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tWe prove that every planar graph is the interse
tion graph of strings in the plane,su
h that any two strings interse
t at most on
e.1 Introdu
tionA string σ is a 
urve of the plane homeomorphi
 to a segment. A string σ has two ends, thepoints of σ that are not ends of σ are internal points of σ. Two strings σ1 and σ2 interse
t ifthey have a 
ommon point p ∈ σ1 ∩ σ2 and if going around p we su

essively meet σ1, σ2, σ1,and σ2. This means that two tangent strings do not interse
t. Given a region τ of the plane
P, let τ be the region de�ned by P \ τ .In this paper, we 
onsider interse
tion models for planar graphs. A string representationof a graph G = (V,E) maps every vertex v ∈ V to a string σv in the plane su
h that any twoverti
es are adja
ent if and only if their 
orresponding strings interse
t at least on
e. A graphbelongs to the graph 
lass STRING if and only if it admits a string representation. Similarly,a segment representation of a graph G is a string representation of G in whi
h the stringsare segments. A graph belongs to the graph 
lass SEG if and only if it admits a segmentrepresentation.These notions were introdu
ed in 1976 by Ehrli
h et al. [4℄, who proved the following:Theorem 1 [4℄ Planar graphs are in STRING.In his thesis, S
heinerman [10℄ 
onje
tures a stronger result:Conje
ture 1 [10℄ Planar graphs are in SEG.Krato
hvíl and Matou²ek [8℄ obtained many interesting results about SEG and relatedgraph 
lasses. Independently, Hartman et al. [1℄ and de Fraysseix et al. [5℄ proved Conje
ture1 for bipartite planar graphs. Castro et al. [2℄ proved Conje
ture 1 for triangle-free planargraphs. In [7℄, Grötzs
h proved that triangle-free planar graphs are 3-
olorable. Observe that,sin
e parallel segments never interse
t, a set of parallel segments in a segment representationof a graph indu
es a stable set of verti
es. The 
onstru
tion in [1, 5℄ (resp. [2℄) has theni
e property that there are only 2 (resp. 3) possible dire
tions for the segments. So the1




onstru
tion indu
es a 2-
oloring (resp. 3-
oloring) of G. In [11℄, West proposed a strongerversion of Conje
ture 1 in whi
h only 4 dire
tions are allowed.Noti
e that two segments interse
t at at most one point, whereas in the 
onstru
tionof Theorem 1, strings may interse
t twi
e. We make another step towards Conje
ture 1 byproving that every planar graph admits a 1-string representation, that is a string representationsu
h that any two strings interse
t at most on
e. A graph belongs to the graph 
lass 1-STRINGif and only if it admits a 1-string representation.Theorem 2 Planar graphs are in 1-STRING.This answers an open problem of Ossona de Mendez and de Fraysseix [9℄, whi
h was alsomentionned by Krato
hvíl.2 Preliminaries2.1 Restri
tion to triangulationsLemma 1 Every planar graph is the indu
ed subgraph of some planar triangulation.Proof. Let G be a planar graph embedded in the plane, i.e. a plane graph. The graph
h(G) is obtained from G by adding in every fa
e f of G a new vertex vf adja
ent to everyvertex in
ident to f in G. Noti
e that h(G) is also a plane graph and that G is an indu
edsubgraph of h(G). Moreover h(G) is 
onne
ted, h(h(G)) is 2-
onne
ted, and h(h(h(G))) is atriangulation. 2Sin
e 1-STRING is a graph 
lass de�ned by an interse
tion model, it is 
losed under takingindu
ed subgraphs. By Lemma 1, it is thus su�
ient to prove Theorem 2 for triangulations.2.2 De�nitionsIn an embedded planar graph G, the unbounded fa
e of G is 
alled the outer-fa
e and everyother fa
e of G is an inner-fa
e of G. Given an embedded planar graph G, an outer-vertex(resp. outer-edge) of G is a vertex (resp. edge) of G in
ident to the outer fa
e. The otherverti
es (resp. edges) of G are 
alled inner-verti
es (resp. inner-edges) of G. The set ofouter-verti
es (resp. outer-edges, inner-verti
es, and inner-edges) of G is denoted by Vo(G)(resp. Eo(G), Vi(G), and Ei(G)). A near-triangulation is a planar graph in whi
h all theinner-fa
es are triangles. An edge uv is a 
hord of some near-triangulation T if u and v areouter-verti
es of T and uv is an inner-edge.De�nition 1 Let G = (V,E) be a graph with a 1-string representation Σ. Given a triplet
(a, b, c) of verti
es of G, an (a, b, c)-region ρ is a region of the plane homeomorphi
 to thedisk and su
h that (see Figure 1):

• for any vertex v 6= a, b, and c we have ρ ∩ σv = ∅

• ρ ∩ σa ∩ σb = ∅, ρ ∩ σb ∩ σc = ∅, and ρ ∩ σc ∩ σa = ∅,
• ρ ∩ σb and ρ ∩ σc are 
onne
ted,
• ρ ∩ σa has two 
omponents, 2



• |ρ ∩ σa| = 3, |ρ ∩ σb| = 2, and |ρ ∩ σc| = 2,
• in the boundary of ρ we su

essively interse
t σa, σa, σb, σb, σc, σa, and σc.

ρabc

σa

σc

σb

Figure 1: An (a, b, c)-region ρabc.Note that a

ording to this de�nition, in an (a, b, c)-region ρ, one end of the string σa isin ρ. When the verti
es a, b, and c are not mentionned, we 
all these regions fa
e-regions.Noti
e that by de�nition, an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region, a (c, a, b)-region, and a (c, b, a)-region are pairwise distin
t. An region τ of the plane
annot be an (a, b, c)-region and a (c, b, a)-region for example. A region ρ of the plane is an
{a, b, c}-region if it is an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region,a (c, a, b)-region, or a (c, b, a)-region.De�nition 2 A strong 1-string representation of a near-triangulation T is a pair (Σ, R) su
hthat:(1) Σ is a 1-string representation of T ,(2) R is a set of disjoint fa
e-regions su
h that for every inner-fa
e abc of T , R 
ontains an

{a, b, c}-region.De�nition 3 A partial strong 1-string representation of a near-triangulation T is a triplet
(Σ, R,X) su
h that(1) Σ is a 1-string representation of T \ X where X ⊆ Eo(T ) is a set of outer-edges,(2) R is a set of fa
e-regions su
h that for every inner-fa
e abc of T , R 
ontains an {a, b, c}-region.Note that in a partial strong 1-string representation (Σ, R,X) of a near-triangulation T ,some outer-edges of T do not appear as interse
tions of two strings of Σ, but for ea
h inner-fa
eof T , there is a 
orresponding fa
e-region in R.De�nition 4 A separating 3-
y
le C of an embedded near-triangulation T is a 
y
le of length
3 su
h that some verti
es of T lie inside C whereas other verti
es are outside.It is well known that a triangulation is 4-
onne
ted if and only if it 
ontains no separating3-
y
le.De�nition 5 A W-triangulation is a 2-
onne
ted near-triangulation 
ontaining no separating3-
y
le. 3



