.- The point p splits into i representative points pt

l , for 1 ≤ l ≤ i, whi
h in
iden
e sequen
e are (rt
i, r

t
2, . . . , r

t
i)for l = 1, (rt

1, r
t
l , r

t
1, r

t
l) for 1 < l < i, and (rt

1, r
t
i, . . . , r

t
j , r

t
1, rj+1, . . . , rk, rt

i) for l = i.7



r2 ri ri
r2

p

rj
rj

rk rk

r1 r1

Fig. 8. traversing- For every representative point q 6= p of R there is a representative point qt in Rt with exa
tly the sametopologi
al in
iden
e sequen
e.- There is no other representative point (i.e. |RepRt | = |RepR| + i − 1).- Every segment r ∈ R (resp. representative point q ∈ RepR) that is not rea
hable from pt
i in ConstRt isstati
, that is rt = r (resp. qt = q).Sin
e the proof of this lemma is very similar to the proof of Lemma 2.12, we omit it here.Given an interse
tion point p in a premodel M = (S, F, τ) of T , a partial realization of p is an operationthat 
ombines a basi
 move at p and the addition of new fa
e segments (eventually none), and that yieldsanother premodel M′ = (S′, F ′, τ ′) of T . A simple example of a partial realization at p is prolonging asegment s a
ross p, 
hoosing s in su
h a way that τ(p) still applies and that the 
onstraints digraph remainsa
y
li
. Su
h a partial realization is 
alled a maximization of p, and if p is already internal in two segmentswe say that this point is maximal. In a premodel, we say that a point p is simple if it is either a segmentend, a �at fa
e segment end, or a maximal point without any segment of S ending here (at p). Otherwise,we say that this point is spe
ial.Proposition 2.14. Consider a premodel M = (S, F, τ) of a near-triangulation T . Every spe
ial point p of

M that is maximal admits a partial realization.Proof. Note that sin
e p is spe
ial and maximal there are at least three segments from S interse
ting at p.We distinguish �ve 
ases a

ording to the type of p.If this point is a path�(s1, s2, . . . , sk)�point we do a gliding of {s3, . . . , sk} on s2 to a new representativepoint q (by Lemma 2.12 sin
e p is not an end of s2). Let p and q be respe
tively typed as the 
rossingpoint of s1 and s2, and as a path�(s2, . . . , sk)�point (See Figure 1). Under these 
onditions the gliding keepsthe 
onstraints digraph a
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representativepoints (so that their type 
an remain un
hanged). Thus, sin
e the graph that 
orresponded to p (the path
(s1, . . . , sk)) is the union of the graphs 
orresponding to p and to q, we are done.If this point is a fan�s1⊳� (s2, . . . , sk)�point we do a traversing of {s3, . . . , sk} along s2 and through s1 toa new representative point q. We add the fa
e segments s1sisi−1, with 3 ≤ i ≤ k, and we let q be typed as apath�(s2, . . . , sk)�point (See Figure 2). Under these 
onditions the traversing keeps the 
onstraints digrapha
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representative points. Thus sin
e thegraph that 
orresponded to p (the fan�s1⊳� (s2, . . . , sk)) is the union of the graphs 
orresponding to the new
rossing points, to the new fa
e segments, to p and to q, we are done.If this point is a fan-path�s1⊳� (s2, . . . , si) · (si, . . . , sk)�point with 2 ≤ i ≤ k, we 
onsider that i < k.Otherwise we 
ould 
onsider this point as a fan-point, a 
ase we already 
onsidered. Here we do a glidingof {si+1, . . . , sk} on si to a new representative point q and we let the points p and q be respe
tively typedas a fan�s1⊳� (s2, . . . , si)�point and as a path�(si, . . . , sk)�point (See Figure 3). Under these 
onditions thegliding keeps the 
onstraints digraph a
y
li
 and preserves the topologi
al in
iden
e sequen
e of the otherrepresentative points. Thus sin
e the graph that 
orresponded to p is the union of the graphs 
orrespondingto p and to q, we are done.If this point is a path-fan�(si−1, . . . , s2, s1) · s1⊳� (si, . . . , sk)�point with 2 ≤ i ≤ k, we 
onsider that i < k.Otherwise we 
ould 
onsider this point as a path-point, a 
ase we already 
onsidered. Here we do a traversingof {si+1, . . . , sk} through s1 and on si to a new representative point q. We add the fa
e segments s1sjsj−1,8



with i < j ≤ k, and we respe
tively let p and q be respe
tively typed as a path�(si, s1, . . . , si−1)�pointand as a path�(si, . . . , sk)�point (See Figure 4). Under these 
onditions the traversing keeps the 
onstraintsdigraph a
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representative points. Thussin
e the graph that 
orresponded to p is the union of the graphs 
orresponding to the new 
rossing points,to the new fa
e segments, to p and to q, we are done.If this point is a double-fan�s1⊳� (s2, . . . , si) · si⊳� (si+1, . . . , sk, s1)�point with 2 ≤ i ≤ k, we 
onsider that
2 < i. Otherwise we 
ould 
onsider this point as a fan-point, a 
ase we already 
onsidered. Here we do atraversing of {s2, . . . , si−1} along si and through s1 to a new representative point q. We add the fa
e segments
s1sjsj+1, with 2 ≤ j < i, and we respe
tively let p and q be typed as a path�(si, . . . , s2)�point and as afan�si⊳� (s1, sk, . . . , si+1)�point (See Figure 5). Under these 
onditions the traversing keeps the 
onstraintsdigraph a
y
li
 and preserves the topologi
al in
iden
e sequen
e of the other representative points. Thussin
e the graph that 
orresponded to p is the union of the graphs 
orresponding to the new 
rossing points,to the new fa
e segments, to p and to q, we are done.This 
on
ludes the proof of the proposition. ⊓⊔Given a spe
ial point p in a premodel M = (S, F, τ) of T , a total realization of p is a sequen
e ofpartial realizations su
h that every edge (resp. fa
e) of the graph 
orresponding to τ(p) 
orresponds now toa 
rossing point (resp. to a fa
e segment).De�nition 2.15. Consider a spe
ial point p of a premodel M = (S, F, τ) and let {s1, . . . , sk} ⊆ S be theset of segments that have an end at p. This spe
ial point is free if for any pair of segments si and sj with
1 ≤ i < j ≤ k, there is no path in the 
onstraints digraph of M linking si and sj .It is 
lear that a free spe
ial point 
an be maximized (Cf. Lemma 2.9). In the proof above one 
an observethat if the point p is free, then the new spe
ial points (after the partial realization) are also free, thus wehave that:Remark 2.16. In a premodel M, every free spe
ial point admits a total realization.Sin
e the 
onstraints digraph of a premodel is a
y
li
 we have that:Remark 2.17. If a premodel has k > 0 spe
ial points, then one of them is free, and thus partially (totally)realizable.Now let us note that any partial realization in
reases the number of representative points. Sin
e a pre-model with the maximum number of representative points is a full model (Cf. Remark 2.8), we have thefollowing 
orollary.Corollary 2.18. Any premodel M = (S, F, τ) of a near-triangulation T admits a sequen
e of partial real-izations that yield a full model M′ = (S′, F ′) of T .The total realizations preserve the freeness of spe
ial points.Lemma 2.19. Consider a premodel M = (S, F, τ) with a spe
ial point p. There exists a total realization of
p su
h that in the obtained premodel M′ = (S′, F ′, τ ′), every spe
ial point q 6= p of M is preserved (i.e.there is no partial realization at q) and every free spe
ial point q 6= p of M remains free.Proof. It is 
lear that a total realization of p minimizing the number of partial realization preserves everyrepresentative point p′ 6= p of RepS∪F . Now to prove that q is still free we show that for every pair ofsegments r1 and r2 from S ∪ F there is a path from r1 to r2 in ConstS′∪F ′ only if there was one in
ConstS∪F .Sin
e every p′ 6= p of RepS∪F is preserved, for every segment r ∈ S ∪ F , the ar
 p′r (resp. rp′) belongsto ConstS∪F if and only it belongs to ConstS′∪F ′ . Thus a new path from r1 to r2 should ne
essarily passthrough one of the new representative points, say p∗ ∈ RepS′∪F ′ \(RepS∪F \p). Sin
e p∗ is simple (otherwisethe realization would not be total) we 
onsider three 
ases a

ording to τ ′(p∗).- If p∗ is a segment end, it has no in-neighbor in ConstS′∪F ′ , and thus it 
annot be part of a path from

r1 to r2. 9



- If p∗ is a �at fa
e segment end, it has a unique out-neighbor in ConstS′∪F ′ and it is a fa
e segment f .Being a fa
e segment f has no out-neighbor, thus we just have to show that f 6= r2. A

ording to thedes
riptions of maximization and the realizations used in the proof of Proposition 2.14 it is 
lear that fis new (f ∈ F ′ \ F ) and thus f 6= r2.- If p∗ is a maximal 
rossing point, all its out-neighbors in ConstS′∪F ′ are fa
e segments. Being fa
esegments none of them has an out-neighbor, thus we just have to show that they are distin
t from r2. Ifone of them is r2, sin
e p∗ is the 
ross end of this fa
e segment, the other end of r2 is a �at fa
e segmentend, and thus q is not free in M.This 
on
ludes the proof of the lemma. ⊓⊔This lemma and Remark 2.16 imply the following 
orollary.Corollary 2.20. Consider a premodel M = (S, F, τ) with a set P ⊂ RepS∪F of free spe
ial points. Thereexists a sequen
e of total realizations that totally realizes every p ∈ P and preserves every point of RepS∪F \P .2.3 Global transformationsIt is folklore that under a linear transformation of the plane, 
ollinear points remain 
ollinear. Furthermoreif this linear transformation is inje
tive, the image of an half-plane remains an half-plane. Thus we have thefollowing lemma.Lemma 2.21. For any premodel M = (S, F, τ) of a near triangulation T and any inje
tive linear transfor-mation of the plane φ, the triple M′ = (φ(S), φ(F ), τ) remains a premodel of T .This is useful sin
e the plane admits many su
h transformations.Lemma 2.22. For any two triplets of points in general position (i.e. non-
ollinear points), (p1,p2,p3)and (q1,q2,q3), there is an inje
tive linear transformation of the plane φ su
h that φ(pi) = qi, for every
i ∈ {1, 2, 3}.3 The 
ase of 4-
onne
ted triangulations.3.1 Parti
ular PremodelsLet T be a near-triangulation. A 
hord of T is an edge not in
ident to the outer fa
e but whi
h ends are onthe outer fa
e. A separating 3-
y
le C is a 
y
le of length 3 su
h that some verti
es of T lie inside C whereasother verti
es are outside. It is well known that a triangulation is 4-
onne
ted if and only if it 
ontains noseparating 3-
y
le.De�nition 3.1. A W-triangulation T is a 2-
onne
ted near-triangulation 
ontaining no separating 3-
y
le.Su
h a W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1, . . . , ap), (b1, . . . , bq),and (c1, . . . , cr), that satisfy the following 
onditions (see Figure 9):� a1 = cr, b1 = ap, and c1 = bq.� the paths are non-trivial ( i.e. p ≥ 2, q ≥ 2, and r ≥ 2).� there exists no 
hord aiaj , bibj, or cicj .This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their dire
tions, i.e. (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-(cr, . . . , c1)-(bq, . . . , b1).Lemma 3.2. Let T be a W-triangulation and 
onsider a 
y
le C of T . The subgraph de�ned by C and theedges inside C (a

ording to the embedding of T ) is a W-triangulation.Proof. Consider the near-triangulation T ′ indu
ed by some 
y
le C of T and the edges inside C. By de�nition,
T has no separating 3-
y
le and 
onsequently T ′ does not have any separating 3-
y
le. It is then su�
ientto show that T ′ is 2-
onne
ted, i.e. T does not have any 
ut vertex. Consider a vertex v of T , all the fa
esin
ident to v are triangles, ex
ept at most one (the outer fa
e). Consequently, there exists a path that 
ontainsall the neighbors of v, and so T \ v is 
onne
ted. ⊓⊔10



a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

Fig. 9. A 3-bounded W-triangulation T .Property 1 Consider any W-triangulation T 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).(1) If p = 2 (see Figure 10, left), for any triangle BCD, there exists a premodel M = (S, F, τ) of T 
ontainedin the triangle BCD su
h that� every spe
ial point p of M is a point of bq = c1 = [BC], a2 = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is a fan�a2⊳� (d1, . . . , ds, a1)�point (where d1, d2, . . . , ds are inner verti
es of T ) su
h that there isa fa
e segment in
ident only if s = 0 (i.e., D is a fan�a2⊳� (a1)).(2) If p > 2 (see Figure 10, right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of T 
ontained in the polygon ABCD su
h that� every spe
ial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], [CD] (that is 
ontainedin a1 = cr) or [AD] (that is 
ontained in a2),� A is a path�(a2, . . . , ap)�point.� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is the 
rossing point of a1 and a2 (with possibly one fa
e segment in
ident to it 
orresponding tothe inner fa
e of T in
ident to a1a2),
b1

b2

bq

c1 c2

cr = a1

a2

a3

ap
c1 c2

cr = a1

b1
bq

b2

a2
d1

ds
D

B B

CC

D

AFig. 10. Property 1 for one W-triangulation T with p = 2 and one with p > 2.Note that in both 
ases, at most one fa
e segment is in
ident to D, sin
e a1a2 is in
ident to exa
tly oneinner fa
e of T . Furthermore sin
e path�points 
annot have in
ident fa
e segments, there is no fa
e segmentin
ident to A,B,C (resp. B,C) when p > 2 (resp. p = 2).11



