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Abstract

We prove that every planar graph is the intersection graph of strings in the plane,
such that any two strings intersect at most once.

1 Introduction

A string o is a curve of the plane homeomorphic to a segment. A string ¢ has two ends, the
points of o that are not ends of ¢ are internal points of 0. Two strings oy and o9 intersect if
they have a common point p € 01 N o9 and if going around p we successively meet o1, 03, 071,
and oy. This means that two tangent strings do not intersect. Given a region 7 of the plane
P, let T be the region defined by P\ 7.

In this paper, we consider intersection models for planar graphs. A string representation
of a graph G = (V, E) maps every vertex v € V to a string o, in the plane such that any two
vertices are adjacent if and only if their corresponding strings intersect at least once. A graph
belongs to the graph class STRING if and only if it admits a string representation. Similarly,
a segment representation of a graph G is a string representation of G in which the strings
are segments. A graph belongs to the graph class SEG if and only if it admits a segment
representation.

These notions were introduced in 1976 by Ehrlich et al. [4], who proved the following:

Theorem 1 [}/ Planar graphs are in STRING.

In his thesis, Scheinerman [10] conjectures a stronger result:
Conjecture 1 [10] Planar graphs are in SEG.

Kratochvil and Matousek [8| obtained many interesting results about SEG and related
graph classes. Independently, Hartman et al. [1] and de Fraysseix et al. [5] proved Conjecture
1 for bipartite planar graphs. Castro et al. [2| proved Conjecture 1 for triangle-free planar
graphs. In [7]|, Grotzsch proved that triangle-free planar graphs are 3-colorable. Observe that,
since parallel segments never intersect, a set of parallel segments in a segment representation
of a graph induces a stable set of vertices. The construction in [1, 5] (resp. [2]) has the
nice property that there are only 2 (resp. 3) possible directions for the segments. So the



construction induces a 2-coloring (resp. 3-coloring) of G. In [11], West proposed a stronger
version of Conjecture 1 in which only 4 directions are allowed.

Notice that two segments intersect at at most one point, whereas in the construction
of Theorem 1, strings may intersect twice. We make another step towards Conjecture 1 by
proving that every planar graph admits a 1-string representation, that is a string representation
such that any two strings intersect at most once. A graph belongs to the graph class 1-STRING
if and only if it admits a 1-string representation.

Theorem 2 Planar graphs are in 1-STRING.

This answers an open problem of Ossona de Mendez and de Fraysseix [9], which was also
mentionned by Kratochvil.

2 Preliminaries

2.1 Restriction to triangulations

Lemma 1 Ewvery planar graph is the induced subgraph of some planar triangulation.

Proof. Let G be a planar graph embedded in the plane, i.e. a plane graph. The graph
h(G) is obtained from G by adding in every face f of G' a new vertex vy adjacent to every
vertex incident to f in G. Notice that h(G) is also a plane graph and that G is an induced
subgraph of h(G). Moreover h(G) is connected, h(h(G)) is 2-connected, and h(h(h(G))) is a
triangulation. O

Since 1-STRING is a graph class defined by an intersection model, it is closed under taking
induced subgraphs. By Lemma 1, it is thus sufficient to prove Theorem 2 for triangulations.

2.2 Definitions

In an embedded planar graph G, the unbounded face of G is called the outer-face and every
other face of G is an inner-face of G. Given an embedded planar graph G, an outer-vertex
(resp. outer-edge) of G is a vertex (resp. edge) of G incident to the outer face. The other
vertices (resp. edges) of G are called inner-vertices (resp. inner-edges) of G. The set of
outer-vertices (resp. outer-edges, inner-vertices, and inner-edges) of G is denoted by V,(G)
(resp. Eo(G), Vi(G), and E;(G)). A near-triangulation is a planar graph in which all the
inner-faces are triangles. An edge uv is a chord of some near-triangulation 7" if u and v are
outer-vertices of 7" and uv is an inner-edge.

Definition 1 Let G = (V, E) be a graph with a 1-string representation Y. Given a triplet
(a,b,c) of vertices of G, an (a,b,c)-region p is a region of the plane homeomorphic to the
disk and such that (see Figure 1):

e for any vertex v # a, b, and ¢ we have pNo, =0
e pNo,No,=0, pNoyNao.=0, and pNo.Nao, =0,
e pNoy and pNo. are connected,

o pNo, has two components,



e [pNaoy| =3, [pNop| =2, and [pNo.| =2,

e in the boundary of p we successively intersect oq, 04, Op, Op, Oc, Tq, and Oc.

Figure 1: An (a,b,c)-region pgpe.

Note that according to this definition, in an (a, b, ¢)-region p, one end of the string o, is
in p. When the vertices a, b, and ¢ are not mentionned, we call these regions face-regions.
Notice that by definition, an (a, b, ¢)-region, an (a,c,b)-region, a (b,a,c)-region, a (b,c,a)-
region, a (c,a,b)-region, and a (¢, b, a)-region are pairwise distinct. An region 7 of the plane
cannot be an (a, b, ¢)-region and a (¢, b, a)-region for example. A region p of the plane is an
{a, b, c}-region if it is an (a,b,c)-region, an (a,c,b)-region, a (b, a,c)-region, a (b, ¢, a)-region,
a (c,a,b)-region, or a (¢, b, a)-region.

Definition 2 A strong 1-string representation of a near-triangulation T is a pair (X, R) such
that:

(1) ¥ is a 1-string representation of T,

(2) R is a set of disjoint face-regions such that for every inner-face abc of T, R contains an
{a, b, c}-region.

Definition 3 A partial strong 1-string representation of a near-triangulation T is a triplet
(3, R, X) such that

(1) X is a 1-string representation of T\ X where X C E,(T) is a set of outer-edges,

(2) R is a set of face-regions such that for every inner-face abc of T, R contains an {a,b,c}-
region.

Note that in a partial strong 1-string representation (X, R, X) of a near-triangulation T,
some outer-edges of T do not appear as intersections of two strings of 3, but for each inner-face
of T', there is a corresponding face-region in R.

Definition 4 A separating 3-cycle C of an embedded near-triangulation T is a cycle of length
3 such that some vertices of T lie inside C' whereas other vertices are outside.

It is well known that a triangulation is 4-connected if and only if it contains no separating
3-cycle.

Definition 5 A W-triangulation is a 2-connected near-triangulation containing no separating
3-cycle.