In parti
ular, any 4-
onne
ted triangulation is a W-triangulation. Noti
e that a W-triangulation has no 
ut vertex, so its outer-edges indu
e a 
y
le. The following lemma givesa su�
ient 
ondition for a subgraph of a W-triangulation T to be a W-triangulation.Lemma 2 Let T be a W-triangulation and 
onsider a 
y
le C of T . The subgraph de�ned by
C and the edges inside C (a

ording to the embedding of T ) is a W-triangulation.Proof. Consider the near-triangulation T ′ indu
ed by some 
y
le C of T and the edgesinside C. By de�nition, T has no separating 3-
y
le and 
onsequently T ′ does not have anyseparating 3-
y
le. It is then su�
ient to show that T ′ is 2-
onne
ted, i.e. T does not haveany 
ut vertex. Consider a vertex v of T , all the fa
es in
ident to v are triangles, ex
ept atmost one (the outer fa
e). Consequently, there exists a path that 
ontains all the neighborsof v, and so T \ v is 
onne
ted. 2De�nition 6 A W-triangulation T is 3-bounded if the outer-boundary of T is the union ofthree paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr) that satisfy the following 
onditions (seeFigure 2):

• a1 = cr, b1 = ap, and c1 = bq.
• the paths are non-trivial, i.e. p ≥ 2, q ≥ 2, and r ≥ 2.
• there exists no 
hord aiaj (resp. bibj , cicj), i.e. an edge aiaj (resp. bibj , cicj) with

1 < i + 1 < j ≤ p (resp. 1 < i + 1 < j ≤ q, 1 < i + 1 < j ≤ r).This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).
a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

Figure 2: 3-boundary of T .In the following, we will use the order on the three paths and their dire
tions, i.e. (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-
(cr, . . . , c1)-(bq, . . . , b1). The following property des
ribes the shape of a partial strong 1-stringrepresentation of a 3-bounded W-triangulation.Property 1 A W-triangulation T , 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr), admitsa partial strong 1-string representation (Σ, R,X) 
ontained in a region τ (Σ ∪ R ⊂ τ) thatsatis�es the following properties:(a) X = Eo(G) \ {a1a2},(b) τ is a region of the plane homeomorphi
 to the disk,4



(
) for ea
h inner-vertex v, the interse
tion of σv with the boundary of τ is empty,(d) for ea
h outer-vertex v, the interse
tion of σv with the boundary of τ is a set 
ontainingat most two spe
i�
 points, the ends of σv,(e) in the boundary of τ we su

essively meet the ends of σa2
, σa3

, . . . , σap , σb1 , . . . , σbq
, σc1, . . . , σcr .Noti
e that for 
ondition (e), we do not pre
ise whether the boundary is traversed 
lo
kwiseor anti
lo
kwise. This is not ne
essary sin
e by an axial symmetry of (Σ, R,X) we obtain

(Σ′, R′,X) whi
h has the same properties as (Σ, R,X) with respe
t to the opposite dire
tion.Note that sin
e ap = b1, bq = c1, and cr = a1, both ends of σb1 and σc1 lie on the boundaryof τ , but it is not the 
ase for σa1
.

σap

τ

σa2

σb1

σbq

σcr

σc1

Figure 3: Property 1Due to its length, the proof of Property 1 is in Appendix A.3 Proof in the general 
aseTheorem 3 Ea
h embedded triangulation T admits a strong 1-string representation (Σ, R).Proof. We prove this result by indu
tion on the number of separating 3-
y
les. Noti
e thatany triangulation T is 3-
onne
ted, and that if T has no separating 3-
y
le, then T is 4-
onne
ted and is a W-triangulation. Consequently, if T is a 4-
onne
ted triangulation whoseouter-verti
es are a, b, and c, then T is a 3-bounded W-triangulation and (a, b)-(b, c)-(c, a) is a3-boundary of T . By Property 1, T admits a partial strong 1-string representation (Σ, R,X),with X = {bc, ca}, that is 
ontained in a region τ (Σ∪R ⊂ τ). Furthermore, in the boundary of
τ we su

essively meet the ends of σb, σb, σc, σc, σa. To obtain a strong 1-string representationof T , it is su�
ient (sin
e X = {bc, ca}) to extend σa, σb, and σc outside of τ in order toobtain an interse
tion with σa and σc and with σb and σc, as depi
ted on Figure 4.Suppose now that T is a triangulation that 
ontains at least one separating 3-
y
le. Con-sider a separating 3-
y
le (a, b, c) su
h that there is no separating 3-
y
le in the subgraph
T ′ that lies inside the 
y
le (a, b, c) (a

ording to the embedding of T ). Note that T ′ is a4-
onne
ted triangulation.Let T1 be the triangulation obtained by removing all the verti
es that lie inside the 
y
le
(a, b, c). Let T2 be the subgraph of T indu
ed by all the verti
es of T that lie inside the 
y
le
(a, b, c). Note that the verti
es a, b, and c belong to T1 but not to T2. In T1, the 
y
le (a, b, c)is a fa
e of the triangulation and is no more a separating 3-
y
le. By indu
tion hypothesis, T1admits a strong 1-string representation (Σ1, R1). In the strong 1-string representation (Σ1, R1)5



σbσa

σc σc

σb

τ

Figure 4: Strong 1-string-representation of T from (Σ, R,X) ⊂ τ .of T1, there exists a fa
e-region ρabc 
orresponding to the fa
e abc. W.l.o.g., say that ρabc isan (a, b, c)-region, as depi
ted on Figure 5.
(Σ1, R1)

ρabc
σa

σc

σa

σb

Figure 5: In the strong 1-string representation (Σ1, R1) of T1, the (a, b, c)-region ρabc.Sin
e T ′ is a triangulation, for ea
h vertex v of T ′, there exists a 
y
le (v1, . . . , vn) in T ′whose verti
es are exa
tly the neighbors of v. Suppose that the vertex a (resp. b and c)has exa
tly one neighbor v that lies inside (a, b, c). Then there exists a 
y
le (b, v, c) (resp.
(a, v, c) and (a, v, b)) in T ′ and 
onsequently v is a neighbor of a, b, and c in T ′. Supposethat there exists another vertex w in T ′, then w lies either inside the 
y
le (a, v, b), inside
(a, v, c), or inside (b, v, c) and then one of this 
y
le is a separating 3-
y
le. This is impossibleby de�nition of the 
y
le (a, b, c). So we 
an distinguish two 
ases (see Figure 6), (A) the 
asewhere the verti
es a, b, and c have a 
ommon neighbor inside (a, b, c) and where T ′ = K4, and(B) the 
ase where ea
h of the verti
es a, b, and c have at least two neighbors inside (a, b, c).Case (A): The verti
es a, b, and c have a 
ommon neighbor inside (a, b, c) and
T ′ = K4. To obtain a strong 1-string representation (Σ, R) of T , we need to de�ne a string
σv that 
orresponds to v. Sin
e E(T ) \E(T1) = {va, vb, vc} this string σv has to interse
t thestrings σa, σb, σc that 
orresponds respe
tively to the verti
es a, b, c. Moreover, we also needto de�ne three disjoint fa
e-regions ρacv, ρvbc, ρvab that 
orrespond respe
tively to the fa
es
acv, vbc, vab. In our 
onstru
tion, this string σv and these three fa
e-regions ρacv, ρvbc, ρvab6