Given the des
ription of M we 
an dedu
e that almost every spe
ial point is free. A spe
ial point pthat is not free has two in
ident segments s1 and sk of S su
h that there is a dire
ted path in ConstS∪Ffrom s1 to sk. By a geometri
al argument this path passes through some other segments of S ∪F . But sin
efa
e segments have out-degree zero in this digraph, these other segments also belong to S and let us denote
(s1,p1, s2,p2, . . . , sk) with k ≥ 3 the 
onsidered path. Then sin
e the points pi are on the polygon bounding
M (sin
e they are spe
ial), and sin
e pi is an internal point of si and the end of si+1 we have when p = 2 (resp.
p > 2) that {s1, . . . , sk−1} ⊆ {a1,b1, c1} and si /∈ {a1,b1, c1} for i > 1 (resp. {s1, . . . , sk−1} ⊆ {a1,a2,b1, c1}and si /∈ {b1, c1} for i > 1). This implies the following remark.Remark 3.3. When p = 2 (resp. p > 2), every spe
ial point p of M (resp. p 6= B of M) is free. Furthermore,if B is not free (when p > 2) then there is a path in ConstS∪F of the form (b1,p1,a1,p2,bi) or of the form
(bq,p1,a2,p2,bi)Property 1 is su�
ient to prove Theorem 2.5. However, in our proof of Property 1, we need Property 2(de�ned below) that is de�ned for some parti
ular W-triangulations.Consider a W-triangulation T 6= K3 that is 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) su
h that
T does not 
ontain any 
hord aibj or aicj . Let D ⊆ Vi(T ) be the set of inner verti
es of T that are adja
entto some vertex ai with i > 1. Sin
e T is a 3-bounded W-triangulation, the set D indu
es a 
onne
ted graph.Sin
e T has at least 4 verti
es, no separating 3-
y
le, and no 
hord aiaj , aibj , or aicj , then a1 and a2 (resp.
b1 and b2) have exa
tly one 
ommon neighbor in V (T )\{c1} (resp. V (T )\{a1}) that will be denoted a (resp.
d1). Sin
e a is in D, the set D ∪ {a1} also indu
es a 
onne
ted graph. The adja
ent path of T with respe
tto the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) is the shortest path linking d1 and a1 in T [D ∪ {a1}](the graph indu
ed by D ∪ {a1}). This path will be denoted (d1, d2, . . . , ds, a1). Note that, by de�nition ofthe adja
ent path, there exists no edge didj ∈ E(T ) with 2 ≤ i + 1 < j ≤ s, and no edge a1di ∈ E(T ) with
1 ≤ i < s (See Figure 11).

a1

a2

b2
ds d1d2

a3

c1 = bq

a4 a5 b1 = ap

a1

b2
ds d1d2

c1 = bq

a5 b1 = ap

T Td2a5Fig. 11. the adja
ent path of T and the graph Td2a5
.For ea
h edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], we de�ne Tdxay
as the W-triangulation lyinginside the 
y
le C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr). We now state the property on su
hparti
ular triangulations that we use to prove Property 1.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr),without any 
hord aibj or aicj , and whi
h adja
ent path is (d1, d2, . . . , ds, a1). Consider the W-triangulation

Tdxay
for some edge dxay of T .1. If y = p (see Figure 12 left), for any triangle BCD, there exists a premodel M = (S, F, τ) of Tdxap
ontained in the triangle BCD su
h that� every spe
ial point p of M is a point of bq = c1 = [BC], ap = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point, 12



� D is a fan-path�ap⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point.2. If y < p (see Figure 12 right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of Tdxay

ontained in the polygon ABCD su
h that� every spe
ial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], a1 = cr = [CD] or [AD](that is 
ontained in ay),� A is a path�(ay , . . . , ap)�point,� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is a path�(ay , dx, . . . , ds, a1)�point whose in
iden
e sequen
e is (ay ,dx, . . . ,ds,a1,ay,dx)

b1
b2

bq

c1
ap

ds

dx

ay

c2

cr = a1

c1

ap

b1

bq

ds

dx

d1

b2

c2

cr = a1

D

A

B B

C C

D

Fig. 12. Property 2 for one W-triangulation Tdxay with y = p and one with y < p.Note that if p > y (resp. p = y), there is no fa
e segment in
ident to A,B,C,D (resp. B, C, D). Notethat when y > p, in a premodel (M, S, τ) of Tdxay
satisfying 
onditions of Property 2, D is an internal pointof the segments dx and ay.With a similar argument as for Remark 3.3 we obtain the following remark.Remark 3.4. Consider a premodel M satisfying Property 2. If y = p, any spe
ial point of M is free. If y < p,any spe
ial point of [bAD] or [DC] is free.Remark 3.5. A

ording to Lemmas 2.21 and 2.22, it is su�
ient to show that there exists a set of points

B,C,D (or A,B,C,D) su
h that 
onditions of Property 1 (resp. Property 2) hold.Let us now prove these two properties by doing a �
rossed� indu
tion.Theorem 3.6. Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
).3.2 Proof of Theorem 3.6We prove Theorem 3.6 by indu
tion on the number of edges of T (for Property 1) or Tdxay
(for Property 2).Our proof is based on a de
omposition of 4-
onne
ted triangulations already used in [7,18℄.The following lemma proves the initial step of the indu
tion.Lemma 3.7. Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay

) with at most threeedges. 13



Proof. There is only one W-triangulation with so few edges, the graph K3.This implies that there is no W-triangulation Tdxay
with at most 3 edges, so Property 2 obviously holdsby va
uity.For Property 1, we have to 
onsider all the possibles 3-boundaries of K3. All these 3-boundaries areequivalent. Let V (K3) = {a, b, c} and 
onsider the 3-boundary (a, b)-(b, c)-(c, a). Given any triangle BCD,let a = CD, b = DB and c = BC. We add a fa
e segment abc from D to an internal point of [BC]. Thetypes of B,C,D are as follows: B is a path�(b, c)�point, C is a path�(c, a)�point and D is a fan�b⊳� (a)�point,with the fa
e segment abc in
ident to it.It is easy to 
he
k that we have de�ned a premodel of K3 that satis�es Property 1. ⊓⊔We prove the indu
tive step for Property 1 with the following lemma.Lemma 3.8. For any integer m > 3, if Property 1 holds for any W-triangulation T su
h that |E(T )| < mand Property 2 holds for any W-triangulation Tdxay

su
h that |E(Tdxay
)| < m, then Property 1 holds for anyW-triangulation T su
h that |E(T )| = m.Case 1: Proof of Property 1 for a W-triangulation T su
h that |E(T )| = m.Let (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T 
onsidered. We distinguish di�erent 
asesa

ording to the existen
e of a 
hord aibj or aicj in T :(Case 1.1) either there exists a 
hord a1bj, j ∈ [2, q − 1],(Case 1.2) or there exists a 
hord aibj , with i ∈ [2, p− 1] and j ∈ [2, q],(Case 1.3) or there exists a 
hord aicj , with i ∈ [2, p] and j ∈ [2, r − 1],(Case 1.4) or there is no 
hord aibj or aick, with i ∈ [1, p], j ∈ [1, q], k ∈ [1, r].Note that all the 
ases are 
onsidered sin
e there is no 
hord a1bq = crc1, aib1 = aiap, apbj = b1bj ,

a1cj = crcj , apc1 = b1bq or aicr = aia1 and sin
e a 
hord aic1 is a 
hord aibq.Case 1.1: There is a 
hord a1bj , with 1 < j < q (see Figure 13).
b1 = ap

c1 = bq

bi

T2

T1

T

a1 = crFig. 13. Case 1.1: Chord a1bi.Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . ,
b1, . . . , bi, a1)). By Lemma 3.2, T1 and T2 are W-triangulations. Sin
e T has no 
hord axay, bxby, or cxcy,
(bi, cr)-(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of T1 (resp. T2). Further-more, sin
e a1a2 /∈ E(T1) (resp. c1c2 /∈ E(T2)), T1 (resp. T2) has less edges than T and Property 1 holds for
T1 and T2 with the mentioned 3-boundaries.If p = 2 we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in a triangle BCD while if p > 2we want it to be 
ontained in a 
on
ave polygon ABCD. In both 
ases, 
onsider three points B, C and Dand let E be an inner-point of the segment [CD].Consider a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1 
ontained in BCE where the points
B, C and E are respe
tively a path�(bi, . . . , bq)�point, a path�(c1, . . . , cr)�point, and a fan�bi⊳� (a1, . . .)�point(if E is a fan�bi⊳� (a1)�point, there 
an be fa
e segment in
ident to it).If p = 2 (see Figure 14 left), 
onsider a premodel M2 = (S2, F2, τ2) of T2 satisfying Property 1 
ontainedin BED where the points B, E and D are respe
tively a path�(b1, . . . , bi)�point, a path�(bi, a1)�point, anda fan�b1⊳� (a1, . . . , )�point. 14



If p > 2 (see Figure 14 right), there exists a point A and a premodel M2 = (S2, F2, τ2) of T2 satisfyingProperty 1 
ontained in ABED and where the points A, B, E and D are respe
tively a path�(a2, . . . , ap)�point, a path�(b1, . . . , bi)�point, a path�(bi, a1)�point, and the 
rossing-point of a1 and a2.By using Lemma 2.12, if ne
essary, we 
an ensure that ex
ept B,E, there is no representative point p1of M1 and p2 of M2 that are exa
tly at the same position on bi.Note that in both 
ases (p = 2 and p > 2) the two segments a1 (resp. bi) of S1 and S2 form now a singlesegment a1 (resp. bi). Consider now M = (S, F, τ) where S = S1∪S2 (up to the identi�
ation of the two a1sand of the two bis), F = F1∪F2, τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1
\{B,E} (resp.

p ∈ RepS2∪F2
\ {B,E}), and where τ(E) and τ(B) are de�ned as follows: B is now a path�(b1, . . . , bq)�pointand E remains a fan�bi⊳� (a1, . . .)�point (as in M1); this is possible sin
e around E, we just have prolonged

a1.

a1

bi

bi

bq b1

c1 a2

cr = a1

bi

bi

bq

c1

cr = a1 a1

b1

ap

a2

c2c2

C D C

BB

D

A

EE

Fig. 14. Case 1.1: when p = 2 (left) or p > 2 (right).Sin
e V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {a1, bi}, every vertex v ∈ V (T ) 
orresponds to exa
tlyone segment v in S. Note that E(T ) = E(T1)∪E(T2) and that E(T1)∩E(T2) = {a1bi}. Note also that an edge
uv is in the graph 
orresponding to E (resp. B) in M if and only if uv is an edge of the graph 
orrespondingto E (resp. B) in M1 (resp. in M1 or in M2). Thus the edges of T are exa
tly the edges represented (eitherby a fa
e segment or in a spe
ial point) in M. Sin
e F (T ) = F (T1)∪F (T2), sin
e F (T1)∩F (T2) = ∅, sin
e nofa
e segment has been added or removed, sin
e τ(E) has not been modi�ed and sin
e B is a path�point (andthus no fa
e is represented in B), the fa
es represented in M are exa
tly the union of the fa
es representedin M1 and M2, i.e., the fa
es of T .We know that ConstS1∪F1

and ConstS2∪F2
are a
y
li
. Let Const′1 (resp. Const′2) be the digraph

ConstS1∪F1
(resp. ConstS2∪F2

) where the ar
 from E to a1 has been repla
ed by an ar
 from a1 to E(this 
orresponds to the fa
t that E is no longer an end of a1). Sin
e E is free in M1, it is easy to see that
Const′1 is a
y
li
. Moreover, the internal spe
ial points of bi remain free (there is no dire
ted path fromany segment ending on bi to bi or E sin
e E is free). Sin
e E is also free in M2, Const′2 is a
y
li
 and theinternal spe
ial points of bi remain free.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to a1(resp. bi, B, E) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪F must
ontain at least two verti
es among a1,bi,B,E. Note that B has no prede
essor and thus is not in any 
y
le.Moreover, a1 has no prede
essor ex
ept C (that has no prede
essor) in Const′1 and any 
y
le 
ontaining
E 
ontains a1 and any 
y
le 
ontaining bi 
ontains E or B. Consequently, there is no 
y
le 
ontaining adire
ted path going from Const′1 to Const′2 through a1,bi,B or E and thus, ConstS∪F is a
y
li
. For any15



internal spe
ial point p of bi that is in M1 (resp. M2), the segments ending in p are all in M1 (resp. all in
M2); thus they remain free in M, sin
e they were free in M1 (resp. M2).In order to obtain a premodel of T satisfying Property 1, we just realize the spe
ial points of M that aresome inner points of bi (this is possible by Corollary 2.20 sin
e they are free).Case 1.2: There is a 
hord aibj , with 1 < i < p and 1 < j ≤ q (see Figure 15).

