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We discuss 11 known basic models of distributed com-
puting: four message-passing models that differ by the
(non)existence of port-numbers and a hierarchy of seven
local computations models. In each of these models, we
study the computational complexity of the decision prob-
lems if the leader election and if the naming problem can
be solved on a given network. It is already known that
these two decision problems are solvable in polynomial
time for two models and are co-NP-complete for another
one. Here, we settle the computational complexity for
both problems in the remaining eight models by showing
that they are co-NP-complete. We do this by translating
each problem into a graph labeling problem. By using
this technique, we also obtain an alternative proof for the
already known co-NP-completeness result. In the second
part of our article, we completely classify the computa-
tional complexity of all the corresponding graph labeling
problems, i.e., for every fixed integer k ≥ 1 we deter-
mine the complexity of the problem that asks whether
a given graph allows a certain graph labeling that uses
at most k labels. We also explain the close relationship
of these labelings to graph homomorphisms that satisfy
some further (global or local) constraints. This yields
a new class of “constrained” graph homomorphisms
that include the already known locally constrained graph
homomorphisms. © 2011 Wiley Periodicals, Inc. NETWORKS,
Vol. 000(00), 000–000 2011
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1. INTRODUCTION

In distributed computing, one can find a wide variety of
models of communication. These models reflect different
system architectures, different levels of synchronization and
different levels of abstraction. In this article, we consider 11
known basic models that satisfy the following two underly-
ing assumptions. First, a distributed system is represented by
a simple (i.e., without loops or multiple edges), connected,
undirected graph. Its vertices represent the processors and
its edges represent direct communication links. Second, the
distributed systems we consider are anonymous, i.e., all the
processors execute the same code to solve some problem and
they do not have initial identifiers.

The 11 basic models can be divided into four message-
passing models [9, 26, 28] and seven local computations
models [3, 6, 8, 23, 24]. In a message-passing model, pro-
cessors communicate by sending and receiving messages. In
a local computations model, a computation step (encoded by
a local relabeling rule) involves neighboring processors that
synchronize, exchange information and modify their states.

Understanding the computational power of various mod-
els enhances our understanding of distributed algorithms. For
this purpose, a number of standard problems in distributed
computing are studied. The election problem is one of the
paradigms of the theory of distributed computing. In our set-
ting, a distributed algorithm solves the election problem if it
always terminates and in the final configuration exactly one
processor is marked as elected and all the other processors are
marked as nonelected. Elections constitute a building block
of many other distributed algorithms, since the elected ver-
tex can be subsequently used to make centralized decisions.
A second important problem in distributed computing is the
naming problem. Here, the aim is to arrive at a final con-
figuration where all processors have been assigned unique
identities. Again this is an essential prerequisite to many
other distributed algorithms that only work correctly under

NETWORKS—2011—DOI 10.1002/net



the assumption that all processors can be unambiguously
identified. As examples we mention algorithms for spanning
tree construction, termination detection, network topology
recognition, consensus, and mutual exclusion. For a survey
on distributed algorithms, we refer to the reference book of
Tel [25].

Whether the naming or election problem can be solved
on a given graph depends on the properties of the consid-
ered model. If it is possible to solve the election (naming)
problem, we call the graph a solution graph for the election
(naming) problem. We note that in many (but not all) models
the election and naming problem are equivalent in the sense
that a solution graph for the election problem is a solution
graph for the naming problem and vice versa. We will give
details in Sections 4.1 and 4.2. The following computational
complexity question comes immediately to mind and is the
first question that we study in this article.

How hard is it to check whether a given graph is a solution
graph for the election or naming problem in a certain model
of distributed computing?

For two models, this problem is known to be polynomial-
time solvable [4], and for one model, it is co-NP-
complete [27]. What about the computational complexity of
this problem for the other models? We solve this question
by showing that this decision problem is co-NP-complete
for both the election and naming problem in all remaining
models. To obtain our results, we make use of known char-
acterizations [3, 6, 8–10, 23, 24, 26, 28] of solution graphs.
Almost all of these characterizations are expressed in terms of
graph homomorphisms that satisfy certain local constraints.
Some of these locally constrained homomorphisms are well
studied in the literature; see, e.g., [1,14–17,20–22]. For sev-
eral models, however, these homomorphisms are not defined
on simple graphs, but on graphs that can have multiple edges,
or that are directed graphs. To have a more understandable
presentation of the links between the different characteriza-
tions and to unify our proofs as much as possible, we choose
to express the characterizations in terms of graph labelings.
This enables us to use simple undirected graphs only.

In Section 2, we will give precise definitions of the graph
labelings we use. It is a natural question to ask how hard
it is to check whether a given graph allows a certain graph
labeling that uses at most k labels for some fixed integer k.
As a byproduct of our proof, we can immediately answer this
question for almost all values of k. To give a full answer to
this question, our second main result completely classifies
the computational complexity of this problem for all graph
labelings that we consider in this article.

2. TERMINOLOGY

Throughout the article, we consider undirected graphs that
have no self-loops and no multiple edges with one exception,
namely in Section 5. In that section, we speak of input and
pattern graphs, and there we show that it makes sense to allow
pattern graphs to have self-loops (but no multiple edges). For
graph terminology not defined below we refer to [5].

FIG. 1. A graph F that is v-glued to u in G.

Let G = (VG, EG) denote a graph with vertex set VG and
edge set EG. For U ⊆ VG, the graph G[U] = (U, {(u, v) ∈
EG | u, v ∈ U}) is called the subgraph of G induced by U. For
a vertex u ∈ VG, we denote its neighborhood by NG(u) =
{v | (u, v) ∈ EG} and its degree by degG(u) = |NG(u)|.

Let F and G be two disjoint graphs. Let u be a vertex in G,
and let v be a vertex in F. We say that F is v-glued to u in G (or
equivalently that G is u-glued to v in F) if we have identified
v with u. If no confusion is possible we simply write that F
is glued to u in G. We use this notion in Sections 6 and 7. See
Figure 1 for an example.

A graph is regular if all its vertices have the same degree
p. In that case, we also say that the graph is p-regular. A
graph is bipartite if its vertices can be partitioned into two
sets A and B such that each edge has one of its endpoints in
A and the other one in B. A graph is regular bipartite if it is
regular and bipartite. A graph is semiregular bipartite if it is
bipartite and the vertices of one class of the bipartition are of
degree p and all others are of degree q. In that case, we also
say that the graph is (p, q)-regular bipartite. In our context,
a perfect matching is a (1, 1)-regular bipartite graph. A star
is a bipartite graph in which one vertex is adjacent to all the
other vertices.

2.1. Graph Labelings and Colorings

A labeling of a graph G is a mapping ! : VG →
{1, 2, 3, . . .} that assigns each vertex u ∈ VG a label !(u). For
a set U ⊆ VG, we use the shorthand notation !(U) to denote
the image set of U under !, i.e., !(U) = {!(u) | u ∈ U}.
A labeling ! of G is called proper if |!(VG)| < |VG|. For
i ∈ !(VG), we write !−1(i) = {u ∈ VG | !(u) = i}. If no con-
fusion is possible, we use the following shorthand notations.
For i ∈ !(VG), we write G[i] = G[!−1(i)]. For i, j ∈ !(VG)

with i %= j, we let G[i, j] denote the bipartite graph obtained
from G[!−1(i)∪!−1(j)] by deleting all edges (u, v) with either
!(u) = !(v) = i or !(u) = !(v) = j.

Let ! be a labeling of a graph G. We say that ! is a perfect-
regular labeling of G if

(i) for all i ∈ !(VG), G[i] is edgeless or else is a perfect
matching, and

(ii) for all i, j ∈ !(VG) with i %= j, G[i, j] is edgeless or else is
a perfect matching.

We say that ! is a symmetric regular labeling of G if

(i) for all i ∈ !(VG), G[i] is regular and in the case that its
vertices have odd degree it contains a perfect matching,
and
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FIG. 2. Graph G1 with a (symmetric) regular labeling and graph G2 with a semiregular labeling.

(ii) for all i, j ∈ !(VG) with i %= j, G[i, j] is regular bipartite.

We say that ! is a (semi)regular labeling of G if

(i) for all i ∈ !(VG), G[i] is regular, and
(ii) for all i, j ∈ !(VG) with i %= j, G[i, j] is (semi)regular

bipartite.

We say that ! is a pseudo-regular labeling of G if

(i) for all i ∈ !(VG), G[i] is regular, and
(ii) for all i, j ∈ !(VG) with i %= j, G[i, j] is edgeless or else

contains a perfect matching.

We say that ! is a connected labeling of G if

(i) for all i ∈ !(VG), G[i] is edgeless or else has minimum
degree at least one, and

(ii) for all i, j ∈ !(VG) with i %= j, G[i, j] is edgeless or else has
minimum degree at least one.

See the left hand side of Figure 2 for an example of a
graph G1 with a proper symmetric regular labeling ! that
uses three labels such that G1[1] is 1-regular (with a perfect
matching), G1[2] is 2-regular, G1[3] is 0-regular, G1[1, 2] is
(1, 1)-regular bipartite, G1[1, 3] is (0, 0)-regular bipartite and
G1[2, 3] is (3, 3)-regular bipartite. See the right hand side of
Figure 2 for an example of a graph G2 with a proper semireg-
ular labeling ! that is not a regular labeling, because it uses
three labels such that G2[1] is 1-regular, G2[2] is 2-regular,
G2[3] is 0-regular, G2[1, 2] is (3, 1)-regular bipartite, G2[1, 3]
is (0, 0)-regular bipartite, and G2[2, 3] is (2, 3)-regular bipar-
tite. See Figure 3 for an example of a graph that has a proper
pseudo-regular labeling.