In particular, any 4-connected triangulation is a W-triangulation. Notice that a W-
triangulation has no cut vertex, so its outer-edges induce a cycle. The following lemma gives
a sufficient condition for a subgraph of a W-triangulation 7' to be a W-triangulation.

Lemma 2 Let T be a W-triangulation and consider a cycle C of T. The subgraph defined by
C' and the edges inside C' (according to the embedding of T') is a W-triangulation.

Proof. Consider the near-triangulation 7" induced by some cycle C' of T and the edges
inside C. By definition, T has no separating 3-cycle and consequently 7" does not have any
separating 3-cycle. It is then sufficient to show that 7" is 2-connected, i.e. T does not have
any cut vertex. Consider a vertex v of T', all the faces incident to v are triangles, except at
most one (the outer face). Consequently, there exists a path that contains all the neighbors
of v, and so T"\ v is connected. O

Definition 6 A W-triangulation T is 3-bounded if the outer-boundary of T is the union of
three paths (ai,...,ap), (b1,...,by), and (c1,...,¢c.) that satisfy the following conditions (see
Figure 2):

® a1 = ¢, by = ap, and c1 = by.
e the paths are non-trivial, 1.e. p > 2, ¢ > 2, and r > 2.

o there exists no chord a;aj (resp. bibj, cic;), i.e. an edge a;a; (resp. bbj, cic;) with
I<i+l<j<p(resp. 1<i+1<j<q l<i+l<j<r).

This 3-boundary of T will be denoted by (a1, ..., ap)-(b1,...,bg)-(c1,...,¢r).

Clzbq

Figure 2: 3-boundary of T'.

In the following, we will use the order on the three paths and their directions, i.e. (a1, ...,ap)-
(b1,...,bg)-(c1,...,cp) will be different from (b1, ..., by)-(c1,...,¢)-(a1,...,ap) and (ap, ..., a1)-
(¢ry.oyc1)-(bg, ..., b1). The following property describes the shape of a partial strong 1-string
representation of a 3-bounded W-triangulation.

Property 1 A W-triangulation T, 3-bounded by (ai,...,a,)-(b1,...,by)-(c1,...,¢c), admits
a partial strong 1-string representation (3, R, X) contained in a region T (XU R C 1) that
satisfies the following properties:

(a) X = E,(G)\ {a1as},

(b) T is a region of the plane homeomorphic to the disk,



(¢) for each inner-vertex v, the intersection of o, with the boundary of T is empty,

(d) for each outer-vertex v, the intersection of o, with the boundary of T is a set containing
at most two specific points, the ends of o,

(e) in the boundary of T we successively meet the ends of 0oy, Tazs .., 0y, by - - - 1 Obgs Ocyy -3 Oy
Notice that for condition (e), we do not precise whether the boundary is traversed clockwise

or anticlockwise. This is not necessary since by an axial symmetry of (X, R, X) we obtain

(X', R, X') which has the same properties as (X, R, X) with respect to the opposite direction.

Note that since a, = b1, by = c1, and ¢, = a1, both ends of 03, and o, lie on the boundary

of 7, but it is not the case for o,,.

Figure 3: Property 1

Due to its length, the proof of Property 1 is in Appendix A.

3 Proof in the general case
Theorem 3 Fach embedded triangulation T admits a strong 1-string representation (X, R).

Proof. We prove this result by induction on the number of separating 3-cycles. Notice that
any triangulation 7T is 3-connected, and that if 7" has no separating 3-cycle, then T is 4-
connected and is a W-triangulation. Consequently, if T"is a 4-connected triangulation whose
outer-vertices are a, b, and ¢, then T' is a 3-bounded W-triangulation and (a, b)-(b, ¢)-(c, a) is a
3-boundary of T'. By Property 1, T admits a partial strong 1-string representation (3, R, X),
with X = {be, ca}, that is contained in a region 7 (XUR C 7). Furthermore, in the boundary of
T we successively meet the ends of oy, 0y, 0¢, 0¢, 4. To obtain a strong 1-string representation
of T, it is sufficient (since X = {bc,ca}) to extend o4, 03, and o, outside of 7 in order to
obtain an intersection with o, and o. and with o, and o, as depicted on Figure 4.

Suppose now that T is a triangulation that contains at least one separating 3-cycle. Con-
sider a separating 3-cycle (a,b,c) such that there is no separating 3-cycle in the subgraph
T’ that lies inside the cycle (a,b,c) (according to the embedding of T). Note that 7" is a
4-connected triangulation.

Let T7 be the triangulation obtained by removing all the vertices that lie inside the cycle
(a,b,c). Let T be the subgraph of T" induced by all the vertices of T' that lie inside the cycle
(a,b,c). Note that the vertices a,b, and ¢ belong to T} but not to 7. In T, the cycle (a, b, c)
is a face of the triangulation and is no more a separating 3-cycle. By induction hypothesis, T}
admits a strong 1-string representation (X1, R1). In the strong 1-string representation (X1, Ry)
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Figure 4: Strong 1-string-representation of T' from (X, R, X) C 7.

of T, there exists a face-region pgp. corresponding to the face abc. W.l.o.g., say that pgp. is
an (a, b, c)-region, as depicted on Figure 5.

(X1, R1)

Figure 5: In the strong 1-string representation (31, Ry) of 71, the (a, b, ¢)-region pgpe.

Since T” is a triangulation, for each vertex v of T”, there exists a cycle (vy,...,v,) in T”
whose vertices are exactly the neighbors of v. Suppose that the vertex a (resp. b and c)
has exactly one neighbor v that lies inside (a,b,c). Then there exists a cycle (b,v,c) (resp.
(a,v,¢) and (a,v,b)) in T" and consequently v is a neighbor of a, b, and ¢ in T’. Suppose
that there exists another vertex w in T”, then w lies either inside the cycle (a,v,b), inside

(a,v,c), or inside (b, v, c) and then one of this cycle is a separating 3-cycle. This is impossible

Y

by definition of the cycle (a, b, c). So we can distinguish two cases (see Figure 6), (A) the case

where the vertices a, b, and ¢ have a common neighbor inside (a, b, ¢) and where T" = K, and
(B) the case where each of the vertices a, b, and ¢ have at least two neighbors inside (a, b, ¢).