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

T

Fig. 15. Case 1.2: Chord aibj .If there are several 
hords aibj , we 
onsider one whi
h maximizes j, i.e., there is no 
hord aibk with
j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le (a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr)(resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 3.2, T1 and T2 are W-triangulations. Sin
e T has no 
hord axay,
bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-(ai, bj, . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai))is a 3-boundary of T1 (resp. T2). Furthermore, sin
e b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) hasless edges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries. We know that p > 2and we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some 
on
ave polygon ABCD.If i = 2, let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is 
ontained in a triangle
BCD where the points B, C and D are respe
tively a path�(ai, bj , . . . , bq)�point, a path�(c1, . . . , cr)�point,and a fan�a2⊳� (a1, . . .)�point.If i > 2 let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is 
ontained in a 
on
avepolygon ABCD and where the points A, B, C and D are respe
tively a (a2, . . . , ai)-point, a (ai, bj, . . . , bq)-point, a (c1, . . . , cr)-point, and the 
rossing-point of a1 and a2.In both 
ases (i = 2 or i > 2), we want to do a gliding of ai along bj . If bj has no end on a1 or if a1has no end on ai, the 
onditions of Lemma 2.12 are satis�ed and we 
an do a gliding of ai on bj inside thepolygon (See Figure 16).Otherwise, we 
annot use Lemma 2.12, sin
e there exists a dire
ted path from ai to bj in ConstS1∪F1

.However, 
onsider the interse
tion point I of a1 and ai (I is an end of a1). It is easy to see that any segment
s 6= a1 ending in I does not have any internal spe
ial point. Note also that only ai appears twi
e in thein
iden
e sequen
e of I. Consequently, we 
an prolong a1 after I and keep a �exible segment set S ∪ F withan a
y
li
 
onstraints digraph. On
e we have prolonged a1, we 
an apply Lemma 2.12 to do a gliding of ai on
bj . After that, we erase the part of a1 that is outside the polygon (at this moment, the 
onstraints digraphis no longer a
y
li
). Let E be the new interse
tion of ai and bj . If j < q, we do a prolonging of ai after E(on the other side of bj).We know that ConstS1∪F1

is a
y
li
. Let Const′1 be the new 
onstraints digraph obtained after theprevious transformation. If j = q, the ends of bq are not internal points of a1 and thus Const′1 is still a
y
li
(we have done a gliding a

ording to Lemma 2.12). If j < q, ConstS1∪F1
di�ers from ConstS1∪F1

by the fa
tsthat the ar
 from B to ai has been removed and that an ar
 from bj to the new point E, an ar
 from ai to
E and an ar
 from ai to its new end have been 
reated. Sin
e E has no su

essor and sin
e the new end of
ai has no prede
essor, we have not 
reated any 
y
le. Then, if i = 2, we extend the segment ai after D to anew endpoint A (See Figure 16, top right). Otherwise A is un
hanged.Let M2 = (S2, F2, τ2) be a premodel of T2 
ontained in ABE and where the points A, B and Eare respe
tively a path�(ai, . . . , ap)�point, a path�(b1, . . . , bj)�point, and a fan�bj⊳� (ai, . . .)�point. By usingLemma 2.12, we 
an ensure that ex
ept B,E,A, there is no representative points p1 of M1 and p2 of M2exa
tly at the same position on ai or bj . 16



Note that in both 
ases (i = 2 or i ≥ 2), the two segments ai (resp. bj) of S1 and S2 form now a singlesegment ai (resp. bj). Consider now M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�
ations of the aisand of the bjs), F = F1 ∪ F2, τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1
\ {A,B,E}(resp. p ∈ RepS2∪F2

\ {A,B,E}), and where τ(A), τ(E) and τ(B) are de�ned as follows: A is now a path�
(a2, . . . , ap)�point, B is now a path�(b1, . . . , bq)�point and E remains a fan�bj⊳� (ai, . . .)�point (as in M2);this is possible sin
e around E, we just have prolonged bj (resp. ai and bj) when i = q (resp. i < q).
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a2

C

ai

CFig. 16. Case 1.2: when i = 2 (top) or i > 2 (bottom); in both 
ases, a model of T1 is represented on the left and amodel of T (obtained from the model of T1 and from a model of T2) is represented on the right.Sin
e V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {ai, bj}, every vertex v ∈ V (T ) 
orresponds to exa
tlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {aibj}. Note also thatan edge uv is in the graph 
orresponding to E (resp. A) in M if and only if uv is an edge of the graph
orresponding to E (resp. A) in M1 (resp. in M1 or M2). Note that an edge uv 6= aibj is represented in B in
M if and only if uv is represented in B in M1 or M2. Thus the edges of T are exa
tly the edges represented(either by a fa
e segment or in a spe
ial point) in M. Sin
e F (T ) = F (T1)∪F (T2), sin
e F (T1)∩F (T2) = ∅,sin
e no fa
e segment has been added or removed, sin
e τ(E) has not been modi�ed and sin
e A and B arepath points (and thus no fa
e is represented in A,B), the fa
es represented in M are exa
tly the union ofthe fa
es represented in M1 and M2, i.e., the fa
es of T .17



We know that ConstS1∪F1
and ConstS2∪F2

are a
y
li
. Re
all that Const′1 is the digraph 
orrespondingto (S1, F1, τ1) on
e we have glided ai on bj .When i = 2, we also repla
e the ar
 from D to ai by an ar
 from ai to D (sin
e D is no longer an end of
ai). If j < q, both ends of ai are segment ends, there is no 
y
le going through ai and thus there is no 
y
legoing through D, sin
e D was free in M1; 
onsequently, Const′1 is a
y
li
. If j = q, the digraph Const′1
orresponds to the digraph obtained from ConstS1∪F1

if we extend bq after B and a2 after D. Sin
e, B and
D are free in M1 (we are in the 
ases where M1 is 
ontained in the triangle BCD), it is easy to see that
Const′1 is a
y
li
.Let Const′2 be the digraph obtained from ConstS2∪F2

where the ar
 from E to ai and the ar
 from E to
bj have been repla
ed by an ar
 from ai to E and an ar
 from E to bj . Sin
e E is free in M2, Const′2 isa
y
li
.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to ai(resp. bj , A, B, E) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪Fmust 
ontain at least two verti
es among ai,bj ,A,B,E. Note that A and B have no prede
essors, that theprede
essors of ai are A and a segment end, that the prede
essor of E is ai. Consequently, there is no 
y
legoing through ai,A,B or E and thus ConstS∪F is a
y
li
. For the same reasons as in Case 1.1, the spe
ialpoints belonging to ai and bj remain free.In order to obtain a premodel of T satisfying Property 1, we have to realize some spe
ial points of M.When i > 2, we realize the spe
ial points appearing on ai and bj ex
ept A, B and E; this is possible sin
ethey are free by Corollary 2.20. If j < q, we realize E (if j = q, E is on the border of the polygon).When i = 2, we �rst realize the spe
ial points appearing on bj ex
ept B and the spe
ial points appearingon [DE] (that is 
ontained in ai), ex
ept D and E; this is possible sin
e they are free by Corollary 2.20.If j < q, we realize E. If there is a fa
e segment in
ident to D, then D is a fan�a2⊳� (a1)�point and then itis su�
ient to prolong a1 to realize it (it is easy to see it keeps ConstS∪F a
y
li
, sin
e the prede
essorsof a1 are its new endpoint and C). Otherwise, sin
e D is a fan�a2⊳� (a1, d

′
1, . . . , d

′
s′)�point, the �rst step ofthe realization of D (as explained in Proposition 2.14) is done by making a traversing of a2 by the segments

d′
1, . . . ,d

′
s′ along a1 (that has been prolonged). Thus, we realize D inside the polygon ABCD.On
e these realizations have been done, we have obtained a premodel 
ontained in a 
on
ave polygon

ABCD that satisfy Property 1.Case 1.3: There is a 
hord aicj , with 1 < i ≤ p and 1 < j < r (see Figure 17).
a1 = cr b1 = ap

c1 = bq

cj

ai

T2

T1

T

Fig. 17. Case 1.3: Chord aicj .If there are several 
hords aicj, we 
onsider one whi
h maximizes i, i.e., there is no 
hord akcj with
i < k < r. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le (a1, a2, . . . , ai, cj , . . . , cr)(resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 3.2, T1 and T2 are W-triangulations. Sin
e T has no
hord axay, bxby, cxcy or akcj with k > i, (a1, . . . , ai)-(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cj)) is a 3-boundary of T1 (resp. T2). Furthermore, sin
e b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp.
T2) has less edges than T and Property 1 holds for T1 and T2 with the mentioned 3-boundaries.We distinguish di�erent 
ases depending on the values of i and p.Case 1.3.1: i = p (See Figure 18, top left for i = p = 2 and top right for i = p > 2)If i = p = 2,we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some triangle BCD.Consider three non 
ollinear points B,C,D and let E be an inner point of the segment [BD]. Let M1 =18
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Fig. 18. Case 1.3: when i = p (top) or i < p (bottom) and when i = 2 (left) or i > 2 (right).
(S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is 
ontained in the triangle ECD where the points
E, C and D are respe
tively a path�(ap, cj)�point, a path�(cj , . . . , cr)�point, and a fan�ap⊳� (a1, . . .)�point.If i = p > 2, we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some 
on
ave polygon
ABCD. Consider three non 
ollinear points A,B,C and let E be an inner point of the segment [AB]. Let
M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is 
ontained in some 
on
ave polygon
ECAD for some point D where the points E, C, A and D are respe
tively a path�(ap, cj)�point, a path�
(cj , . . . , cr)�point, a path�(a2, . . . , ap)�point and the 
rossing of a1 and a2.In both 
ases, let M2 = (S2, F2, τ2) be a premodel of T1 satisfying Property 1 that is 
ontained in thetriangle BCE where the points B, C and E are respe
tively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point, and a fan�cj⊳� (ap, . . .)�point.By using Lemma 2.12, we 
an ensure that ex
ept C,E, there is no representative points p1 of M1 and
p2 of M2 exa
tly at the same position on cj .Note that the two segments cj (resp. ap) of S1 and S2 form now a single segment cj (resp. ap). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�
ation of the cjs and of the aps), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {C,E} (resp. p ∈ RepS2∪F2
\ {C,E}),19



and where τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point and E remains afan�ap⊳� (cj, . . .)�point (as in M2): this is possible sin
e around E, we just have prolonged ap.Sin
e V (T ) = V (T1) ∪ V (T2) and V (T1) ∩ V (T2) = {ap, cj}, every vertex v ∈ V (T ) 
orresponds toexa
tly one segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {apcj}. Notealso that an edge uv is in the graph 
orresponding to E (resp. C) in M if and only if uv is an edge of thegraph 
orresponding to E (resp. C) in M2 (resp. in M1 or in M2). Thus the edges of T are exa
tly theedges represented (either by a fa
e segment or in a spe
ial point) in M. Sin
e F (T ) = F (T1) ∪ F (T2), sin
e
F (T1)∩F (T2) = ∅, sin
e no fa
e segment has been added or removed, sin
e τ(E) has not been modi�ed andsin
e C is a path point (and thus no fa
e is represented in C), the fa
es represented in M are exa
tly theunion of the fa
es represented in M1 and M2, i.e., the fa
es of T .We know that ConstS1∪F1