We call a labeling ! of a graph G a coloring of G if !(u) %=
!(v) for any edge (u, v) ∈ EG. Therefore, we sometimes call
the label !(u) of a vertex u the color of u. If G can be colored
with k colors, then G is said to be k-colorable.

The definition of a coloring ! of a graph G is equivalent
to saying that ! is a labeling of G such that G[i] is edgeless
for all i ∈ !(VG). When we replace condition (i) in each of
the six label definitions by the condition that G[i] must be
edgeless for all i ∈ !(VG), we obtain a perfect-regular, sym-
metric regular, (semi)regular, pseudo-regular, and connected
coloring, respectively. Because a symmetric regular color-
ing is a regular coloring, and vice versa, we will not use the

notion of a symmetric regular coloring in the remainder of
the article. We make the following observation. Note that the
reverse implications in the statements of this observation do
not hold.

Observation 1. Every perfect-regular labeling is a sym-
metric regular labeling. Every symmetric regular labeling is
a regular labeling. Every regular labeling is a semiregular
labeling and a pseudo-regular labeling. Every semiregular
labeling and every pseudo-regular labeling is a connected
labeling. Every coloring is a labeling.

2.2. Graph Homomorphisms

Let G = (VG, EG) and H = (VH , EH) be two graphs.
In the context of vertex mappings from VG to VH , we will
always denote the vertices of H by VH = {1, 2, . . . , |VH |}. In
this way, any vertex mapping f : VG → VH is a labeling of
G. For a set U ⊆ VG, we write f (U) = {f (u) | u ∈ U}.

A homomorphism from a graph G to a graph H is a vertex
mapping f : VG → VH satisfying the property that for any
edge (u, v) ∈ EG, we have (f (u), f (v)) in EH , in other words,
f (NG(u)) ⊆ NH(f (u)) for all u ∈ VG. If there exists a homo-
morphism from G to H then we write G → H to express this.
Note that this notion generalizes graph colorings; there is a
homomorphism from a graph G to Kk (the complete graph
on k vertices) if and only if G is k-colorable.

A homomorphism f from G to H is called locally bijective
if it induces a one-to-one mapping on the neighborhood of
every vertex, i.e., for all u ∈ VG it satisfies f (NG(u)) =
NH(f (u)) and |NG(u)| = |NH(f (u))|. In that case we write
G B−→ H instead of G → H and say that G covers H.

FIG. 3. A graph G with a pseudo-regular labeling.
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In Figure 4, we give an example of two graphs G and H
with G B−→ H . Observe that the left hand side of Figure 4
also serves as an example of a graph with a perfect-regular
coloring. This observation can be generalized.

Observation 2. A graph G has a perfect-regular coloring
f if and only if f is a locally bijective homomorphism from G
to some graph H.

A homomorphism f from G to H that induces a surjec-
tive mapping on the neighborhood of every vertex is called
locally surjective, i.e., for all u ∈ VG it satisfies f (NG(u)) =
NH(f (u)). In that case we write G S−→ H instead of G → H .
Note that any locally bijective homomorphism from a graph
G to a graph H is locally surjective, i.e., we have that G B−→ H
implies G S−→ H .

In Figure 5, we give an example of two graphs G and H
with G S−→ H. Observe that the left hand side of Figure 5 also
serves as an example of a graph with a connected coloring.
Just as Observation 2, this observation can be generalized.

Observation 3. A graph G has a connected coloring f if
and only if f is a locally surjective homomorphism from G to
some graph H.

2.3. Equitable Partitions

We call a square integer matrix M of order k a degree
matrix of a graph G and write G B−→ M if there is a so-called
equitable partition of VG, i.e., a partition of VG into blocks
B = B1, . . . , Bk that, for every i and u ∈ Bi, satisfies:

∀j : |NG(u) ∩ Bj| = mi,j, (1)

and we observe that for all 1 ≤ i, j ≤ k, the number of edges
between two blocks Bi and Bj is equal to

mi,j|Bi| = mj,i|Bj|. (2)

As an example consider the matrix

M =
(

0 p
q 0

)
.

The matrix M is a degree matrix of any (p, q)-regular bipar-
tite graph. A graph G can allow several degree matrices. An
adjacency matrix is a largest one. The smallest one (up to

FIG. 4. Two graphs G and H with witness f for G B−→ H.

FIG. 5. Two graphs G and H with witness f for G S−→ H.

a unique ordering) is called the degree refinement matrix
drm(G) of G. For example, if p = q then M is not a degree
refinement matrix, because the smaller matrix M ′ = (p) is a
degree matrix of any p-regular graph, and consequently, of
any (p, p)-regular bipartite graph. If p %= q, then M is a degree
refinement matrix.

3. MAIN RESULTS

We call the six labelings and five colorings defined in
Section 2.1 constrained. We define the following two generic
problems. In the second problem, k denotes a fixed integer,
i.e., not part of the input.

Proper constrained labeling
Instance: a graph G.
Question: does G have a proper constrained labeling?

Constrained k-labeling
Instance: a graph G.
Question: does G have a constrained labeling with at most
k labels?

For each particular problem, we specify the type of con-
strained conditions and whether we deal with labelings or
colorings. This leads to 11 problems of each of the two kinds.

Here is our first main result stating NP-completeness of
the following nine problems. We prove it in Section 6.

Theorem 4. The following problems are NP-complete:

• Proper symmetric regular labeling
• Proper perfect-regular labeling
• Proper regular labeling
• Proper pseudo-regular labeling
• Proper perfect-regular coloring
• Proper regular coloring
• Proper semiregular coloring
• Proper pseudo-regular coloring
• Proper connected coloring.

We observe that proper connected labeling is polynomial-
time solvable. This can be seen as follows. A graph G has a
connected labeling with one color if and only if G is either
edgeless, or has no isolated vertices. Otherwise, the labeling
that assigns each isolated vertex of G label 1 and each other
vertex label 2 is a connected labeling. Such labelings are
proper except if G has only one vertex.
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We also note that not all NP-completeness results in The-
orem 4 were expected in advance due to polynomial-time
result for the proper semiregular labeling problem by Boldi
and Vigna [4]. They observed that every equitable partition
B = B1, . . . , Bk of the vertex set of a graph G corresponds to a
semiregular labeling ! with !(u) = i for u ∈ Bi, and that every
semiregular labeling ! of G corresponds to an equitable par-
tition with blocks !−1(1), . . . , !−1(|!(VG)|). This means that
indeed proper semiregular labeling is polynomial-time solv-
able by using the polynomial-time algorithm of Angluin [2]
for computing the degree refinement matrix of a graph; graph
G has a proper semiregular labeling using at most k < n
colors if and only if drm(G) has size at most k.

Here is our second main result that is complementary to
the first one and gives dichotomy results for each constrained
k-labeling problem. The proof for the semiregular k-labeling
and connected k-labeling problem follows directly from the
discussion above. We prove the remaining statements in
Section 7.

Theorem 5. The computational complexity of the following
problems can be classified:

(a) Semiregular k-labeling is polynomial-time solvable for
k ≥ 1.

(b) Perfect regular k-coloring is polynomial-time solvable for
k ≤ 3 and NP-complete for k ≥ 4.

(c) The following problems are polynomial-time solvable for
k ≤ 2 and NP-complete for k ≥ 3:
• Symmetric regular k-labeling
• perfect-regular k-labeling
• regular k-labeling
• regular k-coloring
• semi-regular k-coloring
• pseudo-regular coloring
• connected k-coloring

(d) pseudo-regular k-labeling is polynomial-time solvable for
k = 1 and NP-complete for k ≥ 2.

(e) Connected k-labeling is polynomial-time solvable for
k ≥ 1.

4. ALGORITHMIC CONSEQUENCES FOR THE
ELECTION AND NAMING PROBLEM

We apply Theorem 4 to determine the computational com-
plexity of the problems that ask whether a given graph is a
solution graph for the election or naming problem, respec-
tively, in eight basic models in distributed computing. As
mentioned in Section 1, these eight models belong to a larger
group of 11 models, which can be further divided into four
message-passing models [9,26,28] and seven local computa-
tions models [3,6,8,23,24]. We will discuss these two types
of models separately. We also explain the three models for
which this recognition problem has been solved already.

4.1. Message-Passing Models

Yamashita and Kameda [26–28] study four message-
passing models. In the port-to-port model, each processor

can send different messages to different neighbors (by hav-
ing access to unique port-numbers that distinguish between
neighbors), and each processor knows the neighbor each
receiving message is coming from (again by using the port-
numbers). In the broadcast-to-mailbox model, port-numbers
do not exist. A processor can only send a message to all of
its neighbors and all receiving messages arrive in a mail-
box, so it never knows their senders. The two mixed models
are called the port-to-mailbox model and the broadcast-to-
port model. There exists an election (naming) algorithm for
a graph G if and only if the algorithm solves the election
(naming) problem on G whatever the port-numbers are.

In [28], Yamashita and Kameda characterize these four
models for both the election and naming problems. We note
that their models are equivalent to the synchronous versions
of the models of Boldi et al. [3] who characterize solution
graphs for election using fibrations (for the broadcast-to-port
and broadcast-to-mailbox models), coverings (for the port-
to-mailbox model), and symmetric coverings (for the port-to-
port model) of directed graphs with self-loops and multiple
arcs. We use the characterizations of Yamashita and Kameda,
because they can be expressed by considering only simple
graphs. Below we present them.

Theorem 6 ([28]). The following characterizations of
solution graphs for the election and naming problem exist:

• A graph G is a solution graph for the election and naming
problem in the port-to-port model if and only if G has no
proper symmetric regular labeling.

• A graph G is a solution graph for the election and naming
problem in the port-to-mailbox model if and only if G has
no proper regular labeling.