b

c

a

b

c

a

Figure 6: The 
ases (A) and (B).are drawn inside the region ρabc. This 
onstru
tion appears on Figure 7.Sin
e (Σ1, R1) is a strong 1-string representation of T1 and sin
e σv, ρacv, ρvbc, ρvab aredrawn inside ρabc, (Σ ∪ {σv}, R \ {ρabc} ∪ {ρacv, ρvbc, ρvab} is a strong 1-string representationof T .
σv

ρabc

σa

σc

ρacv

ρvbc

ρvab
σb

σa

Figure 7: Case (A): Modi�
ations inside ρabc.Case (B): Ea
h of the verti
es a, b, and c have at least two neighbors inside (a, b, c).Suppose now that a (resp. b and c) has at least two neighbors in T ′ that lie inside the 
y
le
(a, b, c).There exists a 
y
le (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr, a)) in T ′ whoseverti
es are exa
tly the neighbors of a (resp. b and c). We already know that p > 1, q > 1, r > 1and that ap = b1, bq = c1, and cr = a1. Moreover, sin
e b1 and c (resp. c1 and a, and a1 and
b) are the only two 
ommon neighbors of a and b (resp. b and c, and a and c) in T ′ (else therewould be a separating 3-
y
le) then (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a 
y
le. Thisimplies from Lemma 2 that T2 is a W-triangulation.Suppose that there exists an edge aiaj (resp. bibj , cicj) with 1 < i + 1 < j ≤ p (resp.
1 < i + 1 < j ≤ q, 1 < i + 1 < j ≤ r). Then, the 
y
le (a, ai, aj) (resp. (b, bi, bj), (c, ci, cj))would be a separating 3-
y
le of T ′. Consequently, T2 is a 3-bounded W-triangulation andsin
e the fa
e region ρabc in (Σ1, R1) is an (a, b, c)-region (not an (b, a, c) or an (c, a, b)-region),let us 
onsider the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) of T2. With respe
t to this3-boundary, T2 has a partial strong 1-string representation (Σ2, R2,X2), with X2 = Eo\{a1a2}(
.f. Property 1). Let τ2 be the region of the plane homeomorphi
 to the disk 
ontaining thisrepresentation.Let σ1

a, σ
1
b , σ

1
c be the strings of Σ1 
orresponding respe
tively to the verti
es a, b, and c inthe strong 1-string representation of the triangulation T1. By symmetry, one 
an suppose thatin the boundary of ρabc, one 
an �nd anti
lo
kwise σ1

a, σ
1
a, σ

1
b , σ1

b , σ
1
c , σ

1
a, σ

1
c .7



Let σ2
a2

, . . . , σ2
ap

= σ2
b1

, σ2
c1

, . . . , σ2
cr

= σ2
a1

be the strings 
orresponding respe
tively to theverti
es a2, . . . , ap = b1, . . . bq = c1, . . . cr = a1 in the partial strong 1-string representation of
T2. Again, by symmetry, one 
an suppose that in the boundary of τ2 one 
an �nd anti
lo
kwisethe ends of σ2

a2
, . . . , σ2

ap
, σ2

b1
, . . . , σ2

bq
, σ2

c1
, . . . , σ2

cr
. W.l.o.g., one 
an suppose that one 
an insertthe region τ2 in the 
enter of the fa
e-region ρabc (see Figure 8).To obtain a strong 1-string representation (Σ, R) of T , we need to extend the strings

σ2
a2

, . . . , σ2
ap

, σ2
b1

, . . . , σ2
bq

, σ2
c1

, . . . , σ2
cr
to obtain interse
tions that 
orrespond to the edges in theset E(T )\(E(T1)∪(E(T2)\X2)) = {aai | i ∈ [1, p]}∪{bbi | i ∈ [1, q]}∪{cci | i ∈ [1, r]}∪{aiai+1 |

i ∈ [2, p − 1]} ∪ {bibi+1 | i ∈ [1, q − 1]} ∪ {cici+1 | i ∈ [1, r − 1]}. Let us denote σa2
, . . . , σap =

σb1 , σc1 , . . . , σcr = σa1
the extensions of the strings σ2

a2
, . . . , σ2

ap
= σ2

b1
, σ2

c1
, . . . , σ2

cr
= σ2

a1
. Wealso need to de�ne fa
e regions for the fa
es in the set {abb1, aca1, bcc1} ∪ {aaiai+1 | i ∈

[1, p − 1]} ∪ {bbibi+1 | i ∈ [1, q − 1]} ∪ {ccici+1 | i ∈ [1, r − 1]}.The 
onstru
tion of (Σ, R) appears on Figure 8. Let Σ = Σ1∪Σ2\{σ
2
a2

, . . . , σ2
ap

, σ2
b2

, . . . , σ2
bq

,

σ2
c2

, . . . , σ2
cr
}∪{σa2

, . . . , σap , σb2 , . . . , σbq
, σc2, . . . , σcr} and R = R1 \{ρabc}∪R2 ∪{ρaca1

, ρc1bc,
ρb1ab, ρa2a1a} ∪ {ρai+1aai

| i ∈ [2, p − 1]} ∪ {ρbi+1bbi
| i ∈ [1, q − 1]} ∪ {ρci+1cci

| i ∈ [1, r − 1]}.Sin
e (Σ1, R1) is a strong 1-string representation of T1 and (Σ2, R2,X2) is a partial strong1-string representation of T2, it is 
lear that (Σ, R) is a strong 1-string representation of T .
ρcrccr−1

ρc2cc1

ρb1ab

ρc1bc

ρa2a1a

ρaca1

ρa3ca2

ρb2bb1

ρabc

σ1

b

σ1

a

σ1

c

σ1

a

σ2
bq

σ2
c1

σ2
b1

σ2
apσ2

a2

σ2
cr

τ2

Figure 8: Case (B): Modi�
ations inside ρabc.Consequently, every triangulation admits a strong 1-string representation, whi
h provesTheorem 3 and then Theorem 2. 24 Con
lusionOne 
an wonder whether the method we use in this paper that is based on Whitney's de-
omposition 
an be used to prove that any planar graph admits a segment representation.This would need strong 
onditions on the way (a, b, c)-region are represented to use the same8



indu
tive s
heme.Another interesting question is whether this result holds for other surfa
es. For exemple,does any graph embedded in an oriented surfa
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es of T that are adja
ent to some vertex ai with
i > 1. 9