and ConstS2∪F2
are a
y
li
. Let Const′1 (resp. Const′2) be the digraph

ConstS1∪F1
(resp. ConstS2∪F2

) where the ar
 from E to ap has been repla
ed by an ar
 from ap to E(this 
orresponds to the fa
t that E is no longer an end of ap). For the same reasons as in the proof of Case1.1, Const′1 and Const′2 are a
y
li
 and the internal spe
ial points of cj remain free.The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to ap(resp. cj , C, E) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪F must
ontain at least two verti
es among ap, cj ,C,E. Note that C has no prede
essor and that any 
y
le 
ontaining
cj (resp. E) must 
ontain E (resp. ap). Sin
e ap is not in any 
y
le, ConstS∪F is a
y
li
. For the same reasonsas in the proof of Case 1.1, the internal spe
ial points of cj remain free in M.In order to obtain a premodel of T satisfying Property 1, we just realize the spe
ial points of M that aresome inner points of ci (this is possible by Corollary 2.20 sin
e they are free).Case 1.3.2: p > i and i = 2 (See Figure 18, bottom left)Sin
e p > i = 2, we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some 
on
ave polygon
ABCD. Consider three non 
ollinear points A,B,C and let M2 = (S2, F2, τ2) be a premodel of T2 satisfyingProperty 1 that is 
ontained in some 
on
ave polygon ABCE for some point E and where the points A,
B, C, E are respe
tively a path�(a2, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point andthe 
rossing of a2 and cj .Let D be an inner point of [AE] and let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1that is 
ontained in the triangle ECD where the points E, C and D are respe
tively a path�(a2, cj)�point,a path�(cj , . . . , cr)�point, and a fan�a2⊳� (a1, . . .)�point.By using Lemma 2.12, we 
an ensure that ex
ept C,E (note that D is not a representative point of M2),there is no representative points p1 of M1 and p2 of M2 exa
tly at the same position on cj or a2.Note that the two segments cj (resp. a2) of S1 and S2 form now a single segment cj (resp. a2). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�
ation of the cjs and of the a2s), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {C,E} (resp. p ∈ RepS2∪F2
\ {C,E}), andwhere τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point and E remains the 
rossingpoint of Cj and a2 (as in M2). Note that D remains a fan�a2⊳� (a1, . . .)�point (as in M1): this is possible,sin
e around D, we just have prolonged a2.Sin
e V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {a2, cj}, every vertex v ∈ V (T ) 
orresponds to exa
tlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {a2cj}. Note also that anedge uv is in the graph 
orresponding to C in M if and only if uv is an edge of the graph 
orresponding to

C in M1 or in M2. Note that the edge a2cj is represented by the 
rossing of a2 and cj in E. Thus the edgesof T are exa
tly the edges represented in M. Sin
e F (T ) = F (T1) ∪ F (T2), sin
e F (T1) ∩ F (T2) = ∅, sin
eno fa
e segment has been added or removed and sin
e C is a path point (and thus no fa
e is represented in
C), the fa
es represented in M are exa
tly the union of the fa
es represented in M1 and M2, i.e., the fa
esof T .We know that ConstS1∪F1

and ConstS2∪F2
are a
y
li
. Let Const′1 be the digraph obtained from

ConstS1∪F1
where the ar
 from D to a2, the ar
 from E to a2 and the ar
 from E to cj have been re-spe
tively repla
ed by an ar
 from a2 to D, an ar
 from a2 to E and an ar
 from cj to E (this 
orrespondsto the fa
t that D is not longer an end of a2 and that E is not longer an end of a2 or cj). Sin
e ConstS1∪F1is a
y
li
 and sin
e D and E are free, it is easy to see that Const′1 is a
y
li
.The digraph ConstS∪F is the union of Const′1 and ConstS2∪F2

where the two verti
es 
orresponding to
a2 (resp. cj , C, E) have been identi�ed. Sin
e Const1′ and ConstS2∪F2

are a
y
li
, any 
y
le in ConstS∪Fmust 
ontain verti
es of ConstS2∪F2
and of Const′1 and thus, there must be at least two verti
es among

a2, cj ,C,E in any 
y
le of ConstS∪F . 20



Note that C has no prede
essor and that E has no su

essor, ex
ept possibly a fa
e segment (that hasno su

essor); thus none of them is in any 
y
le. The prede
essors of cj and a2 di�erent from C are both in
ConstS2∪F2

(but not in Const′1). Any 
y
le 
ontaining cj and a2 would be a 
y
le in ConstS2∪F2
, whi
h isimpossible. Consequently, ConstS∪F is a
y
li
 and thus M is a premodel of T . For the same reasons as inthe proof of Case 1.1, the internal spe
ial points of cj and a2 remain free in M.In order to obtain a premodel of T satisfying Property 1, we have to realize some spe
ial points of M.We �rst realize the spe
ial points appearing on cj ex
ept C (they are all on [CE]) and the spe
ial pointsappearing on DE (that is 
ontained in a2), ex
ept D (note that E is not a spe
ial point). This is possibleby Corollary 2.20.If there is a fa
e segment in
ident to D, then D is a fan�a2⊳� (a1)�point and then it is su�
ient to extend

a1 to realize it. Otherwise, sin
e D is a fan�a2⊳� (a1, d
′
1, . . . , d

′
s)�point, the �rst step of the realization of D(a

ording to the proof of Proposition 2.14) is done by making a traversing of a2 by the segments d′

1, . . . ,d
′
s′along a1 (that has been prolonged) to 
reate a path�(a1, d

′
1, . . . , d

′
s′)�point. Thus, we realize D inside thepolygon ABCD (this is possible sin
e D is free).On
e these realizations have been done, we have obtained a premodel 
ontained in a 
on
ave polygon

ABCD that satisfy Property 1.Case 1.3.3: p > i and i > 2 (See Figure 18, bottom right)Sin
e p > i > 2, we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some 
on
ave polygon
ABCD. Consider three non 
ollinear points A,B,C and let M2 = (S2, F2, τ2) be a premodel of T2 satisfyingProperty 1 that is 
ontained in the 
on
ave polygon ABCE for some point E where the points A, B, C,
E are respe
tively a path�(ai, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cj)�point and the
rossing of ai and cj .Let M1 = (S1, F1, τ1) be a premodel of T1 satisfying Property 1 that is 
ontained in the 
on
ave polygon
AECD for some point D where the points A, E, C and D are respe
tively a path�(a2, . . . , ai)�point, apath�(ai, cj)�point, a path�(cj , . . . , cr)�point, and the 
rossing of a1 and a2. By using Lemma 2.12, we 
anensure that ex
ept C,E,A, there is no representative points p1 of M1 and p2 of M2 exa
tly at the sameposition on cj or ai.Note that the two segments cj (resp. ai) of S1 and S2 form now a single segment cj (resp. ai). Considernow M = (S, F, τ) where S = S1 ∪ S2 (up to the identi�
ation of the cjs and of the ais), F = F1 ∪ F2,
τ(p) = τ1(p) (resp. τ(p) = τ2(p)) for any point p ∈ RepS1∪F1

\ {A,C,E} (resp. p ∈ RepS2∪F2
\ {A,C,E}),and where τ(A), τ(C) and τ(E) are de�ned as follows: C is now a a path�(c1, . . . , cr)�point, A is now a apath�(a2, . . . , ap)�point, and τ(E) remains the 
rossing of ai and cj (as in M2).Sin
e V (T ) = V (T1)∪V (T2) and V (T1)∩V (T2) = {ai, cj}, every vertex v ∈ V (T ) 
orresponds to exa
tlyone segment v in S. Note that E(T ) = E(T1) ∪ E(T2) and that E(T1) ∩ E(T2) = {aicj}. Note also thatan edge uv is in the graph 
orresponding to A (resp. C) in M if and only if uv is an edge of the graph
orresponding to A (resp. C) in M1 or in M2. Note that the edge aicj is represented by the 
rossing of aiand cj in E. Thus the edges of T are exa
tly the edges represented in M. Sin
e F (T ) = F (T1)∪F (T2), sin
e

F (T1) ∩ F (T2) = ∅, sin
e no fa
e segment has been added or removed and sin
e A and C are path points(and thus no fa
e is represented in A or C), the fa
es represented in M are exa
tly the union of the fa
esrepresented in M1 and M2, i.e., the fa
es of T .We know that ConstS1∪F1
and ConstS2∪F2

are a
y
li
. Let Const′1 be the digraph obtained from
ConstS1∪F1

where the ar
 from E to ai and the ar
 from E to cj have been respe
tively repla
ed byan ar
 from ai to E and an ar
 from cj to E (this 
orresponds to the fa
t that E is not longer an end of aior cj). Sin
e ConstS1∪F1
is a
y
li
 and sin
e E is free in M1, Const′1 is a
y
li
.The digraph ConstS∪F is the union of Const′1 and ConstS2∪F2

where the two verti
es 
orresponding to ai(resp. cj , A, C, E) have been identi�ed. Sin
e Const1′ and ConstS2∪F2
are a
y
li
, any 
y
le in ConstS∪Fmust 
ontain verti
es of ConstS2∪F2

and of Const′1 and thus, there must be at least two verti
es among
ai, cj ,A,C,E in any 
y
le of ConstS∪F . Note that A,C have no prede
essor and that E has no su

essor,ex
ept possibly a fa
e segment (that has no su

essor); thus none of them is in any 
y
le. The prede
essorsof cj and ai di�erent from A,C are both in ConstS2∪F2

(but not in Const′1). Any 
y
le 
ontaining cj and
a2 would be a 
y
le in ConstS2∪F2

, whi
h is impossible. Consequently, ConstS∪F is a
y
li
 and thus M isa premodel of T . For the same reasons as in the proof of Case 1.1, the internal spe
ial points of cj and a2remain free in M.In order to obtain a premodel of T satisfying Property 1, we realize the spe
ial points appearing on cj(resp. ai) ex
ept C (resp. A); this is possible by Corollary 2.20, sin
e they are free.21



Case 1.4: There is no 
hord aibj , with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no 
hord aicj , with 1 ≤ i ≤ p and
1 ≤ j ≤ r (see Figure 19).In this 
ase we 
onsider the adja
ent path (d1, . . . , ds, a1) (see Figure 11) of T with respe
t to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p and whi
h minimizes
y. This edge exists sin
e, by de�nition of the adja
ent path, ds is adja
ent to some vertex ay with y > 1.The W-triangulation Tdsay

has less edges than T (a1a2 /∈ E(Tdsay
)), and thus Property 2 holds for Tdsay

.
c1 = bq

ay

ds

b1 = ap

cr−1

ds

cr−1

ds

ay

e1

a2a1 = cr a2

e2
Tdsay

cr = a1
cr = a1

T1

Fig. 19. Case 1.4: No 
hord aibj or aicj .Now we distinguish two 
ases a

ording to the position of ay, the �rst is when y = 2 and the se
ond iswhen y > 2.Case 1.4.1: y = 2.In that 
ase, E(T ) = E(Tdsa2
) ∪ {a1a2} and F (T ) = F (Tdsa2

) ∪ {a1a2ds}.If p = y = 2, for any non-
ollinear points B,C,D, there exists a premodel M′ = (S′, F ′, τ ′) of Tdsay
ontained in the triangle BCD that satis�es Property 2 and where B, C, D are respe
tively a path�
(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�a2⊳� (d1, . . . , ds) · (ds, a1)�point.Now, we only 
hange the type of D that is now a fan�a2⊳� (a1, ds, . . . , d1)�point. This is possible sin
e thein
iden
e sequen
e of D is (a2, a1, ds, . . . , d1). Note that this modi�
ation only adds the edge a1a2 to the setof represented edges and the fa
e a1a2ds to the set of represented fa
es. Consequently, M is a premodel of
T and sin
e there is no fa
e segment in
ident to D (sin
e it was a fan-path point), M satis�es Property 1.If p > 2, for any non-
ollinear points A,B,C, 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdsay


ontained inthe 
on
ave polygon ABCE for some point E that satis�es Property 2 and where A, B, C, E are respe
tivelya path�(b1, . . . , bq)�point, a path�(a2, . . . , ap)�point, a path�(c1, . . . , cr)�point and a path�(a2, ds, a1)�point.We do a traversing of a2 by a1 along ds and then we prolong a1 (See Figure 20); this is possible byLemma 2.13, sin
e ConstS′∪F ′ is a
y
li
. Let D be the 
rossing of a1 and a2 and D′ be the 
rossing of
a1 and ds. After this move, E is the 
rossing of ds and a2 and is no longer a spe
ial point. We add a fa
esegment a1dsa2 from D′ to an inner point of [DE]. Let S (resp. F, τ) denotes the new segment set, (resp. thenew fa
e segment set, the new type fun
tion). Note that S ∪F is 
ontained in the 
on
ave polygon ABCD.Note that this modi�
ation only adds the edge a1a2 to the set of represented edges and the fa
e a1a2dsto the set of represented fa
es. Indeed, there was no fa
e represented in E and the edges dsa1 and dsa2that were previously represented in E are now respe
tively realized in D′ and in E. Note that sin
e wehave transformed a spe
ial point into di�erent simple points (that 
annot belong to any 
y
le), ConstS∪F isa
y
li
 and thus M = (S, F, τ) is a premodel of T that satis�es Property 1 (sin
e D is now the 
rossing of
a1 and a2).Case 1.4.2: y > 2 (see Figure 21).Let us denote e1, e2, . . . , et the neighbors of ds stri
tly inside the 
y
le (ds, a1, a2, . . . , ay), going �fromright to left� (see Figure 19). Sin
e y is minimal we have ei 6= aj , for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the 
y
le (a1, . . . , ay, e1, . . . , et, a1). By Lemma 3.2, T1 is aW-triangulation. Sin
e the W-triangulation T has no separating 3-
y
le (ds, a1, ei), (ds, ay, ei) or (ds, ei, ej),there exists no 
hord a1, ei, ayei or eiej in T1. So (a2, a1)-(a1, et, . . . , e1, ay)-(ay, . . . , a2) is a 3-boundary of22
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b1
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Eds
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D′