• A graph G is a solution graph for the naming problem in
the broadcast-to-mailbox and the broadcast-to-port model
if and only if G has no proper semiregular labeling.

A graph G is a solution graph for the election prob-
lem in the broadcast-to-mailbox and the broadcast-to-port
model if and only if G has no proper semiregular labeling
! such that for all i ∈ !(VG), |!−1(i)| ≥ 2.

Yamashita and Kameda [27] prove the following co-NP-
completeness result for one of the four message-passing
models. Note that this result also follows from Theorems 4
and 6.

Theorem 7 ([27]). The problems of deciding whether a
graph G is a solution graph for the election and naming
problem, respectively, are co-NP-complete for the port-to-
port model.

On the other hand, Theorem 6 and the aforementioned
polynomial-time result of Boldi and Vigna [4] for proper
semi-regular labeling immediately imply that deciding if a
given graph is a solution graph for the naming problem is
polynomial-time solvable for the broadcast-to-mailbox and
the broadcast-to-port model. For the election problem in these
two models, they use a similar degree refinement technique
to show polynomial-time solvability.
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FIG. 6. A hierarchy of local computations models described by the
different kinds of relabeling rules they use.

Theorem 8 ([4]). The problems of deciding whether a graph
G is a solution graph for the election and naming problem,
respectively, are polynomial-time solvable for the broadcast-
to-mailbox and the broadcast-to-port model.

For the remaining message-passing model, we apply
Theorems 4 and 6.

Theorem 9. The problems of deciding whether a graph G
is a solution graph for the election and naming problem,
respectively, are co-NP-complete for the port-to-mailbox
model.

4.2. Local Computations Models

In the seven local computations models, a computation
step can be described by the application of some local rela-
beling rule that enables the modification of the states of the
different vertices involved in the synchronization. Two local
computation models are different in the types of local rela-
beling rules that they allow. This way some models have a
greater computational power than others. Figure 6, which
we explain below, displays a hierarchy of the seven local
computation models which are numbered from (1) to (7).

The differences between the seven models are as follows.
In models (1)–(4), a computation step occurs on an edge, i.e.,
it involves some synchronization between two neighbors. In
models (5)–(7), a computation step occurs on a star, i.e., it
involves some synchronization between one vertex and all
its neighbors. All models are asynchronous in the sense that
not all processors have to be involved in each computation
step. In models (1)–(4), two computation steps can occur
concurrently if they occur on nonoverlapping edges (i.e., the
end vertices of these edges are different). In models (5)–(7),
two computation steps can occur concurrently if they occur on
stars that do not share any vertex. Labels of black vertices in
Figure 6 can change when the local relabeling rule is applied.
Labels of white vertices only enable one to apply the rule but

do not change. Only in models (3), (4), and (6) do edges have
labels too, and in these three models a rule can modify edge
labels as well. Observe that in all seven models these vertex
(and edge) labels are only used to encode the state of the
processors and have nothing to do with the graph labelings
defined in the remainder of this section.

In all these models, one usually speaks about interleaved
computations, as any execution can be seen as an execution in
which at each step there is exactly one active edge (for models
(1)–(4)) or one active star (for models (5)–(7)) wherever a rule
is applied. There is no canonical way to define synchronous
computations in these models, except for model (5). For this
model, Boldi et al. [3] have considered both interleaved com-
putations and synchronous computations. In the latter case,
model (5) becomes equivalent to the broadcast-to-mailbox
model.

The model hierarchy is displayed as follows. We write
(i) → (j) for two models (i) and (j) if (j) can simulate (i) but
not vice versa. This means that (j) has a greater computational
power than (i); this relation is transitive. We write (i) ≡
(j) if (i) and (j) have the same computational power. The
computational power of model (5) is incomparable with the
power of models (2), (3), and (4). Proving this hierarchy is
nontrivial, and we refer to [7, 8] for more details.

Mazurkiewicz [23] characterizes solution graphs for
model (7).

Theorem 10 ([23]). A graph G is a solution graph for the
election and naming problem in model (7) if and only if G
has no proper perfect-regular coloring.

Chalopin and Métivier [8] characterize solution graphs for
models (3), (4), and (6).

Theorem 11 ([8]). A graph G is a solution graph for the
election and the naming problem in models (3), (4), and (6)
if and only if G has no proper regular coloring.

We note that the characterization in Theorem 11 for model
(6) can also be obtained from the work of Boldi et al. [3]. Fur-
thermore, the characterization in Theorem 11 also holds for
solution graphs for the election and naming problem in the
model considered by Angluin in her seminal paper [2] and
for the synchronous message-passing model, where a com-
munication between processors requires a synchronization
between the sender and the receiver (see [25], p. 47). We also
note that Mazurkiewicz [24] has given an equivalent char-
acterization of solution graphs for the election and naming
problem in model (4) in terms of equivalence relations over
vertices and edges.

Boldi et al. [3] characterize solution graphs for model (5)
(this is the interleaved version of their model).

Theorem 12 ([3]). A graph G is a solution graph for the
naming problem in model (5) if and only if G has no proper
semiregular coloring. A graph G is a solution graph for the
election problem in model (5) if and only if G has no proper
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semiregular coloring ! such that |!−1(i)| ≥ 2 for all i ∈
!(VG).

Chalopin [6] characterizes solution graphs for model (2).

Theorem 13 ([6]). A graph G is a solution graph for the
election and naming problem in model (2) if and only if G
has no proper pseudo-regular coloring.

Chalopin et al. [10] consider the naming and election prob-
lem in model (1). They characterize solution graphs for the
naming problem in this model.

Theorem 14 ([10]). A graph G is a solution graph for the
naming problem in model (1) if and only if G has no proper
connected coloring.

The same authors [10] also give a characterization of
graphs that admit an election algorithm in model (1). They
do this in terms of locally surjective homomorphisms, which
are closely related to connected colorings, as explained in
Observation 3.

Theorem 15 ([10]). A connected graph G is a solution
graph for the election problem in model (1) if and only if
the following two conditions are both false:

1. There exists a connected graph H such that G S−→ H and
such that, for any vertex v ∈ VH , there exists a subgraph
G(v) of G and a locally surjective homomorphism ϕ from
G(v) to H with |ϕ−1(v)| > 1.

2. There exist two connected graphs H1 and H2 with two
disjoint subgraphs G1 and G2 of G such that G S−→ H1,
G S−→ H2, G1

S−→ H1, and G2
S−→ H2.

The characterization in Theorem 15 is useful, because it
shows co-NP-membership of the problem of testing whether
a given connected graph is a solution graph for the election
problem in model (1); note that a certificate for checking
conditions 1 and 2 in Theorem 14 has length bounded by
a polynomial in |VG|, because a connected graph allows
no locally surjective homomorphism to a larger connected
graph [16].

A characterization of graphs that admits an election algo-
rithm in model (1) that can be expressed in terms of graphs
labelings is not known. Alternatively, the authors of [10] give
the following conditions on solution graphs for the election
problem in model (1).

Theorem 16 ([10]). Let G be a graph. Then the following
two conditions are valid in model (1).

(i) If G has no proper connected coloring, then G is a solution
graph for the election problem.

(ii) If G has a proper connected coloring ! with |!−1(i)| ≥ 2
for all i ∈ !(G), then G is not a solution graph for the
election problem.

We note that the hierarchy in Figure 6 is partially reflected
by the relationships between the different labelings as stated
in Observation 1: a perfect-regular coloring (model (7)) is also
a regular coloring (models (3),(4),(6)). A regular coloring
is both a semiregular coloring (model (5)) and a pseudo-
regular coloring (model (2)). Both a semiregular coloring and
a pseudo-regular coloring are connected colorings (model
(1)).

From Theorems 10–16, we note that eight of the 11
constrained labelings and colorings correspond to models
of distributed computing; the three exceptions are perfect-
regular, connected and pseudo-regular labelings. Combining
Theorem 4 with Theorems 10–14, we immediately obtain
the following result for the naming problem in models (1)–
(7) and for the election problem in models (2), (3), (4), (6),
and (7). For the election problem in models (1) and (5), a
bit more work is required to obtain co-NP-completeness as
stated in Theorem 17; see Remark 24 in Section 6.2.3 and
Remark 30 in Section 6.3.3, respectively.

Theorem 17. The problems of deciding whether a graph
G is a solution graph for the election and naming problem,
respectively, are co-NP-complete for models (1)–(7).

5. FUTURE RESEARCH

In this section, we propose the new framework of con-
strained homomorphisms. If there exists a homomorphism
from a graph G to a graph H, then we call G the input graph
and H the pattern graph. Recall that we denote the vertices
of H by 1, . . . , |VH |. We always assume that input graphs are
without multiple edges and self-loops. Pattern graphs do not
contain multiple edges either. However, to describe situations
in which vertices with the same image may be adjacent, pat-
tern graphs can contain self-loops. A homomorphism f from
G to H is constrained if

(i) for all (i, i) ∈ EH , G[i] satisfies certain conditions, and
(ii) for all (i, j) ∈ EH with i %= j, G[i, j] satisfies certain

conditions.

We name this framework Conditions on Homomorphisms
Imposed by Preimage Subgraphs (CHIPS) and call condi-
tions (i) and (ii) the CHIPS conditions (examples of such
conditions will be given later). The generic version of the
corresponding decision problem is defined as follows:

H-constrained homomorphism
Instance: a graph G.
Question: Is G → H true under CHIPS conditions?

The computational complexity of H-constrained homomor-
phism depends on H and the type of CHIPS conditions that
are under consideration; both H and these conditions are pre-
specified, i.e., not part of the input. For future research, the
following two research questions are interesting:

1. the computational complexity classification of the problem
that asks if there exists a constrained homomorphism of a
given kind from a given graph G to a fixed graph H;
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2. the relationships between all these kinds of constrained
homomorphisms.