Sin
e T has at least 4 verti
es, no separating 3-
y
le, and no 
hord aiaj, aibj , or aicj ,then a1 and a2 (resp. b1 and b2) have exa
tly one 
ommon neighbor in V (T ) \ {c1} (resp.
V (T ) \ {a1}) that will be denoted a (resp. d1).Sin
e there is no 
hord aiaj , aibj, or aicj, for ea
h vertex ai with i ∈ [2, p − 1] (resp. ap),all the neighbors of ai (resp. ap) ex
ept ai−1 and ai+1 (resp. ap−1 and b2) are in D. Sin
e forea
h i ∈ [2, p], there is a path between the neighbors of ai, and sin
e the verti
es ai and ai+1have a 
ommon neighbor in D, then the set D indu
es a 
onne
ted graph. Sin
e a is in D,the set D ∪ {a1} also indu
es a 
onne
ted graph.The adja
ent path of T with respse
t to the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)is the shortest path linking d1 and a1 in T [D ∪ {a1}] (the graph indu
ed by D ∪ {a1}). Thispath will be denoted (d1, d2, . . . , ds, a1).Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s, nor an edge a1diwith 1 ≤ i < s. Otherwise (d1, d2, . . . ds) is not the shortest path between d1 and a1.

a1

a2

b2
ds d1d2

a3

c1 = bq

a4 a5 b1 = ap

a1

b2
ds d1d2

c1 = bq

a5 b1 = ap

T Td2a5Figure 9: the adja
ent path of T and the graph Td2a5
.For ea
h edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], we de�ne the graph Tdxay

. Sin
e
D ⊆ Vi(T ), C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a 
y
le. The graph Tdxay

isthe graph lying inside the 
y
le C (see Figure 9).From Lemma 2, the graph Tdxay
is a W-triangulation.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-

(c1, . . . , cr) that does not have any 
hord aibj or aicj and with an adja
ent path (d1, d2, . . . , ds, a1).For ea
h edge dxay ∈ E(T ), the graph Tdxay
admits a partial strong 1-string representation

(Σ, R,X) 
ontained in a region τ (Σ ∪ R ⊂ τ) that satis�es the following properties:(a) X = Eo(G) \ {dxay},(b) τ is a region of the plane homeomorphi
 to the disk,(
) for ea
h inner-vertex v, the interse
tion of σv with the boundary of τ is empty,(d) for ea
h outer-vertex v di�erent from dx and ay, the interse
tion of σv with the boundaryof τ is a set 
ontaining at most two spe
i�
 points, the ends of σv,10



(e) the interse
tion of dx with the boundary of τ is a set 
ontaining exa
tly two internal pointsof σdx
. Furthermore, σdx

∩ τ is 
onne
ted.(f) the interse
tion of ay with the boundary of τ is a set 
ontaining exa
tly two internal pointsof σay and at least one end of σay (two when ay = ap). Furthermore, σay ∩ τ is 
onne
ted.(g) in the boundary of τ we su

essively meet the ends of σay , . . . , σap , σb1 , . . . , σbq
, σc1, . . . , σcr ,

σds
, . . . , σdx+1

, and then we su

essively meet internal points of σdx
, σay , σdx

, and σay .The last 
ondition implies that σdx
and σay interse
t inside τ .

τ

σa1

σcr

σc2

σds

σdx
σay

σay

σap

σb1

σb2

σbq
σc1

Figure 10: Property 2.We now prove Properties 1 and 2.Theorem 4 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
).This theorem implies Property 1 whi
h is used in the proof of Theorem 2. Although Property2 is not used in the proof of Theorem 2, we need it to prove Property 1. Indeed, we provethese two properties by doing a �
rossed� indu
tion.Proof. The proof of Theorem 4 uses a de
omposition of triangulations de�ned by Whitneyin [12℄ and re
ently used by the se
ond author in [6℄. We prove Theorem 4 by indu
tion onthe number of edges of T or Tdxay

. For the initial step we prove the following lemma.Lemma 3 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
) with

|E(T )| ≤ 3 (resp. |E(Tdxay
)| ≤ 3).Proof. There is only one W-triangulation with at most 3 edges, the graph K3. This impliesthat there is no W-triangulation Tdxay

with at most 3 edges, so Property 2 obviously holdsfor any W-triangulation Tdxay
with at most 3 edges.11



σa

σb

σc

τ
ρabc

Figure 11: Initial 
ase for Theorem 4.For Property 1, we have to 
onsider all the possibles 3-boundaries of K3. All these 3-boundaries are equivalent. Let V (K3) = {a, b, c} and 
onsider the 3-boundary (a, b)-(b, c)-
(c, a). In the Figure 11 there is a partial strong 1-string representation (Σ, R,X) of K3
ontained in τ and with Σ = {σa, σb, σc}, R = {ρabc}, and X = {bc, ac}.

2We now prove the indu
tive step with the following lemma.Lemma 4 For any integer m > 3, Property 1 holds for any W-triangulation T su
h that
|E(T )| < m and Property 2 holds for any W-triangulation Tdxay

su
h that |E(Tdxay
)| < m,then Property 1 and Property 2 respe
tively holds for any W-triangulation T or Tdxay

su
hthat |E(T )| = m and |E(Tdxay
)| = m.Proof. We �rst prove that if the 
onditions of Lemma 4 are satis�ed, then Property 1 holdsfor any W-triangulations T su
h that |E(T )| = m. We then prove that it is also the 
ase forProperty 2 with any W-triangulations Tdxay

su
h that |E(Tdxay
)| = m.Case 1: Proof of Property 1 for a W-triangulation T su
h that |E(T )| = m. Let

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T 
onsidered. We distinguish di�er-ent 
ases a

ording to the existen
e of a 
hord aibj or aicj in T . We su

essively 
onsiderthe 
ase where there is a 
hord a1bj, with 1 < j < q, the 
ase where there is a 
hord aibj ,with 1 < i < p and 1 < j ≤ q, and the 
ase where there is a 
hord aicj, with 1 < i ≤ p and
1 < j < r. We then �nish with the 
ase where there is no 
hord aibj, with 1 ≤ i ≤ p and
1 ≤ j ≤ q (by de�nition of 3-boundary, T has no 
hord a1bq, aib1, or apbj), and no 
hord aicj ,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by de�nition of 3-boundary, T has no 
hord apc1, aicr, or a1cj).

a1 = cr b1 = ap

c1 = bq

bi

T2

T1

T

Figure 12: Case 1.1: Chord a1bi.12



Case 1.1: There is a 
hord a1bj, with 1 < j < q (see Figure 12). Let T1 (resp. T2) bethe subgraph of T that lies inside the 
y
le (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . , b1, bi, a1)).By Lemma 2, T1 and T2 are W-triangulations. Sin
e T has no 
hord axay, bxby, or cxcy, (bicr)-
(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of T1 (resp. T2).Furthermore, sin
e a1a2 /∈ E(T1) (resp. c1c2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations 
ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 13 we show how to asso
iate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Noti
e that the boundary of τ1 is traversed anti
lo
kwise and the boundary of τ2 is traversed
lo
kwise.