D

ds E

Fig. 20. Case 1.4.1: when y = 2 and p > 2.
T1. Finally, sin
e T1 has less edges than T (a1ds /∈ E(T1)), Property 1 holds for T1 with respe
t to thementioned 3-boundary.Sin
e p ≥ y > 2, we want to 
onstru
t a premodel M = (S, F, τ) of T 
ontained in some 
on
ave polygon
ABCD. Consider three non 
ollinear points A,B,C.If p = y (see Figure 21, left), let E be an inner point of [AB]. Consider a premodel M′ = (S′, F ′, τ ′) of
Tdsay

satisfying Property 2 that is 
ontained in BCE and where B,C,E are respe
tively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�ap⊳� (d1, . . . , ds) · (ds, a1)�point.If p > y (see Figure 21, right), there exists a premodel M′ = (S′, F ′, τ ′) of Tdsay
satisfying Property 2that is 
ontained in a 
on
ave polygon ABCE for some E and where A,B,C,E are respe
tively a path�

(ay, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�(ay, ds, a1)�point. Notethat there is no fa
e segment in
ident to E, sin
e it is a path�point.In both 
ases, let D be an inner point of [EC] and 
onsider a premodel M1 = (S1, F1, τ1) of T1 that is
ontained in AED and where A,E,D are respe
tively a path�(a2, . . . , ay)�point, path�(ay, e1, . . . , et, a1)�point and a fan�a1⊳� (a2, . . .)�point. By using Lemma 2.12, when y = p (resp. y > p) we 
an ensure thatex
ept C,E (resp. A,C,E), there is no representative points p of M′ and p1 of M1 exa
tly at the sameposition on a1 (resp. a1,ay).Note that the two segments a1 (resp. ay) of S′ and S1 form now a single segment a1 (resp. ay). Considernow M = (S, F, τ) where S = S′ ∪ S1 (up to the identi�
ation of the a1s and of the ays), F = F ′ ∪ F1,
τ(p) = τ ′(p) (resp. τ(p) = τ1(p)) for any point p ∈ RepS′∪F ′ \ {A,E} (resp. p ∈ RepS1∪F1

\ {A,D,E})and where τ(A), τ(D), τ(E) are de�ned as follows.If p = y, A remains a path�(a2, . . . , ap)�point as in M1, D remains a fan�a1⊳� (a2, . . .)�point as in M1(this is possible sin
e around D we have only prolonged a1) and E is a double-fan�ap⊳� (d1, . . . , ds) · ds⊳�
(a1, et, . . . , e1, ap)�point (this is possible, sin
e the in
iden
e sequen
e of E is (ap, d1, . . . , ds, a1, et, . . . , e1, ap)and sin
e there is no fa
e-segment in
ident to E).If p > y, A is now a path�(a2, . . . , ap)�point, D remains a fan�a1⊳� (a2, . . .)�point as inM1 (this is possiblesin
e around D we have only prolonged a1) and E is a fan�ds⊳� (ay, e1, . . . , et, a1)�point (this is possible, sin
ethe in
iden
e sequen
e of E is (ds, ay, e1, . . . , et, a1, ds, ay)).Sin
e V (T ) = V (T1) ∪ V (Tdsay

) and V (T1) ∩ V (Tdsay
) = {a1, ay}, every vertex v ∈ V (T ) 
orresponds toexa
tly one segment v in S. Note that E(T1)∩E(Tdsay

) = ∅ and that E(T ) = E(T1)∪E(Tdsay
)∪{dsei | i ∈

[1, t]} (See Figure 21). Any edge uv is represented in D (resp. A) in M if and only if uv is represented in D(resp. A) in M1 (resp. in M′ or in M1). In both 
ases (y = p or y < p, see Figure 22), the edges representedin E in M are exa
tly the edges represented in E in M′, the edges represented in E in M1 and the edgesin {dsei | i ∈ [1, t]}. Consequently, the edges represented in M are exa
tly the edges of T .Note that F (T ) = F (T1) ∪ F (Tdsay
∪ {dsa1et, dsaye1} ∪ {dseiei+1 | i ∈ [1, t − 1]} (See Figure 21). Sin
ethe type of D has not been 
hanged, the fa
es represented in D in M are exa
tly the fa
es represented in D23
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et e1

ap

B B

C C

A A

DD

E E

Fig. 21. Case 1.4.2: when y = p (left) or when y < p (right).in M1. Sin
e A is a path�point in M,M′ and M1, no fa
e is represented in A in M,M′ or M1. In both
ases (y = p or y < p, see Figure 22), the fa
es represented in E in M are exa
tly the fa
es represented in
E in M′, the fa
es represented in E in M1 and the fa
es in {dseiei+1 | i ∈ [1, t − 1]} ∪ {dsaye1, dsa1eT }.Consequently, the edges represented in M are exa
tly the edges of T .
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et e1

et e1

a1

a1

ay

ay a1 ay

et e1a1Fig. 22. Case 1.4.2: the graph represented by E in M1 (left), M′ (middle) and M (right) when y = p (top) or y < p(bottom).We know that ConstS1∪F1
and ConstS′∪F ′ are a
y
li
. Let Const′1 be the digraph ConstS1∪F1

where thear
 from E to ay and the ar
 from D to a1 have been respe
tively repla
ed by an ar
 from ay to E andan ar
 from a1 to D. If y = p, let Const′2 be the digraph ConstS′∪F ′ where the ar
 from E to ay has beenrepla
ed by an ar
 from ay to E. If y > p, Const′2 = ConstS′∪F ′ . For the same reasons as in the proof ofCase 1.1, Const′1 and Const′2 are a
y
li
 and the internal spe
ial points of a1 (resp. a1 and ay) remain freeif y = p (resp. y > p).The digraph ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to a1(resp. ay, A, C, E) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪F must24




ontain at least two verti
es among a1,ay,A,C,E. It is easy to see that a1 (resp. ay ,E) has no prede
essorin Const′1 ex
ept E (resp. A, ay). Thus, sin
e A and C have no prede
essor, ConstS∪F is a
y
li
.In order to obtain a premodel of T satisfying Property 1, we have to realize some spe
ial points. If y = p(resp. y < p), we �rst realize the spe
ial points of a1 (resp. a1 and ay) ex
ept D and E; this is possible sin
ethese points are free. If D is a fan�a1⊳� (a2)�point, then it is su�
ient to prolong a2 to realize it. If D is afan�a1⊳� (a2, d
′
1, . . . , d

′
s′)�point, then we realize it a

ording to Proposition 2.14. The �rst step is a traversingof a1 by d′

1, . . . ,d
′
s′ along a2; thus D is realized inside ABCD.If y > p, we still have to realize the point E that is not ne
essary free (there may be an interse
tionbetween one of the ei and a2). Sin
e E is a fan�ds⊳� (ay, e1, . . . , et, a1)�point, we �rst do a traversing of ds by

(e1, . . . , et, a1) to obtain a path�(ay, a1, et, . . . , e1)�point E′. We 
an prolong a1 without 
hanging the typeof E′; it is possible sin
e we know that a1 has no prede
essor in Const′1. Sin
e E was free in Const′1, E′ is afree point and then it 
an be realized.On
e all these realizations have been done, we have obtained a premodel 
ontained in a 
on
ave polygon
ABCD satisfying Property 1.This 
ompletes the study of Case 1 and ends the proof of Lemma 3.8. ⊓⊔We now prove the indu
tive step for Property 2 with the following lemma.Lemma 3.9. For any integer m > 3, if Property 1 holds for any W-triangulation T su
h that |E(T )| < mand Property 2 holds for any W-triangulation Tdxay

su
h that |E(Tdxay
)| < m, then Property 2 holds for anyW-triangulation Tdxay

su
h that |E(T )| = m.Case 2: Proof of Property 2 for any W-triangulation Tdxay
su
h that |E(Tdxay

)| = m.Re
all that the W-triangulation Tdxay
is a subgraph of aW-triangulation T with a 3-boundary (a1, . . . , ap)-

(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no 
hord aibj or aicj and its adja
ent path is (d1, . . . , ds, a1), with
s ≥ 1. We distinguish two 
ases: either dxay = d1ap or dxay 6= d1ap.Case 2.1: dxay = d1ap (see Figure 23).

b1 = ap

b2

d1
a1

a2

c1

ds

T1

Fig. 23. Case 2.1: Tdxay = Td1ap .Let T1 be the subgraph of Td1ap
that lies inside the 
y
le (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma3.2, T1 is a W-triangulation. This W-triangulation has no 
hord bibj , cicj , didj , or a1dj . We 
onsider two
ases a

ording to the existen
e of an edge d1bi with 2 < i ≤ q.(1) If T1 has no 
hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundary of T1.(2) If T1 has a 
hord d1bi, with 2 < i ≤ q, note that q > 2 and that there 
annot be a 
hord b2a1 or b2dj , with

1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 23). So in this 
ase, (b2, d1, . . . , ds, a1)-

(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sin
e T1 is a W-triangulation with less edges than Td1ap
(b1b2 /∈ E(T1)), Property 1 holds for T1with respe
t to at least one of the two mentioned 3-boundaries.We want to 
onstru
t a premodel M of Td1ap


ontained in a triangle BCD. Consider three non-
ollinearpoints B,C,D. 25



If we 
onsider the 3-boundary mentioned in (1) and if q = 2, 
onsider a inner point E of [BD] and 
onsidera premodel M′ = (S′, F ′, τ ′) 
ontained in CDE satisfying Property 1 where C,D,E are respe
tively a path�
(c1, . . . , cr)�point, a path�(a1, ds, . . . , d1)�point and a fan�b2⊳� (d1, . . .)�point. In that 
ase, we prolong b2 sothat its new end is B (See Figure 24, left).Otherwise, 
onsider a premodel M′ = (S′, F ′, τ ′) satisfying Property 1 
ontained in a 
on
ave polygon
BCDE for some point E where B,C,D,E are respe
tively a path�(b2, . . . , bq)�point, a path�(c1, . . . , cr)�point, a path�(a1, ds, . . . , d1)�point and the 
rossing point of d1 and b2 (See Figure 24, right).In both 
ases, we add a new segment b1 from D to B and a new fa
e segment b2d1b1 going from E toan inner point of b1.
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cr
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D B B

E

E

Fig. 24. Case 2.1.Consider now M = (S, F, τ) with S = S′ ∪ {b1}, F = F ′ ∪ {b2d1b1}, τ(p) = τ ′(p) for any p ∈
RepS′∪F ′ \ {B,D,E} and where τ(B), τ(D), τ(E) are de�ned as follows. B is a path�(b1, . . . , bq)�point; thisis possible sin
e its in
iden
e sequen
e is (b1, . . . ,bq). D is a fan-path�b1⊳� (d1) · (d1, . . . , ds, a1)�point; thisis possible sin
e its in
iden
e sequen
e is (b1,d1, . . . ,ds,a1). If in M′, E is the 
rossing of a1 and a2 or is afan�b2⊳� (d1)�point, then in M, E is the 
rossing of a1 and a2; it is possible sin
e if there is a fa
e segmentin
ident to E in M′, then d1 or d2 separates it from b2d1b1. If in M′, E is a fan�b2⊳� (d1, d

′
1, . . . , d

′
s′)�point(with s′ ≥ 1), then it remains a fan�b2⊳� (d1, d

′
1, . . . , d

′
s′)�point; this is possible sin
e its in
iden
e sequen
e is

(b2,b2d1b1,d1,d
′
1, . . . ,d

′
s′ ,b2). In both 
ases, it is easy to see that the edges and the fa
es represented in

E have not been modi�ed.Sin
e V (Td1ap
) = V (T ) ∪ {b1}, every vertex v ∈ V (T ) 
orresponds to exa
tly one segment v in S. Notethat E(Td1ap

) = E(T ) ∪ {b1d1, b1b2}. It is easy to see that the edges represented in B (resp. D) in Mare exa
tly the edges represented in B (resp. D) in M′ and the edge b1b2 (resp. b1d1). Sin
e we have notmodi�ed the edges represented in E, the edges represented in M are exa
tly the edges of Td1ap
. Note that