Case (A): The vertices a, b, and ¢ have a common neighbor inside (a,b,c) and
T' = K4. To obtain a strong 1-string representation (X, R) of T, we need to define a string
o, that corresponds to v. Since E(T)\ E(T1) = {va, vb,vc} this string o, has to intersect the
strings o4, 0p, 0. that corresponds respectively to the vertices a,b,c. Moreover, we also need
to define three disjoint face-regions pucy, Pubes Pvap that correspond respectively to the faces
acv,vbc,vab. In our construction, this string o, and these three face-regions pucy, Pobe, Pvab
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Figure 6: The cases (A) and (B).

are drawn inside the region p,p.. This construction appears on Figure 7.

Since (X1, R;) is a strong 1-string representation of T7 and since o4, Pacy, Pubes Poab ATE
drawn inside pgpe, (E U {Uv}v R\ {pabc} U {pacva Pubes pvab} is a strong 1-string representation
of T.

Figure 7: Case (A): Modifications inside pgpe.

Case (B): Each of the vertices a, b, and ¢ have at least two neighbors inside (a, b, ¢).
Suppose now that a (resp. b and ¢) has at least two neighbors in 7" that lie inside the cycle
(a,b,c).

There exists a cycle (¢, a1, ..., ap,b) (resp. (a,by,...,bg,c)and (b,c1,...,¢r,a)) inT" whose
vertices are exactly the neighbors of a (resp. b and ¢). We already know that p > 1,¢ > 1,7 > 1
and that a, = b1, b; = ¢1, and ¢, = a;. Moreover, since b; and c (resp. ¢; and a, and a; and
b) are the only two common neighbors of a and b (resp. b and ¢, and a and ¢) in T” (else there
would be a separating 3-cycle) then (a1,...,ap, =0b1,...,bg =c1,...,¢ = a1) is a cycle. This
implies from Lemma 2 that T5 is a W-triangulation.

Suppose that there exists an edge a;a; (resp. b;bj, cicj) with 1 < i+ 1 < j < p (resp.
l<i+1<j<gq 1<i+1<j<r). Then, the cycle (a,a;,a;) (resp. (b,b;,b;), (¢, ¢ci,cj))
would be a separating 3-cycle of T'. Consequently, T5 is a 3-bounded W-triangulation and
since the face region pgp. in (X1, Ry) is an (a, b, ¢)-region (not an (b, a,c) or an (¢, a, b)-region),
let us consider the 3-boundary (a1, ..., ap)-(b1,...,bq)-(c1,...,¢) of To. With respect to this
3-boundary, T, has a partial strong 1-string representation (X, R, X3), with Xy = E,\{aja2}
(c.f. Property 1). Let 75 be the region of the plane homeomorphic to the disk containing this
representation.

Let o, 0‘;, ol be the strings of X1 corresponding respectively to the vertices a, b, and ¢ in
the strong 1-string representation of the triangulation 77. By symmetry, one can suppose that

in the boundary of pgp., one can find anticlockwise O‘;, 0‘;, Ug, Ug, Jg, O'é, Jg.



Let 02 ,...,02 = 031,02 70'2T = 021 be the strings corresponding respectively to the

a2 ap c1 c
vertices ag,...,ap = b1,...by = c1,...¢, = ap in the partial strong 1-string representation of
T5. Again, by symmetry, one can suppose that in the boundary of 75 one can find anticlockwise
the ends of 022, . ,agp, 021, ... ,qu, afl, ... ,O’?T. W.l.o.g., one can suppose that one can insert

the region 75 in the center of the face-region pg. (see Figure 8).
To obtain a strong 1-string representation (X, R) of T, we need to extend the strings

022, ... ,ng, U,?l, . ,02 ,021, ... ,O’ZT to obtain intersections that correspond to the edges in the

q
set E(T)\(E(Th)U(E(T2)\X2)) = {aa; | i € [1,p]}U{bb; | i € [1,q]}U{cc; | i € [1,7]}U{a;ait1 |
i€ [2,p— 1]} U{bibis1|i€[l,q— 1]} U{ciciy1 | i € [1,r —1]}. Let us denote 0q,,...,0q, =
Oby,0cpy---,0c, = 0q, the extensions of the strings 022, e ,agp = Ugl,azl, e ,O’?T = 021. We
also need to define face regions for the faces in the set {abbi,acay,beci} U {aaiai11 | i €
[1,p — 1]} U{bbibis1 | i € [1,q — 1]} U{ccicivr | 1 € [1,7 — 1]}
The construction of (X, R) appears on Figure 8. Let ¥ = $1U%s\ {02 ... ,o*gp, 052, . ,ng,

az?

02, ..., 02 YU{Ouys-- 100y, 00y, ObysOcys -, 0c, } and R = Ry \ {pave} U R2 U {pacay s Peybes
pblab7pa2a1a} U {paiJrlaai ‘ IS [2,]? - 1]} U {pbi+1bbi ‘ S [17q - 1]} U {pci+1CCi ‘ i€ [17T - 1]}

Since (X1, Ry) is a strong 1-string representation of 7} and (X9, R, X») is a partial strong
1-string representation of Th, it is clear that (X, R) is a strong 1-string representation of 7T

Pabe

Figure 8: Case (B): Modifications inside pgpe-

Consequently, every triangulation admits a strong 1-string representation, which proves
Theorem 3 and then Theorem 2. O

4 Conclusion

One can wonder whether the method we use in this paper that is based on Whitney’s de-
composition can be used to prove that any planar graph admits a segment representation.
This would need strong conditions on the way (a,b, c)-region are represented to use the same



inductive scheme.

Another interesting question is whether this result holds for other surfaces. For exemple,

does any graph embedded in an oriented surface S, have a 1-string representation in S, ?
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Proof of Property 1.

Before proving Property 1, we give some definitions and we present Property 2. Consider
a 3-bounded W-triangulation T # K3 whose boundary is (ai,...,ap)-(b1,...,by)-(c1,...,¢y)
such that T" does not contain any chord a;b; or a;c;.

7>

Let D C V;(T') be the set of inner-vertices of T" that are adjacent to some vertex a; with
1.



Since T' has at least 4 vertices, no separating 3-cycle, and no chord a;a;, a;bj, or a;c;j,
then a; and ay (resp. by and by) have exactly one common neighbor in V(T) \ {¢1} (resp.
V(T) \ {a1}) that will be denoted a (resp. di).