σ1
biσ1

c1

σ′

c1
σ′

bq

σ1
a1

σ2
bqσ2

bi

σ2
b1

σ2
apσ2

a2

σ2
a1

τ1

τ2

Figure 13: Case 1.1: (Σ, R,X).We 
an easily 
he
k that (Σ, R,X) is as expe
ted:
• Σ is a 1-string representation: Sin
e (E(T1) \X1) ∩ E(T2) \X2) = ∅, there is no pair ofstrings 
ossing ea
h other more than on
e.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, (T1 \ X1) ∪

T2 \ X2) = T \ X.
• (Σ, R) is �strong�: Ea
h inner-fa
e of T is an inner-fa
e in T1 or T2 and the regions τ1and τ2 are disjoint (so the fa
e-regions in τ1 are disjoint from the fa
e-regions in τ2).
• We see in Figure 13 that 
onditions (b), (
), (d), and (e) of Property 1 are satis�ed.

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

T

Figure 14: Case 1.2: Chord aibj .Case 1.2: There is a 
hord aibj, with 1 < i < p and 1 < j ≤ q (see Figure 14). Ifthere are several 
hords aibj , we 
onsider one whi
h maximizes j, i.e. su
h that there is no13




hord aibk with j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le
(a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 2, T1 and T2are W-triangulations. Sin
e T has no 
hord axay, bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-
(ai, bj , . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai)) is a 3-boundary of T1 (resp.
T2). Furthermore, sin
e b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations 
ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 15 we show how to asso
iate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Noti
e that the boundary of τ1 is traversed 
lo
kwise and the boundary of τ2 is traversedanti
lo
kwise.

σ2
ap

σ2
ai

σ2
b1

σ2
bj

σ2
bj

σ1
ai

σ1
ai

σ1
bj

σ1
c1

σ1
cr

σ1
a2

σ1
bq

τ1

τ2

Figure 15: Case 1.2: (Σ, R,X).As in Case 1.1, we easily 
he
k that (Σ, R,X) is 
orre
t.
a1 = cr b1 = ap

c1 = bq

cj

ai

T2

T1

T

Figure 16: Case 1.3: Chord aicj .Case 1.3: There is a 
hord aicj, with 1 < i ≤ p and 1 < j < r (see Figure 16). Ifthere are several 
hords aicj , we 
onsider one whi
h maximizes i, i.e. su
h that there is no
hord akcj with i < k < r. Let T1 (resp. T2) be the subgraph of T that lies inside the 
y
le
(a1, a2, . . . , ai, cj , . . . , cr) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 2, T1 and T2are W-triangulations. Sin
e T has no 
hord axay, bxby, cxcy ou akcj ave
 k > i, (a1, . . . , ai)-
(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj)) is a 3-boundary of T1 (resp.
T2). Furthermore, sin
e b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations 
ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 17 we show how to asso
iate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.14



Noti
e that the boundary of τ1 is traversed 
lo
kwise and the boundary of τ2 is traversedanti
lo
kwise.
σ1

cj σ1
cj σ2

b1
σ2

cj

σ1
ai

σ1
ai

σ1
a2

σ1
cr

σ2
bqσ2

ci

σ2
ap

σ2
aiτ1

τ2

Figure 17: Case 1.3: (Σ, R,X).As in Case 1.1, we easily 
he
k that (Σ, R,X) is 
orre
t.Case 1.4: There is no 
hord aibj, with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no 
hord aicj,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Figure 18). In this 
ase we 
onsider the adja
ent path
(d1, . . . , ds, a1) (see Figure ??) of T with respe
t to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p, whi
h minimizes y. This edge existssin
e, by de�nition of ds, ds is adja
ent to some vertex ay with y > 1. The W-triangulation
Tdsay

having less edges than T (a1a2 /∈ E(Tdsay
)), Proprerty 2 holds for Tdsay

. Let (Σ′, R′,X ′)be the partial strong 1-string representations 
ontained in the region τ ′ obtained for Tdsay
.

c1 = bq

ay

ds

b1 = ap

cr−1

ds

cr−1

ds

ay

e1

cr = a1a2cr = a1a1 = cr a2

e2
Tdsay

T1

Figure 18: Case 1.4: No 
hord aibj or aicj .Now we distinguish two 
ases a

ording to the position of ay, the �rst is when y = 2 andthe se
ond is when y > 2.Case 1.4.1: y = 2 (see Figure 19). In Figure 19, starting from (Σ′, R′,X ′), we showhow to extend the string σ′

a1
∈ Σ′ and how to draw the (a1, a2, ds)-region ρa1a2ds

to obtain
(Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1. Here wehave Σ = (Σ′ \ {σ′

a1
}) ∪ {σa1

}, with σa1
being the extension of σ′

a1
, R = R′ ∪ {ρa1a2ds

}, and
X = Eo(T ) \ {a1a2}.We 
he
k that (Σ, R,X) is 
orre
t:

• Σ is a 1-string representation: Sin
e a1ds /∈ E(Tdsa2
) \ X ′ (resp. a1a2 /∈ E(Tdsa2

) \ X ′),15



ρa1a2ds

σ′

a2σ′

ds
σ′

a1

σ′

cr

σ′

a2

σ′

ap

σ′

b1

σ′

b2

σ′

bq
σ′

c1

σ′

c2

τ ′

Figure 19: Case 1.4.1.the two strings σa1
and σds

(resp. σa1
and σa2

) interse
t only on
e, in τ ∩ τ ′. So thereis no pair of strings 
ossing ea
h other more than on
e.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, (E(Tdsa2

) \
X ′) ∪ {a1ds, a1a2} = E(T ) \ X.

• (Σ, R) is �strong�: The only inner-fa
e of T that is not an inner-fa
e in Tdsa2
is a1a2ds.Sin
e the regions τ ′ and ρa1a2ds

are disjoint, all the fa
e-regions of R = R′ ∪ {ρa1a2ds
}are disjoint.