We end this section with a few examples of constrained
homomorphisms already studied in the literature.

Example 1. Locally constrained homomorphisms.

Let f be a homomorphism from a graph G to a graph H. We
already defined in Section 2.2 when f is locally bijective or
surjective. We say that f is locally injective [15] if |NG(u)| =
|NH(f (u))| holds for all u ∈ VG. Using CHIPS conditions we
can equivalently say that a homomorphism f from G to H is
locally injective, locally bijective, or locally surjective if

(i) for all (i, i) ∈ EH , G[i] has maximum degree at most one,
minimum and maximum degree one, or minimum degree
at least one, respectively;

(ii) for all (i, j) ∈ EH with i %= j, G[i, j] has maximum
degree at most one, minimum and maximum degree one,
or minimum degree at least one, respectively.

The H-constrained homomorphism problem is called H-
cover for the locally bijective constraint, H-partial cover for
the locally injective constraint, and H-role assignment for the
locally surjective constraint. The complexity classification of
the first two problems has been open for many years and is still
far from being solved, although many partial results have been
obtained; see e.g. [15, 21, 22] for infinite classes of polyno-
mial and NP-complete cases. Contrary to the locally bijective
and surjective variants, Fiala and Paulusma [16] obtained a
dichotomy theorem for the H-role assignment problem.

Denoting the set of connected simple graphs by C, Fiala
et al. [17] showed that (C, B−→), (C, I−→) and (C, S−→) are partial
orders with (C, B−→) = (C, I−→) ∩ (C, S−→). From the proof of
Theorem 4 for proper perfect-regular coloring and proper
connected coloring, we deduce that the two problems of
deciding whether a given graph is minimal in (C, B−→) or
(C, S−→), respectively, is co-NP-complete. Since G I−→ H for
all supergraphs H , there are no minimal elements in the order
(C, I−→).

Example 2. Pseudo-regular homomorphisms.

We say that a homomorphism f from a graph G to a graph
H is a pseudo-covering of G if f satisfies CHIPS conditions

(i) for all (i, i) ∈ EH , G[i] is regular, and
(ii) for all (i, j) ∈ EH with i %= j, G[i, j] is edgeless or else

contains a perfect matching.

Pseudo-coverings correspond to pseudo-regular colorings
if pattern graphs are required to be simple, and to pseudo-
regular labelings otherwise. We initiated a complexity study
for the corresponding decision problem, called H-pseudo-
cover, and obtained some partial results [11].

FIG. 7. The graph K .

6. THE PROOF OF THEOREM 4

We split the proof of Theorem 4 into three different
parts. In Section 6.1, we prove that proper constrained
labeling is NP-complete when we consider symmetric reg-
ular labelings, perfect-regular labelings, regular labelings,
pseudo-regular labeling, perfect-regular colorings, regular
colorings, or pseudo-regular coloring, respectively. Note that
these four labelings and three colorings are all pseudo-regular
labelings. In Section 6.2, we prove that proper connected col-
oring is NP-complete. Finally, in Section 6.3, we prove that
proper semi-regular coloring is NP-complete.

6.1. All Constrained Labelings that are Pseudo-Regular

In our proofs, we will frequently make use of the following
observation.

Observation 18. Let ! be a pseudo-regular labeling of a
connected graph G. Then |!−1(i)| = |VG|

|!(VG)| for all i ∈ !(VG).

Proof. Let ! be a pseudo-regular labeling of a connected
graph G. If |!(VG)| = 1 then the statement of the observation
is true. Suppose |!(VG)| = k ≥ 2. Because G is connected,
the graph H with VH = {1, . . . , k} and

EH = {ij | i %= j and there exists an edge (u, v) ∈ EG with

!(u) = i and !(v) = j}

is connected, and because k ≥ 2, it contains at least two ver-
tices. Let j be a neighbor of a vertex i ∈ H. By the definitions
of H and !, the subgraph G[i, j] contains a perfect matching.
Then, because G[i, j] is bipartite, |!−1(i)| = |!−1(j)| holds.
Because H is connected, we then find that |!−1(i)| = |!−1(j)|
for any i, j ∈ VH with i %= j. Hence the statement of the
observation is true. !

6.1.1. The Gadget. Recall that the H-cover problem asks
whether there exists a locally bijective homomorphism from
an instance graph G to a fixed graph H, i.e., H is not part of the
input. In our NP-completeness proof, we use a reduction from
the K-cover problem, where K is the graph obtained after
deleting an edge in the complete graph K5 on five vertices;
see Figure 7.

The K-cover problem is NP-complete for connected
graphs [22]. Note that the two nonadjacent vertices 2, 5 of
K have degree three. The other three vertices, 1, 3, 4, of K
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FIG. 8. The chain of q diamonds for diamond pair (u, v).

are adjacent to the two vertices of degree three and to two
vertices of degree four. Hence K B−→ M with

M =
(

0 3
2 2

)
.

Let G be a graph with G B−→ K . By transitivity, we obtain
G B−→ M. Hence G B−→ M is a necessary condition for G B−→ K ,
and we therefore call G a K-candidate.

Now let G be a K-candidate. Then, by Equation (1) of
Section 2.3, the vertex set of G can be partitioned into two
blocks B1, B2 such that

• for all u ∈ B1, |NG(u) ∩ B1| = 0 and |NG(u) ∩ B2| = 3
• for all u ∈ B2, |NG(u) ∩ B1| = 2 and |NG(u) ∩ B2| = 2.

We use Equation (2) of Section 2.3 to deduce that 3|B1| =
2|B2|. Since |B1| + |B2| = |VG|, this means that there exists
an integer k ≥ 1 such that |B1| = 2k and |B2| = 3k. This
implies that G has 5k vertices: 2k vertices of degree 3 that
are adjacent only to vertices of degree 4, and 3k vertices of
degree 4 that are adjacent to two vertices of degree 3 and two
vertices of degree 4.

For our NP-completeness proof, we modify G as
follows. Because G is a K-candidate, we can take
two adjacent vertices u and v of degG(u) = 3 and
degG(v) = 4. We replace the edge (u, v) by a chain of
q ≥ 1 diamonds D1, . . . , Dq as described in Figure 8.
Each diamond Di has vertices ai, bi, ci, di, ei and edges
(ai, bi), (ai, ci), (ai, di), (bi, ci), (bi, di), (ci, di), (ci, ei), (di, ei).
For i = 1, . . . , q−1, two diamonds Di and Di+1 are connected
via edge (ei, ai+1). The chain of diamonds is connected to G
by diamond D1 via edge (e0, a1) = (u, a1) and by diamond
Dq via edge (eq, aq+1) = (eq, v). We call the resulting graph
Gq a diamond graph of G for diamond pair (u, v). We observe
that Gq is a K-candidate as well. Also note that the first ver-
tex in a diamond pair has degree 3 and the second vertex has
degree 4. For i = 1, . . . , q, we say that Di is a diamond of
Gq.

The next lemma is exactly what we need for our NP-
completeness proof.

Lemma 19. The K-cover problem is NP-complete even for
the class of diamond graphs of connected K-candidates.

Proof. Recall that K-cover is NP-complete for con-
nected graphs [22]. Also recall that only K-candidates allow a
locally bijective homomorphism to K . Then, because we can
check in polynomial time whether a graph G is a K-candidate,

we may assume without loss of generality that an instance
graph of the K-cover problem is a connected K-candidate.
Recall that we denote the vertices of K by 1, 2, 3, 4, 5 and
its edges by (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (3, 4),
(3, 5), (4, 5); see Figure 7.

Let Gq be a diamond graph of a connected K-candidate G
for diamond pair (u, v). We claim the following:

G B−→ K if and only if Gq B−→ K .

Suppose G B−→ K . Without loss of generality we assume
that u has color 5 and v has color 1. Then we assign color 1
to all ai, color 2 to all bi, color 3 to all ci, color 4 to all di and
color 5 to all ei. Hence Gq B−→ K .

Suppose Gq B−→ K . Let f ′ be a locally bijective homo-
morphism from Gq to K . We may assume without loss of
generality that f ′(a1) = 1 and f ′(b1) = 2. Then f ′(u) = 5
and f ′({c1, d1}) = {3, 4}. Consequently, f ′(e1) = 5. Then
f ′(a2) = 1 and so on. Continuing this way we find that
f ′(eq) = 5 and f ′(v) = 1. Hence the restriction f of
f ′ : VGq → VK to VG is a witness for G B−→ K . !

6.1.2. Properties of the Gadget. We present two lemmas
that give a number of useful properties of proper pseudo-
regular labelings of diamond graphs of K-candidates when
we carefully choose the value for q. Lemma 20 shows
amongst others that such a labeling is injective on the neigh-
borhood of any vertex in a diamond, and Lemma 21 shows
that such a labeling uses exactly 5 labels.

Lemma 20. Let G be a connected K-candidate on 5k ver-
tices with diamond graph Gq for diamond pair (u, v) for some
q ≥ k + 3 such that q + k is a prime number. If ! is a
proper pseudo-regular labeling of Gq, then |!(VDi)| = 5 and
!(ei−1) /∈ !(VDi \ {ei}) for all 1 ≤ i ≤ q.

Proof. Note that Gq is connected, because G is con-
nected. We write p = q + k. Then |VGq | = 5k + 5q = 5p and
p is a prime number. Since Gq is not regular, |!(VGq)| > 1
and by Observation 18, we then find |!(VGq)| = 5 or
|!(VGq)| = p = q + k ≥ 2k + 3 ≥ 5. Let Di be a dia-
mond for some 1 ≤ i ≤ n. Recall that we defined u = e0 and
v = aq+1. We prove the lemma by a sequence of claims. Let
!(ai) = 1.