Since there is no chord a;a;, a;b;, or a;cj, for each vertex a; with ¢ € [2,p — 1] (resp. ap),
all the neighbors of a; (resp. a,) except a;—1 and a;;1 (resp. ap—1 and by) are in D. Since for
each i € [2,p], there is a path between the neighbors of a;, and since the vertices a; and a;11
have a common neighbor in D, then the set D induces a connected graph. Since a is in D,
the set D U {a;} also induces a connected graph.

The adjacent path of T' with respsect to the 3-boundary (a1, ...,a,)-(b1,...,bg)-(c1,...,¢p)
is the shortest path linking dy and a; in T[D U {a1}] (the graph induced by D U {a1}). This
path will be denoted (dy,ds, ..., ds,a1).

Observation 1 There exists neither an edge d;d; with 2 < i+ 1 < j < s, nor an edge a1d;
with 1 <14 < s. Otherwise (dyi,da,...ds) is not the shortest path between di and a;.

Clzbq Clzbq

b

T Tiyas

Figure 9: the adjacent path of 7" and the graph T}, .

For each edge d,a, € E(T) with x € [1,s] and y € [2,p], we define the graph Tg,,,. Since
D CVi(T), C = (a1,ds,...,dg,ay,...,ap,b2,...,bg,c2,...,¢;) is a cycle. The graph Ty, 4, is
the graph lying inside the cycle C' (see Figure 9).

From Lemma 2, the graph Ty, 4, is a W-triangulation.

Property 2 Consider a 3-bounded W-triangulation T' with a 3-boundary (a1, ..., ap)-(b1,...,bg)-
(c1,...,¢p) that does not have any chord a;bj or a;c; and with an adjacent path (di,ds, ..., ds, a1).

For each edge dya, € E(T), the graph Td,a, admits a partial strong 1-string representation
(3, R, X) contained in a region 7 (XU R C 7) that satisfies the following properties:

(a) X = Eo(G) \ {dzay},
(b) T is a region of the plane homeomorphic to the disk,
(¢) for each inner-vertex v, the intersection of o, with the boundary of T is empty,

(d) for each outer-vertex v different from d, and a,, the intersection of o, with the boundary
of T is a set containing at most two specific points, the ends of oy,
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(e) the intersection of d, with the boundary of T is a set containing exactly two internal points
of o4,. Furthermore, o4, NT is connected.

the intersection of a, with the boundary of T is a set containing exactly two internal points
Y Y g Y
of 0a, and at least one end of 0,4, (two when a, = a,). Furthermore, o4, NT is connected.

(g) in the boundary of T we successively meet the ends of 04, ..., 0a,,0p,, - - 3 0bgs Ocys -3 Ocps
Odys- -3 0dy,1, and then we successively meet internal points of 0q4,,04,,04,, and o4,

The last condition implies that o4, and o, intersect inside 7.

Figure 10: Property 2.

We now prove Properties 1 and 2.
Theorem 4 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Ty,a, ).

This theorem implies Property 1 which is used in the proof of Theorem 2. Although Property
2 is not used in the proof of Theorem 2, we need it to prove Property 1. Indeed, we prove
these two properties by doing a “crossed” induction.

Proof. The proof of Theorem 4 uses a decomposition of triangulations defined by Whitney
in |12] and recently used by the second author in [6]. We prove Theorem 4 by induction on
the number of edges of T" or Ty,,,. For the initial step we prove the following lemma.

Lemma 3 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Ty,q,) with
B(T)| <3 (resp. |E(Th,a,)| <3)

Proof. There is only one W-triangulation with at most 3 edges, the graph K3. This implies
that there is no W-triangulation Ty, ,, with at most 3 edges, so Property 2 obviously holds
for any W-triangulation Ty, ,, with at most 3 edges.
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Figure 11: Initial case for Theorem 4.

For Property 1, we have to consider all the possibles 3-boundaries of K3. All these 3-
boundaries are equivalent. Let V(K3) = {a,b,c} and consider the 3-boundary (a,b)-(b, c)-
(¢,a). In the Figure 11 there is a partial strong 1-string representation (X, R, X) of K3
contained in 7 and with ¥ = {0, 0p,0.}, R = {pasc}, and X = {bc, ac}.

O

We now prove the inductive step with the following lemma.

|E(T)| < m and Property 2 holds for any W-triangulation Tg,q, such that |E(Tg,q,)] < m,
then Property 1 and Property 2 respectively holds for any W-triangulation T' or Ty,,, such
that |E(T)| = m and |E(Tg,q,)| = m.

Proof. We first prove that if the conditions of Lemma 4 are satisfied, then Property 1 holds
for any W-triangulations 7" such that |E(T)| = m. We then prove that it is also the case for
Property 2 with any W-triangulations Tg, 4, such that [E(Ty,q,)| = m.

Case 1: Proof of Property 1 for a W-triangulation 7 such that |E(T)| = m. Let
(a1,...,ap)-(b1,...,bg)-(c1,...,¢c) be the 3-boundary of T considered. We distinguish differ-
ent cases according to the existence of a chord a;b; or a;c; in T. We successively consider
the case where there is a chord a;b;, with 1 < j < ¢, the case where there is a chord a;b;,
with 1 <7 < pand 1 < j < ¢, and the case where there is a chord a;c;, with 1 <4 < p and
1 < j < r. We then finish with the case where there is no chord a;b;, with 1 <7 < p and
1 < j < ¢ (by definition of 3-boundary, T" has no chord a1bg, a;b1, or apb;), and no chord a;c;,
with 1 <¢ <pand 1< j <r (by definition of 3-boundary, T" has no chord a,c1, aic,, or aic;).

Figure 12: Case 1.1: Chord aqb;.
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Case 1.1: There is a chord a;b;, with 1 < j < ¢ (see Figure 12). Let T} (resp. 1) be
the subgraph of T" that lies inside the cycle (a1, b;,...,bg, 2, ..., ¢) (resp. (a1, az,...,b1,b;,a1)).
By Lemma 2, T} and T3 are W-triangulations. Since 7" has no chord azay, b;b, or czcy, (bic,)-
(cry..oyc1)-(bg, ..., b;) (resp. (a1,...,ap)-(b1,...,b;)-(bia1)) is a 3-boundary of T (resp. T3).
Furthermore, since ajas ¢ E(T1) (resp. cica ¢ E(T3)), Ty (resp. T») has less edges then
T, Property 1 holds for T} and Ty with the mentioned 3-boundaries. Let (X1, Ry, X7) (resp.
(X9, Ro, X)) be the partial strong 1-string representations contained in the region 7y (resp.
T9) obtained for T} (resp. T5). In Figure 13 we show how to associate this two representations
to obtain (X, R, X), a partial strong 1-string representation of 7' that satisfies Property 1.
Notice that the boundary of 7y is traversed anticlockwise and the boundary of 79 is traversed
clockwise.