• We see in Figure 19 that 
onditions (b), (
), (d), and (e) of Property 1 are satis�ed.Case 1.4.2: y > 2 (see Figure 20). Let us denote e1, e2, . . . , et the neighbors of ds stri
tlyinside the 
y
le (ds, a1, a2, . . . , ay), going �from right to left� (see Figure 20). By minimalityof y we have ei 6= aj , for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the 
y
le (a1, . . . , ay, e1, . . . , et, a1). By Lemma2, T1 is a W-triangulation. Sin
e the W-triangulation T has no separating 3-
y
le (ds, ay, ei)or (ds, ei, ej), there exists no 
hord ayei or eiej in T1. So (a2, a1)-(a1, et, . . . , e1, ay)-(ay, . . . , a2)is a 3-boundary of T1. Finally, sin
e T1 has less edges than T (a1ds /∈ E(T1)), Property 1holds for T1 with respe
t to the mentionned 3-boundary. Let (Σ1, R1,X1) be the partial strong1-string representations 
ontained in the region τ1 obtained for T1.In Figure 20, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

a1
∈ Σ′ and σ1

a1
∈ Σ1 (resp. σ′

ay
∈ Σ′ and σ1

ay
∈ Σ1), how to extend the strings σ1

ei
∈ Σ1, for

1 ≤ i ≤ t], and how to draw the fa
e-regions ρaye1ds
, ρeta1ds

, and ρeiei−1ds
, for 2 ≤ i ≤ t, inorder to obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Here we have Σ = (Σ′\{σ′

a1
, σ′

ay
})∪(Σ1\({σ1

ay
, σ1

a1
}∪{σ1

ei
| i ∈ [1, t]}))∪{σa1

, σay}∪{σei
| i ∈

[1, t]}, with σa1
(resp. σay) being the jun
tion of σ′

a1
and σ1

a1
(resp. σ′

ay
and σ1

ay
), the strings16



σei
being the extensions of the strings σ1

ei
∈ Σ1, R = R′ ∪ R1 ∪ {ρaye1ds

, ρeta1ds
} ∪ {ρdseiei−1

|
i ∈ [2, t]} and X = Eo(T ) \ {a1a2}.

σ′

ds
σ′

a1

σ′

cr

σ1
e1

σ1
ay

σ′

ay

σ′

ay

σ1
a2 σ1

a3

σ′

ay+1

τ1

τ ′

σ1
et

σ1
a1

Figure 20: Case 1.4.2.We 
he
k that (Σ, R,X) is 
orre
t:
• Σ is a 1-string representation: Sin
e the edges a1et, a1ds, aye1, eiei+1, and eids are notin (E(Tdsay

) \ X ′) ∪ (E(T1) \ X1) there is no two strings interse
ting more than on
e.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, E(T ) \ X =

(E(Tdsay
)\X ′)∪ (E(T1)\X1)∪{aye1, eta1, dsa1}∪{eiei−1 | i ∈ [2, t]}∪{dsei | i ∈ [1, t]}.

• (Σ, R) is �strong�: The only inner-fa
es of T that are not inner-fa
es in Tdsay
or T1 are

a1etds, aye1ds, and the fa
es eiei−1ds, for 2 ≤ i ≤ t. Sin
e the regions τ ′, τ1, ρaye1ds
,

ρeta1ds
, and ρeiei−1ds

, for 2 ≤ i ≤ t, are all disjoint, all the fa
e-regions of R are disjoint.
• We see in Figure 20 that 
onditions (b), (
), (d), and (e) of Property 1 are satis�ed.This 
ompletes the study of Case 1. So, Property 1 holds for any W-triangulation T su
hthat |E(T )| = m.Case 2: Proof of Property 2 for any W-triangulation Tdxay

su
h that |E(Tdxay
)| = m.Re
all that the W-triangulation Tdxay

is a subgraph of a W-triangulation T with 3-boundary
(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no 
hord aibj or aicj and its adja
entpath is (d1, . . . , ds, a1), ave
 s ≥ 1.When dxay 6= d1ap we de�ne the 
ouple of integers (z,w) 6= (x, y), with 1 ≤ z ≤ x and
y ≤ w ≤ p, su
h that there is an edge dzaw ∈ E(Tdxay

) (there is at least one su
h edge, d1ap).Within all the possibles 
ouples (z,w) 6= (x, y), we 
onsider the one that maximizes z andthen minimizes w. Sin
e the vertex dx−1 is by de�nition adja
ent to some vertex ai we observethat, by maximality of z, we have z = x or x − 1.We distinguish �ve 
ases. First we 
onsider the 
ase where dxay = d1ap (Case 2.1). When
dxay 6= d1ap the 
ases depend on the edge dzaw. When z = x we have the 
ase where w = y+117



(Case 2.2) and the 
ase where w > y + 1 (Case 2.4), and when z = x − 1 we have the 
asewhere w = y (Case 2.3) and the 
ase where w > y (Case 2.5).
b1 = ap

b2

d1
a1

a2

c1

ds

T1

Figure 21: Case 2.1: Tdxay
= Td1ap

.Case 2.1: dxay = d1ap (see Figure 21). Let T1 be the subgraph of Td1ap
that lies insidethe 
y
le (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma 2, T1 is a W-triangulation. ThisW-triangulation has no 
hord bibj, cicj , didj , or a1dj. We 
onsider two 
ases a

ording to theexisten
e of an edge d1bi with 2 < i ≤ q.

• If T1 has no 
hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundaryof T1.
• If T1 has a 
hord d1bi, with 2 < i ≤ q, note that q > 2 and that there 
annot be a 
hord

b2a1 or b2dj , with 1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 21)So in this 
ase, (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sin
e T1 is a W-triangulation with less edges than Td1ap

, Property 1 holds for T1with respe
t to at least one of the two mentionned 3-boundaries. Whi
hever 3-boundary we
onsider, we obtain a partial strong 1-string representation (Σ1, R1,X1) of T1 with the sameproperties:
• X1 = Eo(T ) \ {d1b2},
• Σ1 ∪ R1 is 
ontained in a regoin τ1 homeomorphi
 to the disk,
• in the boundary of τ1 we su

essively meet the ends of σ1

d1
, . . . , σ1

ds
, σ1

a1
, σ1

cr
, . . . , σ1

c1
, σ1

bq
, . . . , σ1

b2(in the 
lo
kwise or in the anti
lo
kwise sense).In Figure 22 we modify (Σ1, R1,X1), by extending the strings σ1
d1

and σ1
b2

∈ Σ1 and by addinga new string σap and a new fa
e region ρd1b2ap
. This leads to (Σ, R,X), a partial strong 1-string representation of Td1ap

that satis�es Property 2. Here we have X = Eo(Td1ap
) \ {d1ap},

R = R1 ∪ {ρd1b2ap
, and Σ = (Σ1 \ {σ

1
d1

, σ1
b2
}) ∪ {σd1

, σb2 , σap}, the strings σd1
and σb2 beingthe extensions of the strings σ1

d1
and σ1

b2
∈ Σ1.We 
he
k that (Σ, R,X) is 
orre
t:

• Σ is a 1-string representation: It is 
lear that there is no two strings interse
ting morethan on
e.
• Σ is a 1-string representation of Td1ap