Claim 1. We may assume !(bi) = 2.

We prove this claim as follows. Suppose !(bi) = 1.
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Suppose !(ci) = 1. Suppose !(di) = 1 as well. Then bi
only has neighbors with color 1. Hence, each vertex with
the same color as bi, namely color 1, has only neighbors
with color 1. Because Gq is connected, this would mean that
!(VGq) = {1}, so |!(VGq)| = 1 < 5. This is not possible. So
!(di) %= 1. We assume !(di) = 2. Since Gq[1, 2] contains a
perfect matching, we then obtain !(ei−1) = !(ei) = 2. Then
bi and di only have neighbors with colors 1 and 2. Hence,
each vertex with the same color as bi, namely color 1, and
each vertex with the same color as di, namely color 2, has
only neighbors with colors 1 and 2. Since Gq is connected,
this would mean that !(VGq) = {1, 2}, so |!(VGq)| = 2 < 5.
This is not possible. Hence !(ci) %= 1, say !(ci) = 2.

If !(di) = 1 then by symmetry we can return to the previ-
ous case. Suppose !(di) = 2. Then !(ei) = 1 or !(ei) = 2, as
otherwise Gq[2, !(ei)] does not contain a perfect matching. In
both cases, however, |!(VGq)| = 2 < 5. This not possible. So
!(di) /∈ {1, 2}, say !(di) = 3. If !(ei−1) = 1 then Gq[1] is not
regular. If !(ei−1) = 2, then Gq[1, 3] does not contain a per-
fect matching. If !(ei−1) = 3, then Gq[1, 2] does not contain
a perfect matching. So !(ei−1) /∈ {1, 2, 3}, say !(ei−1) = 4.
Then Gq[1, 4] does not contain a perfect matching. Hence
!(bi) %= 1. From now on we assume !(ai) = 1 and !(bi) = 2.

Claim 2. We may assume !(ci) = 3.

We prove this claim as follows. Suppose !(ci) ∈ {1, 2}.
First suppose !(ci) = 1. Suppose !(di) = 1. Since

Gq[1, 2] has a perfect matching, !(ei−1) = !(ei) = 2. Then
|!(VGq)| = 2 < 5. This is not possible. So!(di) %= 1. Suppose
!(di) = 2. Then, since bi only has one neighbor with color 2,
Gq[2] is 1-regular. This implies that !(ei) %= 2. If !(ei) > 2,
then G[2, !(ei)] does not contain a perfect matching, because
bi with color 2 does not have a neighbor with color !(ei).
Hence !(ei) = 1. Then |!(VGq)| = 2 < 5. This is not possi-
ble. So !(di) /∈ {1, 2}, say !(di) = 3. If !(ei) ∈ {1, 2, 3}, then
|!(VGq)| = 3 < 5. This is not possible. So !(ei) /∈ {1, 2, 3},
say !(ei) = 4. Since Gq[1, 4] contains a perfect matching,
!(ei−1) = 4. Then Gq[1, 2] does not have a perfect matching.
Hence !(ci) %= 1.

Suppose !(ci) = 2. If !(di) = 1 then by symmetry we can
return to a previous case. If !(di) = 2, then Gq[1, 2] does not
contain a perfect matching. So !(di) /∈ {1, 2}, say !(di) =
3. Since Gq[2, 3] has a perfect matching, !(ei) = 3. Then
Gq[1, 2] does not allow a perfect matching. Hence !(ci) %= 2.
From now on we assume !(ai) = 1, !(bi) = 2, and !(ci) = 3.

Claim 3. We may assume !(di) = 4.

We prove this claim as follows. Suppose !(di) ∈ {1, 2, 3}.
If !(di) = 1 or !(di) = 2 then by symmetry we can return
to a previous case. Suppose !(di) = 3. Since Gq[2, 3] has a
perfect matching, !(ei) = 2. Then Gq[1, 3] does not contain a
perfect matching. Hence !(di) %= 3. From now on we assume
!(ai) = 1, !(bi) = 2, !(ci) = 3, and !(di) = 4.

Claim 4. We may assume !(ei) = 5.

We prove this claim as follows. Suppose !(ei) ∈
{1, 2, 3, 4}. First suppose !(ei) = 1. Since Gq[1, 2] has a per-
fect matching, !(ai+1) = 2. Then |!(VGq)| = 4 < 5. This is
not possible. So !(ei) %= 1.

Suppose !(ei) = 2. Since Gq[1, 2] has a perfect matching,
!(ai+1) = 1. Then Gq[2, 3] does not have a perfect matching.
Hence !(ei) %= 2.

Suppose !(ei) = 3. Since Gq[3, 4] has a perfect matching,
!(ai+1) = 4. Then Gq[2, 3] does not have a perfect matching.
Hence !(ei) %= 3. By symmetry !(ei) %= 4. From now on we
assume !(ai) = 1, !(bi) = 2, !(ci) = 3, !(di) = 4, and
!(ei) = 5.

Note that we have deduced above that |!(VDi)| = 5.
Hence we are left to prove !(ei−1) /∈ {1, 2, 3, 4}. Suppose
!(ei−1) = 1. Then ei−1 has neighbors colored 1, 2, 3, 4. This
is not possible, since degGq(ei−1) = 3. Suppose !(ei−1) = 2.
Then the two neighbors of ei−1 outside Di have colors 3 and
4. Then Gq[1, 2] does not have a perfect matching. Suppose
!(ei−1) = 3. Then ei−1 must have neighbors colored 1, 2, 4, 5.
This is not possible, since degGq(ei−1) = 3. By symmetry,
!(ei−1) %= 4. Hence ei−1 does not have a color in {1, 2, 3, 4}.
This completes the proof of Lemma 20. !

Lemma 21. Let G be a connected K-candidate on 5k ver-
tices with diamond graph Gq for diamond pair (u, v) for some
q ≥ k + 3 such that q + k is a prime number. If ! is a proper
pseudo-regular labeling of Gq then |!(VGq)| = 5.

Proof. Note that Gq is connected, because G is con-
nected. We write p = q + k. Then |VGq | = 5k + 5q = 5p
and p is a prime number. By Observation 18, we then find
|!(VGq)| = 5 or |!(VGq)| = p. We note that p = q + k ≥
2k + 3 ≥ 5.

Suppose |!(VGq)| = p > 5. By our choice of q, we have∑q
i=1 |VDi | = 5q ≥ 2q ≥ q + k + 3 = p + 3 > p. Hence

there exists a vertex u in a diamond Di with the same color
as a vertex v in a diamond Dj. By Lemma 20, we find i %= j,
say i < j. We choose u and v such that there do not exist
two vertices in G[Di ∪ · · · ∪ Dj−1] that have the same color.
By Lemma 20, we can write !(ai) = 1, !(bi) = 2, !(ci) =
3, !(di) = 4 and !(ei) = 5. By the same lemma, we then
obtain !(ei−1) /∈ {1, 2, 3, 4}. If !(ei−1) = 5 then !(ai+1) =
1, and consequently, |!(VGq)| = 5 < p. So we can write
!(ei−1) = 6.

By construction of Gq, every vertex of Gq has either degree
3 or 4. The following two claims are helpful.

Claim 1. Each vertex x with !(x) ∈ {1, 3, 4} has degGq(x) =
4.

We prove this claim as follows. Let x be a vertex in Gq.
Suppose !(x) = 1. Then {2, 3, 4, 6} ⊆ !(NGq(x)). Hence
degGq(x) = 4. Suppose !(x) = 3. Then {1, 2, 4, 5} ⊆
!(NGq(x)). Hence degGq(x) = 4. Suppose !(x) = 4. Then
{1, 2, 3, 5} ⊆ !(NGq(x)). Hence degGq(x) = 4.

Claim 2. Each vertex y with !(y) ∈ {2, 5} has degGq(y) = 3.
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We prove this claim by contradiction. Suppose there exists
a vertex y in Gq with deg(y) = 4 and !(y) ∈ {2, 5}. Suppose
!(y) = 2. Then !(NGq(y)) = {1, 3, 4}. By Claim 1, y has three
neighbors of degree four. This is not possible by construction
of Gq.

Suppose !(y) = 5. Then !(NGq(y)) = {3, 4, !(ai+1)}.
Since i < j, vertex ai+1 belongs to a diamond Di+1. By
Lemma 20, we know that |!(NGq(ai+1))| = 4. Then each
vertex x with !(x) = !(ai+1) has degGq(x) = 4. Then the
neighbor of y that has color !(ai+1) has degree four. By Claim
1, the neighbors of y with colors 3 and 4 have degree four
as well. Hence y has three neighbors of degree four. This is
not possible by construction of Gq. This finishes the proof of
Claim 2.

We will use Claim 1 and 2 to show a contradiction, namely
that none of the colors 1, 2, 3, 4, 5 can occur on Dj.

First we show 1 /∈ !(Dj). By Claim 1, only vertices
aj, cj, dj can have color 1. Suppose !(aj) = 1. From our
choice of Di and Dj, all vertices in Di∪Di+1∪· · ·∪Dj−1 have a
different color, i.e., |!(Di∪Di+1∪· · ·∪Dj−1)| = 5(j−i). Then
!(ej−1) /∈ {2, 3, 4}. This implies !({bj, cj, dj}) = {2, 3, 4} and
!(ej−1) = 6. We then obtain !(VG) = !(Di ∪ · · · ∪ Dj−1), so
p = |!(VG)| = 5(j−i). Since p is a prime number not equal to
5, this is not possible. Hence !(aj) %= 1. Suppose !(cj) = 1
(respectively !(dj) = 1). Then !(dj) ∈ {3, 4} (respectively
!(cj) ∈ {3, 4}) and !({bj, ej}) = {2, 6}. Then a vertex with
color in {3, 4} is adjacent to a vertex with color 6. This is not
possible. Hence 1 /∈ !(Dj).