F (Td1ap
) = F (T ) ∪ {b2d1b1}. Sin
e we have added a fa
e segment b2d1b1 and sin
e we have not 
hangedthe fa
es represented in B,D,E, the edges represented in M are exa
tly the fa
es of Td1ap

.Sin
e all the spe
ial points of M appear on [BC], [CD] or [BD], it is easy to see that ConstS∪F is a
y
li
and thus, M is a premodel of Td1ap
that satis�es Property 2.Case 2.2: Tdxay

6= Td1ap
.In this 
ase we 
onsider an edge dzaw ∈ E(Tdxay

) su
h that dzaw 6= dxay. Among all the possible edges
dzaw we 
hoose the one that �rst maximizes z and then minimizes w. Su
h an edge ne
essarily exists anda
tually one 
an see that dz = dx or dz = dx+1. Indeed, if dx = d1 there is at least one edge d1aw with
w > y, the edge d1ap. If x > 1, it is 
lear by de�nition of the adja
ent path that the vertex dx−1 is adja
entto at least one vertex aw with w ≥ y. By Lemma 3.2, Tdzaw

is a W-triangulation. Sin
e dxay /∈ E(Tdzaw
),the W-triangulation Tdzaw

has less edges than Tdxay
, and so Property 2 holds for Tdzaw

.26



We distinguish 4 
ases a

ording to the values of z and w.(Case 2.1) z = x and w = y + 1,(Case 2.2) z = x − 1 and w = y,(Case 2.3) z = x and w > y + 1,(Case 2.4) z = x − 1 and w > y.Case 2.2.1: Tdxay
6= Td1ap

, z = x and w = y + 1 (see Figure 25).
b1 = ap

c1 = bq

b1 = ap

c1 = bq

dz

aw

aw
ay

dx = dz

a1 = cr

Tdzaw

Fig. 25. Case 2.2.1: z = x and w = y + 1.We want to 
onstru
t a premodel M = (S, F, τ) of Tdxay

ontained in some 
on
ave polygon ABCD.Consider three non-
ollinear points B,C,E.If w = p (See Figure 26, top left), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw

satisfying Property 2that is 
ontained in BCE and where the points B,C,E are respe
tively a path�(b1, . . . , bq)�point, a path�
(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point. We then prolong aw after E to anew point A (sin
e E is free, it keeps the 
onstraints digraph a
y
li
).If w < p (See Figure 26, bottom left), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw

satisfying Prop-erty 2 that is 
ontained in a 
on
ave polygon ABCE for some point A and where the points A,B,C,Eare respe
tively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�
(aw, dx, . . . , ds, a1)�point.In both 
ases, we do a gliding of (dx+1, . . . ,ds,a1) on dx; this is possible and it keeps the 
onstraints di-graph a
y
li
 from Lemma 2.12 sin
e E is free. Let D be the new interse
tion point of dx and dx+1, . . . ,ds,a1.Then, we add a segment ay from A to D and we prolong it after D. Then, we add a fa
e segment dxawayfrom E to an inner point of [AE]. One 
an easily 
he
k that adding this segment and this fa
e segment keepsthe 
onstraints digraph a
y
li
.Consider nowM = (S, F, τ) where S = S′∪{ay}, F = F ′∪{dxaway}, τ(p) = τ ′(p) for any p ∈ RepS′∪F ′\
{E,A} and where τ(A), τ(D) and τ(E) are de�ned as follows. A is now a path�(ay, aw, . . . , ap)�point. D isa path�(ay, dx, . . . , ds, a1)�point; this is possible sin
e its in
iden
e sequen
e is (ay,dx, . . . ,ds,a1,ay,dx). If
w = p, E is now a fan�aw⊳� (dx, . . . , d1)�point; this is possible sin
e its in
iden
e sequen
e is (aw,dxaway,dx,
. . . ,d1,aw). If w < p, E is now the 
rossing point of aw and dx; if there is a fa
e segment in
ident to E in
M′, either dx or aw separates it from dxaway.Note that in both 
ases, the edges represented in D and E in M are exa
tly the edges represented in Ein M′ and the edge dxay. Note that no fa
e is represented in D in M and that the fa
es represented in Ein M are exa
tly the fa
es represented in E in M′.Sin
e V (Tdxay

) = V (Tdzaw
) ∪ {ay}, every vertex v ∈ V (T ) 
orresponds to exa
tly one segment v in S.Note that E(Tdxay

) = E(Tdzaw
)∪{dxay, away}. Sin
e dxay (resp. away) are now represented in D (resp. A)and sin
e the other edges represented in M are exa
tly the edges represented in M′, the edges representedin M are exa
tly the edges of Tdxay

. Note that F (Tdxay
) = F (Tdzay

) ∪ {dxaway}. Sin
e we have added afa
e segment dxaway and sin
e we have preserved the fa
es represented in M′, the fa
es represented in Mare exa
tly the fa
es of Tdxay
.If w < p, we realize all the spe
ial points appearing on aw (they are on [AE]). Then, in both 
ases, wehave 
onstru
ted a premodel M of Tdxay

that satis�es Property 2.27
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Fig. 26. Case 2.2.1: when w = p (top) or w < p (bottom
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Fig. 27. Case 2.2.2: Tdxay 6= Td1ap , z = x − 1 and w = y.Case 2.2.2: z = x − 1 and w = y (see Figure 27).If w = p, we want to 
onstru
t a premodel M = (S, F, τ) of Tdxay

ontained in a triangle BCD.Consider a premodel M′ = (S′, F ′, τ ′) of Tdzay

satisfying Property 2 that is 
ontained in BCD and wherethe points B,C,A are respe
tively a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a fan-path�ay⊳�
(d1, . . . , dz) · (dz , dx, . . . , ds, a1)�point. 28



Let M = (S′, F ′, τ) where τ(p) = τ ′(p) for any p ∈ RepS′∪F ′ \ D and let D be a fan-path�ay⊳�
(d1, . . . , dz , dx) · (dx, . . . , ds, a1)�point.By 
hanging the type of D, we have added the edge dxay to the set of represented edges and the fa
e
dxdzay to the set of represented fa
es. Sin
e V (Tdxay

) = V (Tdzay
), E(Tdxay

) = E(Tdzay
) ∪ {dxay} and

F (Tdxay
) = F (Tdzay

) ∪ {dxdzay}, M is a premodel of Tdxay
.If w > p (See Figure 28), we want to 
onstru
t a premodel M = (S, F, τ) of Tdxay


ontained in a 
on
avepolygon ABCD. Consider three non-
ollinear points A,B,C and a premodel M′ = (S′, F ′, τ ′) of Tdzaysatisfying Property 2 that is 
ontained in a 
on
ave polygon ABCE for some point E and where the points
A,B,C,E are respe
tively a path�(ay, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�pointand a path�(ay, dz , dx, . . . , ds, a1)�point.We do a gliding of (dx, . . . ,ds,a1) on ay; by Lemma 2.12, this is possible and it keeps the 
onstraintsdigraph a
y
li
, sin
e E is free. Let D be the new interse
tion point of ay and dx, . . . ,ds,a1 (note that Dis free). Note that sin
e E is not an end of dz , by 
hoosing D 
lose enough from E, one 
an ensure that
(dx) and dz interse
t. We prolong dx after D su
h that dx and dz interse
t in some point D′. If ne
essary,we extend dz and dx in su
h a way that D′ is not an end of dz or dx. Note that sin
e D is free and sin
ethe 
rossing between dx and dz is not a spe
ial point, when extending dx, we keep the 
onstraints digrapha
y
li
. Then, we add a fa
e segment dxdzay from D′ to an inner point of [ED] (that is 
ontained in ay).Let M = (S, F, τ) with S = S′, F = F ′∪dxdzay, where for any representative point p ∈ RepS′∪F ′ \{E},
τ(p) = τ(p′) and where τ(D), τ(D′) and τ(E) are de�ned as follows: D is a path�(ay, dx, . . . , ds, a1)�point,
D′ is the 
rossing point of dx and dz and E is now the 
rossing point of dz and ay.
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dxdzay
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D
′

Fig. 28. Case 2.2.2: when y < p.Sin
e V (Tdxay
) = V (Tdzay

), every vertex v ∈ V (Tdxay
) 
orresponds to exa
tly one segment v in S. Notethat E(Tdxay

) = E(Tdzay
) ∪ {dxay}. In M′, the edges {didi+1 | i ∈ [x, s − 1]} ∪ {dxdz, dzay, dsa1} arerepresented in E. In M, the edges represented in D are {didi+1 | i ∈ [x, s − 1]} ∪ {dxay, dsa1}. Sin
e theedges dxdz and dzay are represented respe
tively in D′ and E in M, the edges represented in M are exa
tlythe edges of Tdxay

. Note that F (Tdxay
) = F (Tdzay

)∪{dxdzay}. Sin
e no fa
e is represented in E in M′ or in
D in M and sin
e we have added a fa
e segment dxdzay, the fa
es represented in M are exa
tly the fa
esof Tdxay

.Sin
e all the spe
ial points of M appear on AC, BC, CD or BD, M is a premodel of Td1ap
that satisfyProperty 2.Case 2.2.3: z = x and w > y + 1 (see Figure 29). 29
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aw
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a1 = cr

dx = dz

aw

e1
e2

Tdzaw

T1
ayFig. 29. Case 2.2.3: Tdxay 6= Td1ap , z = x and w > y + 1.Let us denote e1, e2, . . . , et the neighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw), going �from rightto left� (see Figure 29). Sin
e there is no 
hord aiaj we have t ≥ 1. Furthermore w being minimal we have

ei 6= aj , for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the 
y
le

(ay, . . . , aw, e1, . . . , et, ay). By Lemma 3.2, T1 is a W-triangulation. Sin
e the W-triangulation Tdxay
has noseparating 3-
y
le (dx, aw, ei) or (dx, ei, ej), there exists no 
hord awei or eiej in T1. With the fa
t that t ≥ 1,we know that (et, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sin
e T1 has less edges than

Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 with respe
t to the mentioned 3-boundary.We want to 
onstru
t a premodel M = (S, F, τ) of Tdxay


ontained in some 
on
ave polygon ABCD.Consider three non-
ollinear points B,C,E.If w = p (See Figure 30, top left), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw
satisfying Property 2that is 
ontained in BCE and where the points B,C,E are respe
tively a path�(b1, . . . , bq)�point, a path�

(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dx) · (dx, . . . , ds, a1)�point. We then prolong aw after E to anew point A (sin
e E is free, it keeps the 
onstraints digraph a
y
li
).If w < p (See Figure 30, bottom left), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdxaw
satisfying Prop-erty 2 that is 
ontained in a 
on
ave polygon ABCE for some point A and where the points A,B,C,Eare respe
tively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�

(aw, dx, . . . , ds, a1)�point.In both 
ases, as in Case 2.2.1, we do a gliding of (dx+1, . . . ,ds,a1) on dx. Let D be the new interse
tionpoint of dx and dx+1, . . . ,ds,a1. Sin
e we have done exa
tly the same moves as in Case 2.2.1, for the samereasons as before, the 
onstraints digraph is still a
y
li
 after these modi�
ations.Consider now an inner point F of [AD] and a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1that is 
ontained in AEF and where the points A,E,F are respe
tively a path�(ay, . . . , aw)�point, a path�
(aw, e1, . . . , et)�point and a fan�ay⊳� (et, . . .)�point. By using Lemma 2.12, we 
an ensure that when w < p,there are no representative points p1 of M1 and p2 of M′ exa
tly at the same position on aw , ex
ept A and
E. Then, we prolong ay after F in su
h a way that D is now an inner point of ay (See Figure 30, right). Wenow add a fa
e segment ayetdx from F to an inner point of [DE] (that is 
ontained in dx).Note that the two segments aw of S1 and S′ form now a single segment aw. Consider now M = (S, F, τ)where S = S′ ∪ S1 (up to the identi�
ation of the aws), F = F ′ ∪ F1 ∪ {ayetdx}, τ(p) = τ ′(p) (resp.
τ(p) = τ1(p)) for any p ∈ RepS′∪F ′ \ {A,E} (resp. p ∈ RepS1∪F1

\ {A,E,F}) and where τ(A), τ(D), τ(E)and τ(F) are de�ned as follows. A is now a path�(ay, . . . , ap)�point; this is possible, sin
e its in
iden
esequen
e is (ay , . . . ,aw, . . . ,ap). As in Case 2.2.1, D is now a path�(ay, dx, . . . , ds, a1)�point.If w < p, E is a fan�dx⊳� (aw, e1, . . . , et)�point; this is possible sin
e its in
iden
e sequen
e is (dx,aw, e1,
. . . , et,dx,aw). If w = p, E is a double-fan�aw⊳� (d1, . . . , dx) · dx⊳� (et, . . . , e1, aw)�point; this is possible sin
eits in
iden
e sequen
e is (aw,d1, . . . ,dx, et, . . . , e1,aw).If F is a fan�ay⊳� (et)�point in M1, then F is the 
rossing point of ay and et in M; this is possible sin
eif there was a fa
e segment in
ident to F in M1, then et separates it from ayetdx in M. Otherwise, thereis no fa
e segment in
ident to F and F remains a fan�ay⊳� (et, . . .)�point in M (as in M1); this is possiblesin
e its in
iden
e sequen
e is (ay ,ayetdx, et, . . . , ay).Sin
e V (Tdxay