\ X: Indeed, E(Td1ap
) \ X = (E(T1) \ X1) ∪

{apd1, apb2}. 18



σ1
bq

σ2
b2

σ1
cr

σ1
c1

σ1
a1σ

1
ds

σ1
d1

ρd1b2ap

σap

τ1

Figure 22: Case 2.1: (Σ, R,X).
• (Σ, R) is �strong�: The only inner-fa
e of Td1ap

that is not an inner-fa
e of T1 is d1apb2.Sin
e the regions τ1 and ρd1apb2 are disjoint, all the fa
e-regions of R are disjoint.
• We see in Figure 22 that 
onditions (b), (
), (d), (e), (f), and (g) of Property 2 aresatis�ed.

b1 = ap

c1 = bq

b1 = ap

c1 = bq

dz

aw

aw
ay

dx = dz

a1 = cr

Tdzaw

Figure 23: Case 2.2: Tdxay
6= Td1ap

, z = x and w = y + 1.Case 2.2: Tdxay
6= Td1ap

, z = x and w = y + 1 (see Figure 23). By Lemma 2, Tdzaw
is aW-triangulation. Sin
e Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw


ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.In Figure 24 we modify (Σ′, R′,X ′), by extending the string σ′

aw
∈ Σ′ and by adding anew string σay and a new fa
e region ρayawdx

. This leads to (Σ, R,X), a partial strong 1-string representation of Tdxay
that satis�es Property 2. Here we have X = Eo(Tdxay

)\{dxay},
R = R′ ∪ {ρayawdx

, and Σ = (Σ′ \ {σ′

aw
}) ∪ {σaw , σay}, the string σaw being the extension

σ1
aw

∈ Σ′.We 
he
k that (Σ, R,X) is 
orre
t:
• Σ is a 1-string representation: It is 
lear that there is no two strings interse
ting morethan on
e.
• Σ is a 1-string representation of Tdxay

\ X: Indeed, E(Tdxay
) \ X = (E(Tdzaw

) \ X ′) ∪
{dzaw}. 19



σds

σa1

σcr

σc1

σb1

σdx
σaw

σbq

σb2

σap

σaw

σay

σc2

τ ′

ρayawdx

Figure 24: Case 2.2: (Σ, R,X).
• (Σ, R) is �strong�: The only inner-fa
e of Tdxay

that is not an inner-fa
e of Tdzaw
is

dxayaw. Sin
e the regions τ ′ and ρdxayaw
are disjoint, all the fa
e-regions of R aredisjoint.

• We see in Figure 24 that 
onditions (b), (
), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

b1 = ap

dx

dx dz

ay = aw

ay = aw

a1 = cr

Tdzaw

Figure 25: Case 2.3: Tdxay
6= Td1ap

, z = x − 1 and w = y.Case 2.3: Tdxay
6= Td1ap

, z = x − 1 and w = y (see Figure 25). By Lemma 2, Tdzaw
is aW-triangulation. Sin
e Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw


ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.In Figure 26, we modify (Σ′, R′,X ′) by extending the string σ′

dx
∈ Σ′ and by adding anew fa
e region ρdxaydw

. This leads to (Σ, R,X), a partial strong 1-string representation of20



Tdxay
that satis�es Property 2. Here we have X = Eo(Tdxay

) \{dxay}, R = R′∪{ρdxaydw
, and

Σ = (Σ′ \ {σ′

dx
}) ∪ {σdx

}, the string σdx
being the extension σ1

dx
∈ Σ′.

σa1

σcr

σc1

σb1

σaw

σc2

σbq

σds

σdz

ρayawdx

σdx

σay

σap

σb2

τ ′

Figure 26: Case 2.3: (Σ, R,X).We 
he
k that (Σ, R,X) is 
orre
t:
• Σ is a 1-string representation: Sin
e the edges dxdz and dxay are not in (E(Tdzaw

) \X ′)there is no two strings interse
ting more than on
e.
• Σ is a 1-string representation of Tdxay

\ X: Indeed, E(Tdxay
) \ X = (E(Tdzaw

) \ X ′) ∪
{dxdz, dxay}.

• (Σ, R) is �strong�: The only inner-fa
e of Tdxay
that is not an inner-fa
e of Tdzaw

is dxdzay.Sin
e the regions τ ′ and ρdxdzay
are disjoint, all the fa
e-regions of R are disjoint.

• We see in Figure 26 that 
onditions (b), (
), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

aw

b1 = ap

a1 = cr

dx = dz

aw

e1
e2

Tdzaw

T1
ay

Figure 27: Case 2.4: Tdxay
6= Td1ap

, z = x and w > y + 1.21



Case 2.4: Tdxay
6= Td1ap

, z = x and w > y + 1 (see Figure 27). By Lemma 2, Tdzaw
is aW-triangulation. Sin
e Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw


ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.Let us denote e1, e2, . . . , et the neighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw),going �from right to left� (see Figure 27). Sin
e there is no 
hord aiaj we have t > 0.Furthermore by minimality of w we have ei 6= aj , for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 bethe subgraph of Tdxay

that lies inside the 
y
le (ay, . . . , aw, e1, . . . , et, ay). By Lemma 2, T1 isa W-triangulation. Sin
e the W-triangulation Tdxay
has no separating 3-
y
le (dx, aw, ei) or

(dx, ei, ej), there exists no 
hord awei or eiej in T1. With the fa
t that t > 0, we know that
(et, ay)-(ay , . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sin
e T1 has less edges than
Tdxay

(dxay /∈ E(T1)), Property 1 holds for T1 with respe
t to the mentionned 3-boundary. Let
(Σ1, R1,X1) be the partial strong 1-string representations 
ontained in the region τ1 obtainedfor T1.In Figure 28, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

aw
∈ Σ′ and σ1

aw
∈ Σ1, how to extend the string σ1

ay
∈ Σ1 and the strings σ1

ei
∈ Σ1,for 1 ≤ i ≤ t, and how to draw the fa
e-regions ρayetdx

, ρe1awdx
, and ρeiei−1dx

, for 2 ≤
2 ≤ t, in order to obtain (Σ, R,X), a partial strong 1-string representation of Tdxay

thatsatis�es Property 2. Here we have Σ = (Σ′ \ {σ′

aw
}) ∪ (Σ1 \ ({σ1

ai
| i ∈ [y,w]} ∪ {σ1

ei
| i ∈

[1, t]})) ∪ {σai
| i ∈ [y,w]} ∪ {σei

| i ∈ [1, t]}, with σaw being the jun
tion of σ′

aw
and σ1

aw
,the strings σai

(resp. σei
) being the extensions of the strings σ1

ai
∈ Σ1 (resp. σ1

ei
∈ Σ1),

R = R′ ∪ R1 ∪ {ρe1awdx
, ρayetdx

} ∪ {ρdsetet−1
| i ∈ [2, t]} and X = Eo(T ) \ {dxay}.