We show 2 /∈ !(Dj). By Claim 2, only bj and ej can have
color 2. If !(bj) = 2, then 1 ∈ !({aj, cj, dj}). This is not possi-
ble as proved above. If !(ej) = 2, then either 1 ∈ !({cj, dj}),
or else !({cj, dj}) = {3, 4} which implies !(aj) = 1. So, also
in this case we find 1 ∈ !(Dj), which is not possible as we
saw before. Hence 2 /∈ !(Dj).

We show 3 /∈ !(Dj). By Claim 1, only vertices aj, cj, dj
can have color 3. Suppose !(aj) = 3. Since 1 /∈ !(Dj), the
neighbor of aj with color 1 is ej−1. This is not possible, since
we chose Di and Dj such that all vertices in Di ∪ Di+1 ∪
· · ·∪Dj−1 have different colors. If !(cj) = 3 or !(dj) = 3 we
would have 1 ∈ !(Dj). Hence 3 /∈ !(Dj). By symmetry, we
obtain 4 /∈ !(Dj).

Finally, we show 5 /∈ !(Dj). By Claim 2, only vertices
bj and ej can have color 5. In both cases, at least one of the
colors 3, 4 is a color of a vertex in Dj. This is not possible as
shown above. This finishes the proof of Lemma 21. !

6.1.3. The Reduction. We are now ready to show that the
following problems are NP-complete:

1. Proper symmetric regular labeling
2. Proper perfect-regular labeling
3. Proper regular labeling
4. Proper pseudo-regular labeling
5. Proper perfect-regular coloring
6. Proper regular coloring
7. Proper pseudo-regular coloring

Proof. We start with proving NP-membership. First of
all, we can efficiently check if a given labeling ! for an n-
vertex graph G is proper, and if it is one of the seven labelings
above. Indeed, by their definitions, we only have to check
O(n) subgraphs G[i] for

• being edgeless (all the colorings)
• regularity (all the labelings)
• containing a perfect matching (the symmetric regular

labelings)

and only O(n2) subgraphs G[i, j] of G for

• regular bipartiteness (the (symmetric) regular labelings,
and the (perfect-)regular colorings)

• semiregular bipartiteness (the semiregular labelings and
colorings)

• being a perfect matching (the perfect-regular labelings and
colorings)

• containing a perfect matching (the pseudo-regular label-
ings and colorings)

To check if a graph contains a perfect matching we can use
the polynomial-time algorithm for finding a maximum-size
matching in [12]. The other conditions are also easy to check.
Hence, all the seven graph problems are in NP.

We now prove NP-completeness by a reduction from K-
cover [22]. Let G be a connected K-candidate, so |VG| = 5k
for some k ≥ 1. We construct a diamond graph Gq of G
for some diamond pair (u, v), where we choose q such that
q ≥ k + 3 and p = q + k is a prime number. We can find
such a q in polynomial time due to Bertrand’s postulate that
states that for each integer n ≥ 4 there exists a prime number
p in the interval [n, 2n − 2]. By taking n = 2k + 3 ≥ 4, we
then find that there exists a prime number p in the interval
[2k + 3, 4k + 4]. Hence we can find an appropriate value
for q in the interval [k + 3, 3k + 4]. By Lemma 19, we may
consider Gq as our instance graph for the K-cover problem
(note G B−→ K if and only if Gq B−→ K as shown in the proof
of Lemma 19).

We claim that the following statements are equivalent.

(i) Gq B−→ K .
(ii) Gq has a proper perfect-regular coloring.

(iii) Gq has a proper regular coloring.
(iv) Gq has a proper pseudo-regular coloring.
(v) Gq has a proper perfect-regular labeling.

(vi) Gq has a proper symmetric regular labeling.
(vii) Gq has a proper regular labeling.

(viii) Gq has a proper pseudo-regular labeling.

The proof of this claim is as follows.
(i) ⇒ (ii)
Suppose Gq B−→ K . Let f ′ be a locally bijective homo-

morphism from Gq to K (so |f ′(VG)| = 5). Recall that
VK = {1, 2, 3, 4, 5}. So f ′ is a proper perfect-regular coloring
by Observation 2.

(ii) ⇒ (iii) ⇒ (iv) ⇒ (viii)
This follows directly from the definitions, as noted in

Observation 1.
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FIG. 9. An example of a C3-minimizer I∗ of a hypergraph (Q, S).

(ii) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (viii)
This follows directly from the definitions, as noted in

Observation 1.
(viii) ⇒ (i)
Suppose Gq allows a proper pseudo-regular labeling !.

By Lemma 20, |!(D1)| = 5. Let !(a1) = 1, !(b1) = 2,
!(c1) = 3, !(d1) = 4 and !(e1) = 5. By Lemma 20, !(e0) /∈
{1, 2, 3, 4}. Since |!(VG)| = 5 due to Lemma 21, we then find
that !(e0) = 5. This means that ! defines a locally bijective
homomorphism from G to K . !

6.2. Connected Colorings

We start with a lemma that we need later on.

Lemma 22. Let ! be a proper connected coloring of a graph
G. Let x1, . . . , xk be a sequence of k different colors from
!(VG) such that G[xi, xi+1] is not edgeless for 1 ≤ i ≤ k − 1.
Then, for each vertex r in G with color x1, there exists a
path P = r1r2 . . . rk from r1 = r to some vertex rk such that
!(rh) = xh for h = 1, . . . , k.

Proof. We prove the statement by induction on k. Let
k = 1. Since G[x1, x2] contains an edge, r has a neighbor r2
with color x2. Let k ≥ 2. By the induction hypothesis, there
exists a path P′ = r1r2 . . . rk−1 from r1 = r to rk−1 such that
!(ri) = xi for i = 1, . . . , k −1. Since G[xk−1, xk] is not edge-
less, every vertex in G[xk−1, xk] has degree at least one, by
definition of a connected coloring. This means that rk−1 needs
a neighbor with color xk . Because all colors in {x1, . . . , xk}
are different, there exists a neighbor rk /∈ {r1, . . . , rk−2} of
rk−1 that has color xk . Hence, we have proven Lemma 22. !

6.2.1. The Gadget. A hypergraph (Q, S) is a set Q =
{q1, . . . , qm} together with a set S = {S1, . . . , Sn} of sub-
sets of Q. A 2-coloring of a hypergraph (Q, S) is a partition
of Q into Q1 ∪ Q2 such that Q1 ∩ Sj %= ∅ and Q2 ∩ Sj %= ∅ for
1 ≤ j ≤ n. In our proof, we use reduction from the following,
well-known, NP-complete problem (cf. [18]).

Hypergraph 2-colorability
Instance: A hypergraph (Q, S).
Question: Does (Q, S) have a 2-coloring?

We call a hypergraph (Q, S) with ∅ /∈ S,
⋃

j Sj = Q and
Sj %= Sk for all j %= k nontrivial. It is easy to see that
the Hypergraph 2-colorability restricted to nontrivial hyper-
graphs remains NP-complete. With a hypergraph (Q, S) we
associate its incidence graph I , which is a bipartite graph on
Q ∪ S, where (q, S) forms an edge if and only if q ∈ S.

Let Ci denote the cycle on i vertices. Given the incidence
graph I of a non-trivial hypergraph (Q, S) we construct the
following graph. First we make a copy S′ for each S ∈ S. We
add edges (S′, q) if and only if q ∈ S. Let S ′ = {S′

1, . . . , S′
n}.

Then we glue a cycle C(qi) 0 C6i−3 to qi for 1 ≤ i ≤ m.
We add a new vertex v and edges from v to all vertices in
S. Finally, we glue a cycle C(v) 0 C6m+3 to v. We call the
resulting graph I∗ the C3-minimizer of (Q, S). See Figure 9
for an example. Note that I∗ is connected because (Q, S) is
non-trivial.

6.2.2. Properties of the Gadget. In Lemma 23, we
show that proper connected colorings of C3-minimizers use
exactly three colors. This is crucial information for our
NP-completeness proof.

Lemma 23. Let I∗ be the C3-minimizer of a non-trivial
hypergraph (Q, S). If ! is a proper connected coloring of I∗

then |!(VI∗)| = 3.

Proof. Suppose ! is a proper connected coloring of I∗.
We note that, by definition, two neighbors must be mapped
to different colors. We write !(q1) = 1. Let the other two
vertices of C(q1) be s, t with !(s) = 2 and !(t) = 3. If q1
only has neighbors with color 2 or 3 then !(VI∗) = {2, 3},
and we are done.

Suppose q1 has a neighbor in S ∪ S ′ with a color not in
{2, 3}. Then all vertices of I∗ with color 1 have at least degree
three. By a sequence of claims, we show that |!(VI∗)| =
|VI∗ |. This gives us a contradiction to our assumption that !

is proper.

Claim 1. Colors 2, 3 are not in !(VI∗\{s, t}).

We prove Claim 1 by contradiction. Suppose !(w) ∈ {2, 3}
for some w ∈ VI∗\{s, t}. By symmetry, we may assume
!(w) = 2. We consider three cases.
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First suppose w ∈ VC(p)\{p} for some p ∈ (Q\{q1})∪{v}.
Then w needs a neighbor with color 1. Recall that such a
neighbor must have degree at least three. The only candidate
is p. However, w also needs a neighbor with color 3. This
neighbor of color 3 must be adjacent to a vertex with color 1.
Since |C(p)| contains at least nine vertices, the latter vertex
(the one with color 1) is on C(p) and has degree two. Since
every vertex of color 1 has degree at least three, this is not
possible.