Figure 13: Case 1.1: (X, R, X).

We can easily check that (3, R, X) is as expected:

e Y is a l-string representation: Since (E(T1)\ X1) N E(T3) \ X2) = (), there is no pair of
strings cossing each other more than once.

e ¥ is a l-string representation of 7'\ X with X = E,(T) \ {aia2}: Indeed, (771 \ X1) U
To\ Xo) =T\ X.

e (3, R) is “strong”: Each inner-face of T is an inner-face in 77 or T and the regions 7y
and 79 are disjoint (so the face-regions in 71 are disjoint from the face-regions in 73).

e We see in Figure 13 that conditions (b), (¢), (d), and (e) of Property 1 are satisfied.

Figure 14: Case 1.2: Chord a;b;.

Case 1.2: There is a chord a;b;, with 1 <i <p and 1 < j < ¢ (see Figure 14). If
there are several chords a;b;, we consider one which maximizes j, i.e. such that there is no
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chord a;b, with j < k < q. Let T (resp. Tb) be the subgraph of T that lies inside the cycle
(a1,a2,...,a4,bj,...,bg,c2,...,¢p) (vesp. (aj,...,ap,ba,...,bj,a;)). By Lemma 2, T} and T
are W-triangulations. Since T" has no chord agay, byby, cpcy, or a;by with k > j, (a1,...,a;)-
(@i, bj,...,bg)-(c1,...,¢cr) (resp. (ai, bj)-(bj,...,b1)-(ap,-..,a;)) is a 3-boundary of T (resp.
Ty). Furthermore, since biby ¢ E(T) (resp. ajas ¢ E(T3)), T (resp. T») has less edges then
T, Property 1 holds for T} and Ty with the mentioned 3-boundaries. Let (X1, Ry, X7) (resp.
(X9, Ro, X)) be the partial strong 1-string representations contained in the region 7y (resp.
T9) obtained for T} (resp. T5). In Figure 15 we show how to associate this two representations
to obtain (X, R, X), a partial strong 1-string representation of 7' that satisfies Property 1.
Notice that the boundary of 7 is traversed clockwise and the boundary of 7 is traversed
anticlockwise.

Figure 15: Case 1.2: (X, R, X).

As in Case 1.1, we easily check that (X, R, X) is correct.

Clzbq

Figure 16: Case 1.3: Chord a;c;.

Case 1.3: There is a chord qa;c;, with 1 <i <p and 1 < j < r (see Figure 16). If
there are several chords a;c;, we consider one which maximizes 7, i.e. such that there is no
chord ayc; with i < k <. Let Ty (resp. T) be the subgraph of T that lies inside the cycle
(a1,a2,...,a;,¢5,...,¢) (vesp. (¢j, i, ... ap,b2,...,bg,C2,...,¢j)). By Lemma 2, Ty and T
are W-triangulations. Since T" has no chord agay, b;by, cycy ou agc; avec k > i, (a1, ..., a;)-
(ai,cj)-(¢j,...,cr) (resp. (¢j,ai,...,ap)-(b1,...,bg)-(c1,...,¢j)) is a 3-boundary of T} (resp.
Ty). Furthermore, since biby ¢ E(T) (resp. ajag ¢ E(T3)), T (resp. T») has less edges then
T, Property 1 holds for T and T with the mentioned 3-boundaries. Let (31, Ry, X1) (resp.
(32, R2, X)) be the partial strong 1-string representations contained in the region 7y (resp.
T9) obtained for T} (resp. T5). In Figure 17 we show how to associate this two representations
to obtain (X, R, X), a partial strong 1-string representation of 7' that satisfies Property 1.
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Notice that the boundary of 7 is traversed clockwise and the boundary of 7 is traversed
anticlockwise.

Figure 17: Case 1.3: (X, R, X).

As in Case 1.1, we easily check that (X, R, X) is correct.

Case 1.4: There is no chord a;b;, with 1 <i <p and 1 < j < ¢, and no chord a;cj,
with 1 <i<pand 1< j <r (see Figure 18). In this case we consider the adjacent path
(di,...,ds,a1) (see Figure ??) of T with respect to its 3-boundary, (ai,...,ap)-(b1,...,bg)-
(c1,...,¢). Consider the edge dsa,, with 1 < y < p, which minimizes y. This edge exists
since, by definition of ds, ds is adjacent to some vertex a, with y > 1. The W-triangulation
T4,a, having less edges than T' (ayaz ¢ E(Ty,q4,)), Proprerty 2 holds for Ty ,,. Let (X', R/, X")
be the partial strong 1-string representations contained in the region 7/ obtained for Tdsay-

Clzbq

Figure 18: Case 1.4: No chord a;b; or a;c;.

Now we distinguish two cases according to the position of a,, the first is when y = 2 and
the second is when y > 2.

Case 1.4.1: y = 2 (see Figure 19). In Figure 19, starting from (X', R', X’), we show
how to extend the string o, € X' and how to draw the (a1, az,ds)-region pg, 4,4, to obtain
(3, R, X), a partial strong 1-string representation of 7' that satisfies Property 1. Here we
have ¥ = (X' \ {0}, }) U {0, }, with o4, being the extension of 0, , R = R' U {py, 4.4, }, and
X = Eo(T) \ {araz}.

We check that (X, R, X) is correct:

e Y is a l-string representation: Since ai1ds ¢ F(Ty,q,) \ X' (resp. ajas ¢ E(Ty,q,) \ X'),
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Figure 19: Case 1.4.1.

the two strings 04, and o4, (resp. o, and o,,) intersect only once, in 7 N 7/. So there
is no pair of strings cossing each other more than once.

e Y is a l-string representation of T\ X with X = E,(T) \ {a1az2}: Indeed, (E(T4,q,) \
XY U{aids,a1a2} = E(T) \ X.

e (X, R) is “strong™ The only inner-face of T' that is not an inner-face in Ty 4, is ajagds.
Since the regions 7" and py, 4,4, are disjoint, all the face-regions of R = R’ U {pa ayd. }
are disjoint.

e We see in Figure 19 that conditions (b), (¢), (d), and (e) of Property 1 are satisfied.