σ′

cr

σ1
e1

σ′

ay

σ1
et

σ′

a1 σ′

ds
σ′

dx

σ1
awσ1

ay

σ1
ay

σ′

aw
σ′

aw+1

τ1

τ ′

Figure 28: Case 2.4: (Σ, R,X).We 
he
k that (Σ, R,X) is 
orre
t:
• Σ is a 1-string representation: Sin
e the edges dxay, awe1, eiei+1, and dxei are not in

(E(Tdxay
) \ X ′) ∪ (E(T1) \ X1) there is no two strings interse
ting more than on
e.

• Σ is a 1-string representation of Tdxay
\ X with X = Eo(Tdxay

) \ {dxay}: Indeed,
E(Tdxay

)\X = (E(Tdzaw
)\X ′)∪(E(T1)\X1)∪{awe1, dxay}∪{eiei−1 | i ∈ [2, t]}∪{dxei |22



i ∈ [1, t]}.
• (Σ, R) is �strong�: The only inner-fa
es of Tdxay

that are not inner-fa
es in Tdzaw
or T1are dxayet, dxawe1, and the fa
es dxeiei−1, for 2 ≤ i ≤ t. Sin
e the regions τ ′, τ1, ρdxayet

,
ρdxawe1

, and ρdxeiei−1
, for 2 ≤ i ≤ t, are all disjoint, all the fa
e-regions of R are disjoint.

• We see in Figure 28 that 
onditions (b), (
), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

aw

b1 = ap

dx

a1 = cr

dx dz

away

e1f2

Tdzaw

T1

f1 e2

Figure 29: Case 2.5: Tdxay
6= Td1ap

, z = x − 1 and w > y.Case 2.5: dxay 6= d1ap, z = x − 1 and w > y (see Figure 29). By Lemma 2, Tdzaw
is aW-triangulation. Sin
e Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw


ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.Let us denote e1, e2, . . . , et the neighbors of dz stri
tly inside the 
y
le (dz , dx, ay, . . . , aw, dz),going �from right to left� (see Figure 29). By maximality of z, there is no edge dxaw, so t > 0.Let us denote f1, . . . , fu the neighbors of dx stri
tly inside the 
y
le (dx, ay, . . . , aw, dz), going�from right to left� (see Figure 29). Note that f1 = et and that by minimality of w, there isno edge dzay, so u > 0.By minimality of w we have ei 6= aj (resp. fi 6= aj), for all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and

y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the 
y
le (ay, . . . , aw, e1, . . . , et, f2, . . . , fu, ay).By Lemma 2, T1 is a W-triangulation. Sin
e the W-triangulation Tdxay

has no separating3-
y
le (dz, aw, ei), (dz , ei, ej), (dx, fi, fj), or (dx, fi, ay), there exists no 
hord awei, eiej ,
fifj, or fiay in T1. With the fa
t that t > 0 and u > 0, we know that (f1, f2, . . . , fu, ay)-
(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sin
e T1 has less edges than Tdxay(dxay /∈ E(T1)), Property 1 holds for T1 with respe
t to the mentionned 3-boundary. Let
(Σ1, R1,X1) be the partial strong 1-string representations 
ontained in the region τ1 obtainedfor T1.In Figure 30, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

aw
∈ Σ′ and σ1

aw
∈ Σ1, how to extend the string σ′

dx
∈ Σ′, σ1

ay
∈ Σ1 the strings σ1

ei
∈ Σ1,for 1 ≤ i ≤ t, and the strings σ1

fi
∈ Σ1, for 2 ≤ i ≤ u, and how to draw the fa
e-regions

ρdzawe1
, ρdzeiei−1

, for 2 ≤ i ≤ t, ρdzdxet
, ρdxfifi−1

, for 2 ≤ i ≤ u, and ρdxayfu
in order to obtain

(Σ, R,X), a partial strong 1-string representation of Tdxay
that satis�es Property 2. Here wehave Σ = (Σ′\{σ′

dx
, σ′

aw
})∪(Σ1\({σ1

ai
| i ∈ [y,w]}∪{σ1

ei
| i ∈ [1, t]}∪{σ1

ei
| i ∈ [2, u]}))∪{σai

|23



i ∈ [y,w]}∪{σei
| i ∈ [1, t]}∪{σei

| i ∈ [2, u]}, with σaw being the jun
tion of σ′

aw
and σ1

aw
, thestrings σai

(resp. σei
or σfi

) being the extensions of the strings σ1
ai

∈ Σ1 (resp. σ1
ei
or σ1

fi
∈ Σ1),

R = R′ ∪ R1 ∪ {ρdzawe1
, ρdzdxet

, ρdxayfu
} ∪ {ρdzeiei−1

| i ∈ [2, t]} ∪ {ρdxfifi−1
| i ∈ [2, u]}, and

X = Eo(T ) \ {dxay}.
σ1

e1

σ′

ay

σ1
et

σ′

aw

σ′

cr

σ′

a1
σ′

ds σ′

dx

σ1
fu

σ1
aw

σ1
ay

σ′

dz

σ′

aw+1

σ1
f2

τ1

τ ′

Figure 30: Case 2.5: (Σ, R,X).We 
he
k that (Σ, R,X) is 
orre
t:
• Σ is a 1-string representation: Sin
e the edges dzei with 1 ≤ i ≤ t, dxdz, awe1, eiei−1with 2 ≤ i ≤ t, dxfi with 1 ≤ i ≤ u, dxay, fifi−1 with 3 ≤ i ≤ u, and fuay are not in

(E(Tdxay
) \ X ′) ∪ (E(T1) \ X1) there is no two strings interse
ting more than on
e.

• Σ is a 1-string representation of Tdxay
\ X with X = Eo(Tdxay

) \ {dxay}: Indeed,
E(Tdxay

) \ X = (E(Tdzaw
) \ X ′) ∪ (E(T1) \ X1) ∪ {dxay, dxdz, awe1, ayfu} ∪ {dzei |

i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈ [2, t]} ∪ {fifi−1 | i ∈ [2, u]}.
• (Σ, R) is �strong�: The only inner-fa
es of Tdxay

that are not inner-fa
es in Tdzaw
or T1are dzawe1, dzeiei−1 for 2 ≤ i ≤ t, dzdxet dxfifi−1 for 2 ≤ i ≤ u, and dxayfu. Sin
e theregions τ ′, τ1, ρdzawe1

, ρdzeiei−1
for 2 ≤ i ≤ t, ρdzdxet

ρdxfifi−1
for 2 ≤ i ≤ u, and ρdxayfuare all disjoint, all the fa
e-regions of R are disjoint.

• We see in Figure 30 that 
onditions (b), (
), (d), (e), (f), and (g) of Property 2 aresatis�ed.This 
ompletes the study of Case 2. So, Property 2 holds for any W-triangulation Tdxaysu
h that |E(Tdxay
)| = m. This 
ompletes the proof of Lemma 4. 2This 
ompletes the proof of Theorem 4. 2
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