Next suppose w = p for some p ∈ Q ∪ {v}. Let x be a
neighbor of w on C(p). Then x must have color 1 or 3. Color
1 is not possible since x has degree 2 < 3. Color 3 is not
possible, since then x has a (degree-two) neighbor y on C(p)

with color 1.
Finally suppose w = S for some S ∈ S ∪ S ′. Then w

must have a neighbor p′, which is in Q ∪ {v}, with color 3.
By symmetry (use color 3 instead of color 2), we can return
to the previous case. This finishes the proof of Claim 1.

Claim 2. For all p ∈ Q ∪ {v}, |!(VC(p))| = |VC(p)|.

For p = q1, the condition of Claim 2 is satisfied. For all
other p we prove Claim 2 by contradiction. Let |!(VC(p))| <

|VC(p)| for some p ∈ (Q\{q1}) ∪ {v}. This means that at least
two vertices in C(p) share the same color.

First suppose z ∈ VC(p)\{p} has color !(p). By Claim 1,
color 2 is not a color of any vertex in C(p). Since p is a
cutvertex of I∗ and since I∗ is a connected graph, any path
from z (with color !(p)) to a vertex with color 2 contains
p (with color !(p)). This is not possible due to Lemma 22.
Hence p is the only vertex in C(p) with color !(p).

Since two vertices in C(p) have the same color, we obtain
!(u1) = !(u2) for some u1, u2 ∈ VC(p)\{p}. Let P be the path
from u1 to p that does not use u2. Let P∗ be the path from u2 to
p that does not use u1. We apply Lemma 22 with x1 = !(u1)

and xk = 2. Then we find that P and P∗ must use exactly
the same |VP| = |VP∗ | colors (in exactly the same order). We
choose u1 and u2 such that P and P∗ are maximal. Let v1 be
the neighbor of u1 not on P, and let v2 be the neighbor of u2
not on P∗. If v1 is not equal to v2, then v1 and v2 must have
the same color by definition of a connected coloring. This
contradicts the maximality of P and P∗. Hence v1 = v2.

So we have found that two colors, namely !(p) and !(v1),
appear once on C(p) while all other colors appear exactly
twice on C(p). This means that |C(p)| is even. This is not
possible, since |C(p)| is odd by construction. Hence, we have
proven Claim 2.

Claim 3. On any two cycles C(p) and C(q) with p, q ∈
Q ∪ {v}, only p and q can share the same color, i.e., if
!(VC(p))∩!(VC(q)) %= ∅ then !(p) = !(q) and !(VC(p)\{p})∩
!(VC(q)\{q}) = ∅.

We prove Claim 3 as follows. For some p, q ∈ Q ∪ {v}
with p %= q, let x be a common color of C(p) and C(q), i.e.,
x ∈ !(VC(p)) ∩ !(VC(q)). We may assume without loss of
generality that |VC(p)| < |VC(q)|.

First suppose x = !(p). Below we prove that q is the only
vertex of C(q) that can have color x by showing that any
vertex with color x must have degree at least three. Due to
Claim 2, both neighbors of p on C(p) have a different color.
Suppose these colors are the only colors that the neighbors
of p have, i.e., |!(NI∗(p))| = 2. Then |!(VI∗)| = |VC(p)|. This
not possible: by Claim 2 and our choice of p and q, the number
of different colors on I∗ is at least |VC(v)| ≥| VC(q)| > |VC(p)|.
So on the neighborhood of p at least three different colors are
used. This means that any vertex with color !(p) must have
degree at least three. Hence, if x ∈ !(VC(q)) then q is the only
vertex of C(q) that can have color !(p).

Now suppose x %= !(p), say x = !(u) = !(u′) for some
u ∈ C(p)\{p} and u′ ∈ C(q). Below we show that this case
is not possible. Then we are done.

Suppose u′ = q. By Claim 2, both neighbors of u have
a different color, so |!(NI∗(q))| = 2. By Claim 2, the two
neighbors of q in C(q) do not have the same color. This means
that the color x∗ of a vertex u∗ ∈ NI∗(u)\{p} is a color of a
neighbor of q in C(q). Then we can replace x by x∗ and u
by u∗. Hence, we may without loss of generality assume that
u′ %= q.

Let Pup and P∗
up be the two (vertex-disjoint) paths from u

to p in C(p). By Claim 2, all vertices on Pup and P∗
up have

different colors. By our choice of p and q, C(q) contains at
least six more vertices than C(p). Then, by Lemma 22, C(q)

contains a path Pu′p′ from u′ to a vertex p′ %= q with the same
colors as Pup or with the same colors as P∗

up, so p′ has color
!(p). Since p′ %= q, p′ has degree two. This is not possible,
since we already showed that q is the only vertex of C(q)

that can have the same color as p. This finishes the proof of
Claim 3.

To prove the lemma we need a claim that is stronger than
Claim 3.

Claim 4. !(VC(p)) ∩ !(VC(q)) = ∅ for all p, q ∈ Q ∪ {v}
with p %= q.

We prove Claim 4 as follows. Suppose !(VC(p)) ∩
!(VC(q)) %= ∅ for some p, q ∈ Q ∪ {v} with p %= q. By
Claim 3, !(p) = !(q). Let r1 be a neighbor of p on C(p).
Then r1 has degree two in I∗. Let r2 %= p be the other neigh-
bor of r1. By definition of a connected coloring, q must have
a neighbor with color !(r1). By Claim 3, !(r1) is the color
of a vertex S ∈ S ∪ S ′. Again by definition, S must have a
neighbor with color !(r2). By construction, this neighbor is a
vertex q′ ∈ Q∪{v}. By Claim 2, !(r2) %= !(p). Hence q′ %= p.
Then C(p) and C(q′) have common color !(r2). This violates
Claim 3 and completes the proof of Claim 4.

By Claim 2 and Claim 4, all vertices in the union of all
cycles C(p) over p ∈ Q ∪ {v} are mapped to different colors.
As (Q, S) is non-trivial, any two Sj, Sk ∈ S with j %= k repre-
sent two different subsets of Q. Hence they cannot have the
same color. The same holds for any two S′

j , S′
k ∈ S ′ because

they are copies of sets Sj, Sk ∈ S. Furthermore, all S′
j are

not adjacent to v. This means that S and S ′ do not share
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FIG. 10. The chain of k + 1 multi-diamonds that replace edge ek = (u, v).

any colors, i.e., !(S) ∩ !(S ′) = ∅. Hence we have obtained
|!(S ∪ S ′)| = |S ∪ S ′|.

Suppose some S ∈ S ∪ S ′ has the same color as a vertex
u of some C(p). Then the colors of the neighbors of u on
C(p) must appear on the neighbors of S, which all belong to
Q ∪ {v}. This violates Claim 4. Hence |!(VI∗)| = |VI∗ |, so !

is not proper. This finishes the proof of Lemma 23. !

6.2.3. The Reduction. We are now ready to show that the
Proper Connected Coloring problem is NP-complete.

Proof. To show membership in NP we must verify the
following for a given labeling ! of an n-vertex graph G.
First we must check O(n) subgraphs G[i] for being edgeless.
Second, we must check O(n2) subgraphs G[i, j] of G for min-
imum degree. Both checks can be performed in polynomial
time. Hence, the problem is a member of NP.

We prove NP-completeness by a reduction from the
Hypergraph 2-colorability problem restricted to non-trivial
hypergraphs. Let (Q, S) be a non-trivial hypergraph. We con-
struct its C3-minimizer I∗ and claim that the following three
statements are equivalent. Note that we prove a bit more than
required by including statement (ii). The reason we do this is
made clear in Remark 24.

(i) (Q, S) has a 2-coloring.
(ii) I∗ admits a proper connected coloring ! with |!−1(i)| ≥ 2

for all 1 ≤ i ≤ |!(VG)|.
(iii) I∗ admits a proper connected coloring.

The proof is as follows.
(i) ⇒ (ii)
Suppose (Q, S) has a 2-coloring Q1∪Q2. Define !(v) = 1,

!(S) = 2 for all S ∈ S ∪ S ′, !(q) = 1 for all q ∈ Q1
and !(q) = 3 for all q ∈ Q2. Finish the coloring in the
obvious way. Note that we use exactly three colors. Since
C(v) contains at least six vertices, |!−1(i)| ≥ 2 for all 1 ≤
i ≤ 3.

(ii) ⇒ (iii)
This is trivial.
(iii) ⇒ (i)
Suppose I∗ has a proper connected coloring !. By

Lemma 23 we find |!(VI∗)| = 3. Since C(q1) is isomor-
phic to C3, we find that the three vertices of C(q1) have three

different colors, say 1,2,3. Then, by definition, any vertex col-
ored by 1 (resp. 2,3) has a neighbor colored by 2 (resp. 3, 1)
and a neighbor colored by 3 (resp. 1, 2). We assume without
loss of generality that !(v) = 1. Then !(Sj) ∈ {2, 3} for all
j. If !(S′

j) = 1 for some j, then S′
j needs a neighbor of color

2 and a neighbor of color 3. Both neighbors are adjacent to
Sj that has color 2 or 3. This is not possible. Hence we find
!(S′

j) ∈ {2, 3} for all j. We define Q1 = {q ∈ Q | !(q) = 1}
and Q2 = Q\Q1. Since each S′

j needs at least two neighbors
with different colors and at least one neighbor with color 1,
the partition Q1 ∪ Q2 is a 2-coloring of (Q, S). !

Remark 24. The equivalence of statements (i)–(iii) above,
combined with Theorem 16, shows that Theorem 17 holds for
the leader election problem in model (1).