) = V (Tdxaw
) ∪ V (T1), every vertex v ∈ V (Tdxay

) 
orresponds to exa
tly one segment v in
S. Note that E(Tdxay

) = E(Tdxaw
)∪E(T1)∪{dxay}∪ {dxei | i ∈ [1, t]} (See Figure 29). Note that the edges30
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Fig. 30. Case 2.2.3 (z = x and y > w + 1): when w = p (top) or w < p (bottom).
represented in F in M are the edges represented in F in M1 and that an edge uv is represented in A in Mif and only if uv is represented in A in M′ or M1. One 
an 
he
k that in both 
ases (w = p or w < p), theedges represented in D and E in M are exa
tly the edges represented in E in M′, in E in M1 and the edgesin {dxay} ∪ {dxei | i ∈ [1, t]}(See Figure 31). Note that F (Tdxay

) = F (Tdxaw
) ∪ F (T1) ∪ {ayetdx, dxawe1} ∪

{dxeiei+1 | i ∈ [1, t−1]} (See Figure 29). Note that the fa
es represented in F in M are the fa
es representedin F in M1 and that no fa
e is represented in A (resp. D) in M′,M1 or M (resp. M). One 
an 
he
k thatno fa
e is represented in E in M1 and that the fa
es represented in E in M are exa
tly the fa
es representedin E in M′, and the fa
es in {dxawe1} ∪ {dxeiei+1 | i ∈ [1, t − 1]} (See Figure 31). Sin
e we have added afa
e segment ayetdx, the edges represented in M are exa
tly the edges of Tdxay
.31
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dxFig. 31. Case 2.2.3: the graphs represented in E in M1 (top left), in E in M′ when w = p (top middle), in E in M′when w < p (top right), in D in M (bottom left), in E in M when w = p (bottom middle) and in E in M when
w < p (bottom right).We know that ConstS1∪F1

is a
y
li
. Let Const′1 be the digraph obtained from ConstS1∪F1
, where thear
 from E to aw and the ar
 from F to ay have been respe
tively repla
ed by an ar
 from aw to E and anar
 from ay to F. Sin
e E and F are free in M1, Const′1 is a
y
li
.We know that ConstS′∪F ′ is a
y
li
. Let Const′2 be the digraph obtained from ConstS′∪F ′ , where thereare two new verti
es ay and D, where the ar
s from E to di, i ∈ [x + 1, s] and from E to a1 have beenrespe
tively repla
ed by some ar
s from D to di, i ∈ [x + 1, s] and from D to a1 and where there is an ar
from dx (resp. ay) to D. We also add a new vertex I representing the end of ay and an ar
 from I to ay.Sin
e E is free in M′ and sin
e ay has only one prede
essor (I) that has no prede
essor in Const′2, D is freein Const′2 and thus, Const′2 is a
y
li
.Note that ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to ay (resp.

aw, E, A) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪F must 
ontaintwo verti
es among aw,ay,A,E. Sin
e A has no prede
essor, sin
e A is the only prede
essor of aw (resp.
ay) in Const′1 and sin
e the only prede
essor of E in Const′1 is aw , there is no 
y
le going from Const′1 to
Const′2 through any of these points and thus ConstS∪F is a
y
li
. For the same reasons as in the proof ofCase 1.1, the spe
ial points belonging to aw when w < p remain free in ConstS∪F .If w < p, we realize all the spe
ial points appearing on aw (they are on [AE]), ex
ept A (but we realize
E). Then, in both 
ases, we have 
onstru
ted a premodel M of Tdxay

that satis�es Property 2.Case 2.2.4: z = x − 1 and w > y (see Figure 32).
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Fig. 32. Case 2.2.4: Tdxay 6= Td1ap , z = x − 1 and w > y.Let us denote e1, e2, . . . , et the neighbors of dz stri
tly inside the 
y
le (dz , dx, ay, . . . , aw, dz), going �fromright to left� (see Figure 32). Sin
e z is maximal there is no edge dxaw, so t ≥ 1. Let us denote f1, . . . , fu the32



neighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw, dz), going �from right to left� (see Figure 32). Notethat f1 = et and that w being minimal, there is no edge dzay, so u ≥ 1.Sin
e w is minimal (resp. z is maximal) we have ei 6= aj (resp. fi 6= aj), for all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u)and y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the 
y
le (ay, . . . , aw, e1, . . . , et, f2, . . . , fu,

ay). By Lemma 3.2, T1 is a W-triangulation. Sin
e the W-triangulation Tdxay
has no separating 3-
y
le

(dz , aw, ei), (dz , ei, ej), (dx, fi, fj), or (dx, fi, ay), there exists no 
hord awei, eiej , fifj , or fiay in T1. Withthe fa
t that t ≥ 1 and u ≥ 1, we know that (f1, f2, . . . , fu, ay)-(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundaryof T1. Finally, sin
e T1 has less edges than Tdxay
(dxay /∈ E(T1)), Property 1 holds for T1 with respe
t to thementioned 3-boundary.We want to 
onstru
t a premodel M = (S, F, τ) of Tdxay


ontained in some 
on
ave polygon ABCD.Consider three non-
ollinear points B,C,E.If w = p (See Figure 33, top), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdzaw
satisfying Property 2that is 
ontained in BCE and where the points B,C,E are respe
tively a path�(b1, . . . , bq)�point, a path�

(c1, . . . , cr)�point and a fan-path�aw⊳� (d1, . . . , dz) · (dz, dx, . . . , ds, a1)�point. We then prolong aw after E toa new point A (sin
e E is free, it keeps the 
onstraints digraph a
y
li
).If w < p (See Figure 33, bottom), 
onsider a premodel M′ = (S′, F ′, τ ′) of Tdzaw
satisfying Prop-erty 2 that is 
ontained in a 
on
ave polygon ABCE for some point A and where the points A,B,C,Eare respe
tively a path�(aw, . . . , ap)�point, a path�(b1, . . . , bq)�point, a path�(c1, . . . , cr)�point and a path�

(aw, dz, dx, . . . , ds, a1)�point.In both 
ases, as in Cases 2.2.1 and 2.2.3, we do a gliding of (dx+1, . . . ,ds,a1) on dx. Let D be the newinterse
tion point of dx and dx+1, . . . ,ds,a1. Sin
e we have done exa
tly the same moves as in previous
ases, for the same reasons as before, the 
onstraints digraph is still a
y
li
 after these modi�
ations.If u = 1 (See Figure 33, left), let F be an inner point of [AD] and 
onsider a premodel M1 = (S1, F1, τ1)of T1 satisfying Property 1 that is 
ontained in AEF and where the points A,E,F are respe
tively a path�
(ay, . . . , aw)�point, a path�(aw, e1, . . . , et)�point and a fan�ay⊳� (f1, . . .)�point. Then, we prolong ay after Fin su
h a way that D is an inner point of ay. We now add a fa
e segment f1aydx from F to an inner pointof [DE] (that is 
ontained in dx).If u > 1 (See Figure 33, right), 
onsider a premodel M1 = (S1, F1, τ1) of T1 satisfying Property 1 that is
ontained in a 
on
ave polygon DAEF for some point F and where the points A,D,E,F are respe
tivelya path�(ay, . . . , aw)�point, a path�(f2, . . . , fu, ay), a path�(aw, e1, . . . , et)�point and the 
rossing point of
et = f1 and f2. We prolong ay after D. We now add a fa
e segment f1f2dx from F to an inner point of [DE](that is 
ontained in dx).By using Lemma 2.12, we 
an ensure that when w < p, there are no representative points p1 of M1 and
p2 of M′ exa
tly at the same position on aw, ex
ept A and E.Note that the two segments aw of S1 and S′ form now a single segment aw. If u = 1 (resp. u > 1),
onsider now M = (S, F, τ) where S = S′ ∪ S1 (up to the identi�
ation of the aws), F = F ′ ∪ F1 ∪
{ayetdx} (resp. F = F ′ ∪ F1 ∪ {f1f2dx} ) and where τ is de�ned as follows. For any p ∈ RepS′∪F ′ \ {A,E}(resp. p ∈ RepS1∪F1

\ {A,D,E,F}), τ(p) = τ ′(p) (resp. τ(p) = τ1(p)) and τ(A), τ(D), τ(E) and τ(F)are de�ned as follows. A is now a path�(ay, . . . , ap)�point; this is possible, sin
e its in
iden
e sequen
e is
(ay , . . . ,aw, . . . ,ap). D is now a path-fan�(dx, . . . , ds, a1) · dx⊳� (ay, fu, . . . , f2)�point; this is possible sin
e itsin
iden
e sequen
e is (dx, . . . ,ds,a1,ay, fu, . . . , f2,dx,ay).If w < p, E is a fan�dz⊳� (aw, e1, . . . , et, dx)�point; this is possible sin
e its in
iden
e sequen
e is (dz ,aw, e1,
. . . , et,dx,dz ,aw). If w = p, E is a double-fan�aw⊳� (d1, . . . , dz) ·dz⊳� (dx, et, . . . , e1, aw)�point; this is possiblesin
e its in
iden
e sequen
e is (aw ,d1, . . . ,dz ,dx, et, . . . , e1,aw).If F is the 
rossing of f1 and f2 in M1, then F remains the 
rossing of f1 and f2 in M; this is possible,sin
e if there was a fa
e segment in
ident to F in M1, then either f1 or f2 separates it from f1f2dx in M.If F is a fan�ay⊳� (f1)�point in M1, then F is the 
rossing point of ay and f1 in M; this is possible sin
e ifthere was a fa
e segment in
ident to F in M1, then f1 separates it from ayetdx in M. Otherwise, there isno fa
e segment in
ident to F and F is a fan�ay⊳� (f1, . . .)�point in M1; it remains a fan�ay⊳� (f1, . . .) in M;this is possible sin
e its in
iden
e sequen
e is (ay,ayf1dx, f1, . . . ,ay).Sin
e V (Tdxay

) = V (Tdzaw
) ∪ V (T1), every vertex v ∈ V (Tdxay

) 
orresponds to exa
tly one segment v in
S. Note that E(Tdxay

) = E(Tdzaw
) ∪ E(T1) ∪ {dxay, etdx} ∪ {dxfi | i ∈ [2, u]} ∪ {dzfi | i ∈ [1, t]} (SeeFigure 32). Note that the edges represented in F in M are the edges represented in F in M1 and that anedge uv is represented in A in M if and only if uv is represented in A in M′ or M1. One 
an 
he
k that33
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Fig. 33. Case 2.2.4: M = (S, F, φ).in any 
ase, the edges represented in D and E in M are exa
tly the edges represented in E in M′, in D in
M1, in E in M1 and the edges in {dxay, dxet} ∪ {dxfi | i ∈ [2, u]} ∪ {dzfi | i ∈ [1, t]} (See Figure 34 when
w = p and Figure 35 when w < p).Note that F (Tdxay

) = F (Tdxaw
)∪F (T1)∪{awdze1, dxdzet, dxayfu}∪{dzeiei+1 | i ∈ [1, t−1]}∪{dxfifi+1 |

i ∈ [1, u − 1]} (See Figure 32). Note that the fa
es represented in F in M are the fa
es represented in F in
M1 and that no fa
e is represented in A in M′,M1 or M. One 
an 
he
k that no fa
e is represented in Dor E in M1 and that the fa
es represented in D and E in M are exa
tly the fa
es represented in E in M′,and the missing fa
es ex
ept ayf1dx if u = 1 and f1f2dx if u > 1 (See Figure 34 when w = p and Figure 34when w < p). Sin
e we have added a fa
e segment ayf1dx if u = 1 and a fa
e segment f1f2dx, the edgesrepresented in M are exa
tly the edges of Tdxay

.We know that ConstS1∪F1
is a
y
li
. Let Const′1 be the digraph obtained from ConstS1∪F1