Case 1.4.2: y > 2 (see Figure 20). Let us denote eq,e9,...,e; the neighbors of dg strictly
inside the cycle (ds,a1,as,...,ay), going “from right to left” (see Figure 20). By minimality
of y we have e¢; # a;, forall 1 <i<tand 1 <5 <y.

Let T be the subgraph of T' that lies inside the cycle (a1,...,ay,€1,..., €t a1). By Lemma
2, T is a W-triangulation. Since the W-triangulation 7" has no separating 3-cycle (ds, ay, ;)
or (ds, €j, €;), there exists no chord aye; or e;e; in Th. So (az,a1)-(a1, e, ..., e1,ay)-(ay,...,a2)
is a 3-boundary of T;. Finally, since T} has less edges than T (a1ds ¢ E(T1)), Property 1
holds for 77 with respect to the mentionned 3-boundary. Let (X1, Ry, X7) be the partial strong
1-string representations contained in the region 7 obtained for 7.

In Figure 20, starting from (X', R', X’) and (X1, Ry, X1), we show how to join the strings
o, €Y and g} € Xy (resp. 0q, € X' and O'éy € 1), how to extend the strings o}, € X!, for
1 <4 < t], and how to draw the face-regions Payerdss Perardss A0 Peje; yd,, for 2 <@ <t in
order to obtain (X, R, X), a partial strong 1-string representation of 7" that satisfies Property 1.
Here we have ¥ = (E/\{O'(/ll,Uéy})U(El\({U;y,O';l}U{O';i | i€ [1,8]})U{oay, 04, }U{oe, | @ €
[1,t]}, with o4, (resp. 04,) being the junction of ¢, and o} (resp. g, and aiy), the strings
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oe, being the extensions of the strings o, € X1, R = R'U Ry U{payeids: Pesards } YU {Pdseiess
i€[2,t]} and X = E,(T) \ {ara2}.

Figure 20: Case 1.4.2.

We check that (X, R, X) is correct:

e X is a l-string representation: Since the edges ajes, aids, ayer, ejej1, and e;d, are not
in (E(Ty,a,) \ X') U (E(T1) \ X1) there is no two strings intersecting more than once.

e Y is a 1-string representation of 7'\ X with X = E,(T) \ {a1az2}: Indeed, E(T)\ X =
(E(Tdsay)\Xl)U(E(Tl)\Xl)U{ay€1,6ta1,dsa1}U{€iei_1 ‘ 1€ [Q,t]}U{dsei ’ 1€ [l,t]}.

e (X, R) is “strong”™ The only inner-faces of T' that are not inner-faces in Tda, or Ty are
aierds, ayerds, and the faces e;e;_1dg, for 2 < i < t. Since the regions 7/, 71, Payerds s
Perards, ad pee; 1d,, for 2 <@ <t are all disjoint, all the face-regions of R are disjoint.

e We see in Figure 20 that conditions (b), (c), (d), and (e) of Property 1 are satisfied.

This completes the study of Case 1. So, Property 1 holds for any W-triangulation 71" such
that |E(T)| = m.

Case 2: Proof of Property 2 for any W-triangulation 7}, ,, such that |E(Ty,4,)| = m.
Recall that the W-triangulation Ty, 4, is a subgraph of a W-triangulation T with 3-boundary
(a1,...,ap)-(b1,...,bg)-(c1,...,¢;). Moreover, T has no chord a;b; or a;c; and its adjacent
path is (dy,...,ds,a1), avec s > 1.

When dga, # dia, we define the couple of integers (z,w) # (x,y), with 1 < z < z and
y < w < p, such that there is an edge d.a, € F(1qy,q,) (there is at least one such edge, dyay).
Within all the possibles couples (z,w) # (x,y), we consider the one that maximizes z and
then minimizes w. Since the vertex d,_1 is by definition adjacent to some vertex a; we observe
that, by maximality of z, we have z = x or z — 1.

We distinguish five cases. First we consider the case where dya, = dia, (Case 2.1). When
dyay # diap the cases depend on the edge d.a,,. When z = x we have the case where w = y+1
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(Case 2.2) and the case where w > y + 1 (Case 2.4), and when z = x — 1 we have the case
where w = y (Case 2.3) and the case where w > y (Case 2.5).

b
SR
as b1 = ap

Figure 21: Case 2.1: Ty,q4, = T4yq,-

Case 2.1: d,a, = dia, (see Figure 21). Let T} be the subgraph of Ty, ,, that lies inside
the cycle (a1,ds,...,d1,ba,... bg,co,...,¢). By Lemma 2, T} is a W-triangulation. This
W-triangulation has no chord b;b;, c;c;, d;dj, or a1dj. We consider two cases according to the
existence of an edge d1b; with 2 < i <gq.

e If T} has no chord dib; then (di,ba,...,bg)-(c1,...,¢r)-(a1,ds, ... ,d1) is a 3-boundary
of Tl-

e If 77 has a chord dib;, with 2 < i < ¢, note that ¢ > 2 and that there cannot be a chord
beay or bad;, with 1 < j < s (this would violate the planarity of Ty,,,, see Figure 21)
So in this case, (b, d1,...,ds,a1)-(¢r,...,c1)-(bg,-..,b2) is a 3-boundary of T7.

Finally, since T7 is a W-triangulation with less edges than Ty,,,, Property 1 holds for T
with respect to at least one of the two mentionned 3-boundaries. Whichever 3-boundary we
consider, we obtain a partial strong 1-string representation (X1, R;, X1) of T} with the same
properties:

o Xy =Ey(T)\ {dib2},

e > U Ry is contained in a regoin 7, homeomorphic to the disk,

e in the boundary of 7 we successively meet the ends of Uclll, .. ,O‘és , Jclll , O'gr, .. ,ng , O‘l}q, ..

(in the clockwise or in the anticlockwise sense).