, where thear
 from E to aw has been repla
ed by an ar
 from aw to E and where the ar
 from F to ay (resp. from D34
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Fig. 34. Case 2.2.4 when w = p: the graphs represented in D in M1 (top left), in E in M1 (top middle), in E in M′(top right), in D in M (bottom left) and in E in M (bottom right).
aw e1 etay fu f2 dx ds a1aw dz
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aw e1 et dx
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ay fu f2Fig. 35. Case 2.2.4 when w < p: the graphs represented in D in M1 (top left), in E in M1 (top middle), in E in M′(top right), in D in M (bottom left) and in E in M (bottom right).to ay) has been repla
ed by an ar
 from ay to F (resp. ay to D) when u = 1 (resp. u > 1). Sin
e E and F(resp. D) are free in M1, Const′1 is a
y
li
.We know that ConstS′∪F ′ is a
y
li
. Let Const′2 be the digraph obtained from ConstS′∪F ′ , where thereare two new verti
es ay and D, where the ar
s from E to di, i ∈ [x + 1, s] and from E to a1 have beenrespe
tively repla
ed by some ar
s from D to di, i ∈ [x + 1, s] and from D to a1 and where there is an ar
from dx (resp. ay) to D. We also add a new vertex I representing the end of ay and an ar
 from I to ay.Sin
e E is free in M′ and sin
e ay has no prede
essor in Const′2, D is free in Const′2 and thus, Const′2 isa
y
li
.Note that ConstS∪F is the union of Const′1 and Const′2 where the two verti
es 
orresponding to ay (resp.
aw, E, A, D) have been identi�ed. Sin
e Const′1 and Const′2 are a
y
li
, any 
y
le of ConstS∪F must 
ontaintwo verti
es among aw ,ay,A,D,E. Sin
e A has no prede
essor in Const′1, sin
e A is the only prede
essorof aw (resp. ay) in Const′1 and sin
e the only prede
essor of E (resp. D) in Const′1 is aw (resp. ay), thereis no 
y
le going from Const′1 to Const′2 through any of these points and thus ConstS∪F is a
y
li
. For thesame reasons as in the proof of Case 1.1, the spe
ial points belonging to aw if w < p remain free in M.If w < p, we realize all the spe
ial points appearing on aw (they are on [AE]), ex
ept A (but we realize
E). Then, we have to partially realize D in order to obtain a path�(ay, dx, . . . , ds, a1)�point. If u = 1, we aredone. Otherwise, by using Lemma 2.13, we do a traversing of dx by (fu, . . . , f2) along ay, we add the fa
esegments 
orresponding to dxfuay and dxfifi+1 for i ∈ [2, u−1], as explained in the proof of Proposition 2.14and then we realize the path�(ay, fu, . . . , f2)�point.On
e these realizations have been done, we have 
onstru
ted a premodel M of Tdxay

that satis�esProperty 2.This 
ompletes the study of Case 2 and ends the proof of Lemma 3.9. ⊓⊔4 Proof of Theorem 2.5We prove that every triangulation T has a full model (S, F ) by indu
tion on the number k of separating3-
y
les in T . If k = 0 the triangulation T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a), where a, b35



and c are the verti
es on its outer-boundary. Then Property 1 provides us a premodel M = (S, F, τ) of Tand by Corollary 2.18 we obtain a full model (S′, F ′) of T .If k ≥ 1, let C = (a, b, c) be a 3-
y
le su
h that the triangulation T ′ indu
ed by the verti
es on and inside
C does not 
ontain any separating 3-
y
le. Let T1 be the triangulation obtained by removing all the verti
esthat lie stri
tly inside the 
y
le C. Let T2 be the subgraph of T indu
ed by all the verti
es of T that liestri
tly inside the 
y
le C. By de�nition of C, T2 is either (A) a single vertex v or (B) a W-triangulation(see Figure 36). In T1, the 
y
le C delimits a fa
e and is no more a separating 3-
y
le. Sin
e T1 has one

a

b

c

a

b

c

Fig. 36. The 
ases (A) and (B).separating 3-
y
le less than T , the indu
tion hypothesis implies that T1 admits a full model M = (S, F ).Sin
e abc is an inner fa
e of T1 there is a 
orresponding fa
e segment, say acb, in F and let respe
tively
B and C be its �at end and its 
ross end. Note that there might be an other fa
e segment in
ident to C.If it exists we denote it acd sin
e it would 
orrespond to a fa
e acd adja
ent to the edge ac in T1. Sin
e Fis non-interfering we know that (a) or (c) separate acb and acd in distin
t half-planes. Here we assume,without loss of generality that the line (a) separates them. Now let ǫ > 0 be a real su
h that for everyrepresentative point p ∈ RepS∪F \ {B,C} we have dist(p,acb) > ǫ, and let the region Rǫ be the set ofpoints at distan
e at most ǫ from acb. The de�nition of ǫ implies that (1) the only segments interse
ting
Rǫ are a, b, c, acb and eventually acd if it exists; and that (2) the endpoints of a, b and c (resp. the �atend of acd) are not in Rǫ. Sin
e there is no inner fa
e abc in T we remove acb from F and we add somesegments and fa
e segments in Rǫ to obtain a full model of the whole T .
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Fig. 37. Case (A): Modi�
ations inside Rǫ.Case (A): T2 is a single vertex v. Sin
e acb and acd (if it exists) are non-interfering, it is easy to draw inthe region Rǫ a segment v that only interse
t a, b, and c; and three fa
e segments vba, vcb, and acv su
hthat the set {vba,vcb,acv,acd} is non-interfering (see Figure 37). Now it is 
lear that from the model Mof T1 we have added a segment for v, three 
rossings for va, vb and vc, removed the fa
e segment of acb, andadded the fa
e segments of vba, acv and vcb; thus we have a full model of T .36
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Fig. 38. Case (B): Modi�
ations inside Rǫ.Case (B): T2 is a W-triangulation. Let a1, a2, . . . , ap be the neighbors of a inside the 
y
le (a, b, c) goingfrom c to b ex
luded. Similarly let b1, b2, . . . , bq (resp. c1, c2, . . . , cr) be the neighbors of b (resp. c) inside the
y
le (a, b, c) going from a to c (resp. from b to a) ex
luded. It is 
lear that a1 = cr, b1 = ap, and c1 = bq.Furthermore, sin
e there is no separating 3-
y
le inside C, we have that:� p, q, and r ≥ 2.� (a1, a2, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a 
y
le, thus T2 is a W-triangulation.� T2 has no 
hord axay, bxby, or cxcy with y > x + 1.Thus T2 is a W-triangulation 3-bounded by (a1, a2, . . . , ap)-(b1, b2, . . . , bq)-(c1, c2, . . . , cr). Here we 
hoosethis parti
ular 3-boundary be
ause of the assumption that (a) separates acb and acd (if it exists). Wenow apply Property 1 with respe
t to this 3-boundary and this implies that if p = 2 (resp. p > 2) then
T2 has a premodel M′ = (S′, F ′, τ ′) inside the triangle BCD (resp. the polygon ABCD), where A is apoint of a ∩Rǫ (See Figure 38) and D is an internal point of [A,B] (resp. a point stri
tly inside ABC). If
p = 2 we prolong b1 = [BD] a
ross D until rea
hing A and note that sin
e D is free, then the 
onstraintsdigraph of M′ remains a
y
li
 (Cf. Lemma 2.9). Note also that a

ording to the de�nition of Rǫ, the fullmodel M and the premodel M′ only interse
t at A, B and C. Now we are going to merge M and M′in order to 
onstru
t a premodel M∗ = (S∗, F ∗, τ∗) of the whole T . To do this, let S∗ = S ∪ S′ and
F ∗ = (F \ acb) ∪ F ′ ∪ {a1a2a,ab1b,bc1c}; where a1a2a goes from D to a point of [A,C], ab1b goesfrom A to a point of b ∩ Rǫ, and bc1c goes from B to a point of c ∩ Rǫ (See Figure 38). Observe that
F ∗ is non-interfering, in parti
ular we see that a1a2a does not interfere with another fa
e segment f at D,sin
e f would be inside ABCD. We now de�ne τ∗ as follows. Let A be a fan�a⊳� (ap, . . . , a2)�point, let Bbe a fan�b⊳� (bq, . . . , b1)�point, and let C be a fan�c⊳� (a, cr, . . . , c1)�point. If p > 2 the point D remains the
rossing point of a1 and a2, even with its new in
ident fa
e segment. If p = 2 the point D was either afan�a2⊳� (d1, . . . , ds, a1)�point (for some verti
es d1, . . . , ds) or a fan�a2⊳� (a1)�point. In the �rst 
ase let Dbe a fan�a2⊳� (a1, ds, . . . , d1)�point (possible sin
e it has no in
ident fa
e segment in M′). In the se
ond 
aselet D be the 
rossing point of a1 and a2 with one or two in
ident fa
e segments. Note that in both 
asethe graph 
orresponding to D remains un
hanged. For the other representative points of M∗ let their typeremain as in M or M′.We now verify that M∗ is a premodel of T .- It is 
lear that S∗∪F ∗ is unambiguous and we show here that ConstS∗∪F∗ is a
y
li
. Indeed this digrapharises from the union of ConstS∪F and ConstS′∪F ′ (where S′ has a segment a2 prolonged until A when

p = 2) by adding the verti
es 
orresponding to the new fa
e segments and their �at end point, and addingthe ar
s in
ident to these verti
es. But sin
e the fa
e segments have out-degree zero in the 
onstraintsdigraphs, there is no 
y
le in ConstS∗∪F∗ passing through a fa
e segment. Thus a 
y
le would be in theunion of ConstS∪F and ConstS′∪F ′ . These two digraph being a
y
li
, this 
y
le should su

essively passthrough a segment of ConstS′∪F ′ , through one of the points A, B and C, and through a segment of
ConstS∪F . But this is impossible sin
e in ConstS′∪F ′ the only points that interse
t M, A, B and C,have in-degree zero. 37



- Sin
e V (T ) is the disjoint union of V (T1) and V (T2) we have that a vertex v ∈ V (T ) if and only if
v ∈ S∗.- Note that E(T ) = E(T1)∪E(T2)∪ {aa1 = acr} ∪ {aa2, . . . , aap}∪ {bb1, . . . , bbq}∪ {cc1, . . . , ccr}, that Awas not a representative point in M (resp. was either an end point or a path�(a2, . . . , ap)�point in M′)and that now it is a fan�a⊳� (ap, . . . , a2)�point, that B was a �at fa
e segment end in M (resp. was a path�
(b1, . . . , bq)�point in M′) and that now it is a fan�b⊳� (bq, . . . , b1)�point that C was the 
rossing point of aand c in M (resp. was a path�(c1, . . . , cr)�point in M′) and that now it is a fan�c⊳� (a, cr, . . . , c1)�point.Sin
e the other representative points remain with the same 
orresponding graphs, one 
an easily 
he
k(see Figure 39) that E(T ) is exa
tly the set of edges indu
es by M∗.- Note that F (T ) = (F (T1) \ acb) ∪ F (T2) ∪ {a1a2a, ab1b, bc1c} ∪ {aaiai+1 | 2 ≤ i < p} ∪ {bbibi+1 | 1 ≤
i < p} ∪ {ccici+1 | 2 ≤ i < p} ∪ {accr}. A

ording to the fa
e segments added in F ∗ (the ones in
F ∗ \ (F ∪F ′)), the fa
es indu
ed by A, B and C, and sin
e the other representative points remain withthe same 
orresponding graphs, one 
an easily 
he
k (see Figure 39) that F (T ) is exa
tly the set of fa
esindu
ed by M∗.
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Fig. 39. The graphs 
orresponding to A, B and C in M (left), M′ (
enter) and M∗ (right).Finally sin
e T has a premodel M∗, Corollary 2.18 implies that it has a full model, proving Theorem 2.5.
⊓⊔5 Con
lusionWest 
onje
tures that every planar graph is the interse
tion graph of segments using only four dire
tions[17℄. Furthermore if the segment set is unambiguous, parallel segments indu
e a stable set, and the fourdire
tions would 
orrespond to a four 
oloring of the planar graph. This 
onje
ture is true for some familiesof planar graphs. Indeed, every bipartite planar graph has a representation with two dire
tions [9,3,5℄ andevery triangle free planar graph (that is 3-
olorable by Grötzs
h's theorem) has a representation with threedire
tions [1℄.De Fraysseix and Ossona de Mendez proposed [4℄ the following generalization of S
heinerman's Conje
-ture: �Every planar linear hypergraph is the interse
tion hypergraph of segments in the plane.�, where a linearhypergraphs is an hypergraph su
h that two hyperedges interse
t in at most one vertex. This generalizationdoes not holds sin
e the se
ond author found a 
ounterexample [8℄.In our proof we need the 
onstraints digraph to be a
y
li
 in order to perform lo
al perturbations on thesegment set, like gliding or traversing. We wonder whether this 
ondition is ne
essary: is it always possibleto do lo
al perturbations in any �exible segment set R (with possibly 
y
les in ConstR)? The �exibility of

R is required sin
e Pappus's 
onstru
tion gives us a segment set with only one point that is internal in 3segments, and su
h that some glidings are impossible.38
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