In Figure 22 we modify (X1, Ry, X1), by extending the strings aclll and agz € ©! and by adding
a new string o,, and a new face region pgp,q,. This leads to (3, R, X), a partial strong 1-
string representation of Ty, ,, that satisfies Property 2. Here we have X = Eo(Tyg,q,) \ {d10p},
R = Ri U{paybya,, and ¥ = (21 \ {0}, 0}, }) U{04,,04,,04,}, the strings oq, and o3, being
the extensions of the strings U(}ll and o, € Y.

We check that (3, R, X) is correct:

e Y is a l-string representation: It is clear that there is no two strings intersecting more
than once.

e ¥ is a l-string representation of Ty 4, \ X: Indeed, E(Ty,,) \ X = (E(T1) \ X1) U
{apdl, apr}.
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Figure 22: Case 2.1: (X, R, X).

e (X, R) is “strong” The only inner-face of Taya, that is not an inner-face of T is dyapbs.
Since the regions 71 and pg,q,b, are disjoint, all the face-regions of R are disjoint.

e We see in Figure 22 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are
satisfied.

Figure 23: Case 2.2: Tdmay #* leap, z==zand w=y+ 1.

Case 2.2: Ty 4, # Tdya,, 2 = and w =y + 1 (see Figure 23). By Lemma 2, Ty, is a
W-triangulation. Since Tjy_,,, has less edges than Ty, ., (deay ¢ E(T4.q,)), Property 2 holds
for Ty_q,,- Let (X', R/, X') be the partial strong 1-string representation of Ty, ,, contained in
the region 7/ with X' = E,(Ty.qa,,) \ {dzau}-

In Figure 24 we modify (X', R', X’), by extending the string o, € ¥’ and by adding a
new string o,, and a new face region pg,q,d,- This leads to (¥, R, X), a partial strong 1-
string representation of Ty ., that satisfies Property 2. Here we have X = E,(Tq,q,) \ {dzay},
R = R ' U{payapd,, and ¥ = (X' \ {0}, }) U{0a,,04q,}, the string o, being the extension
ol ey

We check that (X, R, X) is correct:

e Y is a l-string representation: It is clear that there is no two strings intersecting more
than once.

e X is a l-string representation of Ty, 4, \ X: Indeed, E(Ty,q,) \ X = (E(Tq,q,) \ X') U
{d.ay}.
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Figure 24: Case 2.2: (X, R, X).

e (X, R) is “strong” The only inner-face of T4,q, that is not an inner-face of Tg_4, is
dyaya,. Since the regions 7' and Pdgaya, are disjoint, all the face-regions of R are
disjoint.

e We see in Figure 24 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are
satisfied.

Figure 25: Case 2.3: Ty,q, # Ttya,, 2 = —land w =1y.

Case 2.3: Ty,q, # Tdya,, 2 =2 — 1 and w =y (see Figure 25). By Lemma 2, Ty, is a
W-triangulation. Since Tj_,,, has less edges than Ty, ., (deay ¢ E(T4.q,)), Property 2 holds
for Ty, 4, Let (X', R, X') be the partial strong 1-string representation of Tj_,, contained in
the region 7" with X’ = E,(Ty.q,,) \ {dzaw}.

In Figure 26, we modify (X', R/, X') by extending the string o) € X' and by adding a
new face region pg,q,q,- This leads to (3, R, X), a partial strong 1-string representation of
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T4,q, that satisfies Property 2. Here we have X = E,(Ty,q,) \{dsay}, R = R'U{p4,a,d,, and
¥ = (X'\ {0}, }) U{oa,}, the string o4, being the extension aéx ey

Figure 26: Case 2.3: (X, R, X).
We check that (X, R, X) is correct:

e Y is a I-string representation: Since the edges d,d. and dga, are not in (E(Ty_q, )\ X’)
there is no two strings intersecting more than once.

e X is a l-string representation of Ty, 4, \ X: Indeed, E(Ty,q,) \ X = (E(Tq,q,) \ X') U
{d»d.,dyay}.

e (X, R)is“strong” The only inner-face of T4,q, that is not an inner-face of Ty, q,, is dyd.ay.
Since the regions 7/ and Pdyd.a, arve disjoint, all the face-regions of R are disjoint.

e We see in Figure 26 that conditions (b), (c¢), (d), (e), (f), and (g) of Property 2 are
satisfied.

Figure 27: Case 2.4: Ty, 4, # Taya,, 2 = and w >y + 1.
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Case 2.4: Ty,q, # Tdya,, 2 = and w >y + 1 (see Figure 27). By Lemma 2, Ty q, is a
W-triangulation. Since Ty, ,, has less edges than Ty, ., (dea, ¢ E(Tq,q,)), Property 2 holds
for Ty, q,,- Let (X', R, X’) be the partial strong 1-string representation of Ty_,, contained in
the region 7" with X’ = E,(Ty.q,,) \ {dzaw}.

Let us denote e, ea,...,e; the neighbors of d, strictly inside the cycle (dg,ay, ..., aw),
going “from right to left” (see Figure 27). Since there is no chord a;a; we have ¢ > 0.
Furthermore by minimality of w we have e; # aj, forall 1 <i<tand y <j <w. Let T7 be
the subgraph of Ty, ,, that lies inside the cycle (ay,...,aw,e1,...,¢€:,ay). By Lemma 2, T} is
a W-triangulation. Since the W-triangulation T4,a, has no separating 3-cycle (dy, ay, €;) or
(dg,ei,ej), there exists no chord aye; or e;ej in T1. With the fact that ¢ > 0, we know that
(e, ay)-(ay, . - s w)-(aw, €1, ..., €) is a 3-boundary of T7. Finally, since T has less edges than
T4,a, (dzay ¢ E(T1)), Property 1 holds for T7 with respect to the mentionned 3-boundary. Let
(31, Ry, X1) be the partial strong 1-string representations contained in the region 71 obtained
for T7.

In Figure 28, starting from (X', R', X’) and (X1, Ry, X1), we show how to join the strings
o, € X' and aéw € Y1, how to extend the string atlly € X! and the strings O'éi e Xt
for 1 < i < ¢, and how to draw the face-regions pu ed,, Perawd,: and pPee; 1d,, for 2 <
2 < t, in order to obtain (3, R, X), a partial strong l-string representation of T4,a, that
satisfies Property 2. Here we have ¥ = (X' \ {0}, }) U(Z1\ ({od, | i € [y, w]} U{ol | i€
[1,8]}) U{og, | i € [y,w]} U{oe, | i € [1,t]}, with o4, being the junction of ¢,  and o} .

the strings o4, (resp. oe,) being the extensions of the strings o) € ¥ (resp. ol € %),

a;

R=R'URi U{peaydes Payerd } U {Pdserer 1 | 1 € [2,1]} and X = Eo(T) \ {dzay}.

Figure 28: Case 2.4: (X, R, X).

We check that (3, R, X) is correct:

e X is a l-string representation: Since the edges d,ay. awe1, e;e;11, and dye; are not in
(BE(Taya,) \ X') U (E(T1) \ X1) there is no two strings intersecting more than once.

e ¥ is a l-string representation of Ty, \ X with X = Ey(T4,4,) \ {deay}: Indeed,
E(Ta,0,)\X = (BE(Ti.a, )\ XY U(E(T1)\ X1) U{awer, doay }U{eiei [0 € [2,8]}U{dye; |
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i€ [1,t}.

e (3, R) is “strong” The only inner-faces of T4,q, that are not inner-faces in Ty_q,, or T}
are dyayes, dyaper, and the faces d e;e;_1, for 2 < ¢ < t. Since the regions T T, Pdyayers
Pdpawer, A0 pa e.e. o, for 2 <4 <+t are all disjoint, all the face-regions of R are disjoint.

e We see in Figure 28 that conditions (b), (¢), (d), (e), (f), and (g) of Property 2 are

satisfied.
dy dy
Qw

Figure 29: Case 2.5: Ty,q, # Tdya,, # =7 — 1 and w > y.

ay

Case 2.5: dya, # diap, 2 =2 —1 and w > y (see Figure 29). By Lemma 2, T ,, is a
W-triangulation. Since Ty, ,, has less edges than Ty, ., (deay ¢ E(Tq,q,)), Property 2 holds
for Ty_q4,,- Let (X', R', X') be the partial strong 1-string representation of Ty_,, contained in
the region 7/ with X' = E,(Ty.a,,) \ {dzau}-

z 0w

Let us denote ey, eg, . . . , e, the neighbors of d,, strictly inside the cycle (d,, dy, ay, . .., ay, d>),

going “from right to left” (see Figure 29). By maximality of z, there is no edge d;a,,, so t > 0.
Let us denote fi,..., f, the neighbors of d, strictly inside the cycle (dy,ay,...,ay,d), going
“from right to left” (see Figure 29). Note that f; = e; and that by minimality of w, there is
no edge d.a,, so u > 0.

By minimality of w we have e; # a; (vesp. f; # a;), forall 1 < <t (resp. 1 <i <) and
y < j < w. Let Ty be the subgraph of Ty ,, that lies inside the cycle (ay, ..., aw, €1,. .., e, fa, ..
By Lemma 2, T is a W-triangulation. Since the W-triangulation Tjy,,, has no separating
3-cycle (ds,aw,e€;), (dz,ei e;), (dg, fi, fj), or (ds, fi,ay), there exists no chord aye;, ee;j,
fifj, or fia, in Ty. With the fact that ¢ > 0 and v > 0, we know that (fi, fo,..., fu,ay)-
(ay,--saw)-(aw,e1,...,€) is a 3-boundary of T1. Finally, since T} has less edges than Ty, q,
(dgay, ¢ E(T1)), Property 1 holds for T} with respect to the mentionned 3-boundary. Let
(X1, R1, X7) be the partial strong 1-string representations contained in the region 7 obtained
for Tl-

In Figure 30, starting from (X, R’, X') and (X1, Ry, X1), we show how to join the strings
o), €% and o5 € ¥, how to extend the string o), € ¥/, aclly € X! the strings o} € X1,
for 1 < ¢ < t, and the strings Ujlci € El, for 2 < ¢ < u, and how to draw the face-regions
Pd.awers Pdzese;_1s 10T 2 <0 <Ly pa.dpeys Pdafifiis 0T 2 < i < u, and pg,q,f, in order to obtain
(3, R, X), a partial strong 1-string representation of Ty ., that satisfies Property 2. Here we
have & = (2"\ {0y, 05, DU (Z1\({og, | i € [y, w]}U{og, | € [Le]}u{o, |i € [2,u]})U{oy, |

Ay
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i € ly,w]}U{oe, | i € [1,t]}U{o., | i € [2,u]}, with o4, being the junction of o}, and o} . the
strings oq, (resp. oe, or oy,) being the extensions of the strings O';i € Yy (resp. O';i or O'chi €¥),

R=R'U Ry U {pdzaweupdzda:etvpdmayfu} U {pdzei@ifl ‘ (S [Q’t]} U {Iodmfififl ’ (S [Q,U]}, and
X = E,(T) \ {dzay}.

Figure 30: Case 2.5: (X, R, X).

We check that (X, R, X) is correct:

e 3 is a l-string representation: Since the edges d.e; with 1 < i <'t, d,d,, aye1, e;e;_1
with 2 <14 <1, d, f; with 1 <@ < w, dyay, fifi—1 with 3 <i < wu, and f,a, are not in
(BE(Taya,) \ X') U (E(T1) \ X1) there is no two strings intersecting more than once.

e ¥ is a l-string representation of Ty, \ X with X = FEy(Ty4,q,) \ {deay}: Indeed,
E(waay) \ X = (E(szaw) \ X/) U (E(Tl) \ Xl) U {dmayadwdzaawelaayfu} U {dzei |
1€ [1,t]} U {dxf@ ’ 1€ [l,u]} U {6i€i_1 ’ 1€ [Q,t]} U {fifi—l ’ 1€ [2,’[1,]}.

e (X, R) is “strong”: The only inner-faces of T4,q, that are not inner-faces in Ty_q,, or T}
are d ayer, d.e;e;_q for 2 <i <t, d.dye; dyfifi—1 for 2 < i < w, and dgay f,. Since the

regions 7/, 71, Pdawers Pdseie;1 10T 2 <1 < t, pa.dye, Pdyfif,—1 for 2 <@ < w, and Pdyay fu
are all disjoint, all the face-regions of R are disjoint.

e We see in Figure 30 that conditions (b), (¢), (d), (e), (f), and (g) of Property 2 are
satisfied.

This completes the study of Case 2. So, Property 2 holds for any W-triangulation Ty,
such that |E(Ty,q,)| = m. This completes the proof of Lemma 4. O
This completes the proof of Theorem 4. O
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