6.3. Semiregular Colorings

Our proof combines new arguments with the ingredients
of the proofs in both Sections 6.1 and 6.2.

6.3.1. The Gadget. Recall that the H-cover problem asks
whether there exists a locally bijective homomorphism from
an instance graph G to a fixed graph H. In our NP-
completeness proof we use a reduction from the K4-cover
problem, where K4 is the complete graph on four ver-
tices denoted by 1,2,3, and 4. The K4-cover problem is
NP-complete for connected graphs [20].

Let G be a connected graph with G B−→ K4. Because
G B−→ K4 and K4 is 3-regular, we find that G is 3-regular.
By definition, any locally bijective homomorphism f from G
to K4 is a pseudo-regular labeling. Then we can use Observa-
tion 18 to deduce that |f −1(i)| = |VG|

4 for i = 1, . . . , 4. This
means that |VG| = 4q for some q ≥ 1. Since 2|EG| = 3|VG|,
we then obtain |EG| = 3|VG|

2 = 6q. We therefore call a graph
G that is 3-regular and that has |VG| = 4q and |EG| = 6q for
some q ≥ 1 a K4-candidate.

For our NP-completeness proof we modify a K4-candidate
as follows. Let EG = {e1, e2, . . . , em}. For each edge ek , we
do as follows. First we choose an orientation of ek , say ek =
(u, v) is oriented from u to v. Then we replace ek by a chain
of k +1 multi-diamonds D1(k), . . . , Dk+1(k), as described in
Figure 10. Each multi-diamond Dk+1(k) has vertices
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ai(k), bi(k), b′
i(k), ci(k), c′

i(k), di(k), d′
i(k), ei(k), e′

i(k),

fi(k), f ′
i (k), gi(k).

We call the vertices in a multi-diamond Di(k) that are not
equal to ai(k) or gi(k) the inner vertices of Di(k). If no con-
fusion is possible, we will write ai for ai(k), bi for bi(k) etc. A
chain of multi-diamonds is connected to G by multi-diamond
D1(k) via edge (g0(k), a1(k)) = (u, a1(k)) and by multi-
diamond Dk+1 via edge (gk+1(k), ak+2(k)) = (gk+1(k), v).
Note that, in contrast to the diamonds in Section 6.1.1, this
operation is not symmetric: we would have obtained a dif-
ferent graph if we had chosen to orient ek from v to u. After
performing the operation above for each edge in G, we obtain
a graph G′ that we call a multi-diamond graph of G. We
observe that G′ is a K4-candidate as well.

The next lemma is exactly what we need for our NP-
completeness proof.

Lemma 25. The K4-cover problem is NP-complete even
for the class of multi-diamond graphs of connected K4-
candidates.

Proof. Recall that K4-cover is NP-complete for con-
nected graphs [20]. Also recall that only K4-candidates allow
a locally bijective homomorphism to K4. Then, because we
can check in polynomial time whether a graph G is a K4-
candidate, we may assume without loss of generality that
an instance graph of the K4-cover problem is a connected
K4-candidate. Recall that we denote the vertices of K4 by
1, . . . , 4.

Let G′ be a multi-diamond graph of a K4-candidate G with
|EG| = m. We claim that G B−→ K4 if and only if G′ B−→ K4.

Suppose G B−→ K4. For all 1 ≤ k ≤ m, we proceed as
follows. Let (u, v) = ek be an edge in G. We may assume
without loss of generality that u has color 1 and v has color 2.
For 1 ≤ i ≤ k +1, we assign color 1 to all ci, c′

i, gi, color 2 to
all ai, di, d′

i , color 3 to all bi, e′
i, fi and color 4 to all b′

i, ei, f ′
i .

This way we obtain a witness for G′ B−→ K4.
Suppose G′ B−→ K4. Let !′ be a locally bijective homomor-

phism from G′ to K4. Let (u, v) = ek be an edge in G. We may
assume without loss of generality that !′(g0) = !′(u) = 1 and
!′(a1) = 2. Then !′({b1, b′

1}) = {3, 4}, and consequently,
!′({c1, c′

1}) = {1}. We may assume without loss of generality
that !′(b1) = 3 and !′(b′

1) = 4. Then !′({d1, e1}) = {2, 4}
and !′({d′

1, e′
1}) = {2, 3}. Then !′(f1) = 3 and !′(f ′

1) = 4.
Consequently !′(g1) = 1 and !′(a2) = 2. Continuing this
way, we find that !′(gk+1) = 1 and !′(v) = !′(ak+2) = 2.
Hence, the restriction ! of !′ : VG′ → VK4 to VG is a witness
for G B−→ K4. !

6.3.2. Properties of the Gadget. In Lemmas 26–29, we
state a number of useful properties of semiregular colorings
of multi-diamond graphs. The first lemma gives us a relation
between the colors of different a-vertices and g-vertices.

Lemma 26. Let G′ be a multi-diamond graph of a con-
nected K4-candidate G with |EG| = m. If ! is a semiregular

coloring of G′ then for all 1 ≤ i ≤ k + 1, for all 1 ≤ k ≤ m
and for all 1 ≤ j ≤ k′ + 1, for all 1 ≤ k′ ≤ m,

!(gi(k)) = !(gj(k′)) and !(ai+1(k)) = !(aj+1(k′))
⇐⇒

!(gi−1(k)) = !(gj−1(k′)) and !(ai(k)) = !(aj(k′)).

Proof. Let 1 ≤ i ≤ k + 1 for some 1 ≤ k ≤ m, and let
1 ≤ j ≤ k′ + 1 for some 1 ≤ k′ ≤ m′.

Suppose !(gi(k)) = !(gj(k′)) and !(ai+1(k)) =
!(aj+1(k′)). By definition of a semiregular coloring,
!({fi(k), f ′

i (k)}) = !({fj(k′), f ′
j (k

′)}). Without loss of
generality, we may assume !(fi(k)) = !(fj(k′)) and
!(f ′

i (k)) = !(f ′
j (k

′)). Consequently, !({di(k), ei(k)}) =
!({dj(k′), ej(k′)}). Then !(ci(k)) = !(cj(k′)). This means
we have !(bi(k)) = !(bj(k′)). By symmetry, we obtain
!(b′

i(k)) = !(b′
j(k

′)). Hence, we find !(ai(k)) = !(aj(k′))
and consequently !(gi−1(k)) = !(gj−1(k′)).

We show the reverse implication by the same arguments.
!

The next lemma shows that if a multi-diamond graph G′

does not cover K4, then the vertices in any multi-diamond
of G′ must all have different colors. So, the neighbors of the
inner vertices in a multi-diamond are all different.

Lemma 27. Let G′ be a multi-diamond graph of a con-
nected K4-candidate G with |EG| = m. Let ! be a semiregular
coloring of G′. If G′ does not cover K4, then |!(Di(k)| = 12
for all 1 ≤ i ≤ k + 1, for all 1 ≤ k ≤ m.

Proof. Let Di = Di(k) be a multi-diamond in G′. Note
that ci, di, ei have different colors. We write !(di) = 1,
!(ei) = 2 and !(ci) = 3.

Claim 1. We may assume !(bi) = 4 and !(b′
i) /∈

{!(d′
i), !(e

′
i)}.

Note that !(bi) %= 3. We will also show !(bi) /∈ {1, 2}. We
write x = !(fi) and y = !(gi). Suppose !(bi) ∈ {1, 2}. By
symmetry, we may assume !(bi) = 1. Then either !(ai) = 2
and !(b′

i) = x, or !(ai) = x and !(b′
i) = 2.

First suppose !(ai) = 2 and !(b′
i) = x. Then c′

i and gi have
the same color. Since f ′

i is a neighbor of gi, this implies that
!(f ′

i ) must be the color of a neighbor of c′
i. Suppose !(f ′

i ) = x.
By definition of a semiregular coloring, c′

i also has at least
two neighbors with color x. Then either !(d′

i) = !(f ′
i ) or

!(e′
i) = !(f ′

i ). Both cases are not possible because adjacent
vertices may not share the same color. If !(f ′

i ) %= x, then !(f ′
i )

must still be a color of a neighbor of c′
i. This neighbor can not

be b′
i since !(b′

i) = x. So it must be d′
i or e′

i, and we obtain
the same contradiction.

Now suppose !(ai) = x and !(b′
i) = 2. Then !(c′

i) = 3.
Since !(c′

i) = !(ci) and ci has two neighbors with color 1,
we then find that c′

i has two neighbors with color 1. Since b′
i

already has color 2, this implies that !(e′
i) = !(d′

i) = 1. This
is not possible by definition of a semiregular coloring.
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From the above, we conclude that !(bi) /∈ {1, 2, 3}. So
we may write !(bi) = 4. By symmetry, we find !(b′

i) /∈
{!(d′

i), !(e
′
i)}.

Claim 2. We may assume !(fi) = 5 and !(c′
i) %= !(f ′

i ).

Note that !(fi) /∈ {1, 2}. We will also show !(fi) /∈ {3, 4}.
First suppose !(fi) = 3. We write x = !(ai) and y =

!(b′
i). Since fi must have a neighbor with color 4, we obtain

!(gi) = 4. Consequently, either !(f ′
i ) = x or !(f ′

i ) = y. In
the first case, if !(f ′

i ) = x, then y = !(b′
i) must belong to

{!(d′
i), !(e

′
i)}. By Claim 1, this is not possible. In the second

case, if !(f ′
i ) = y, we use 4 = !(b1) = !(gi) to find that

!(c′
i) = !(d′

i) or !(c′
i) = !(e′

i). Both options are not possible.
Now suppose !(fi) = 4. Then {!(ai), !(b′

i)} = {1, 2} and
!(gi) = 3. Then, for i = 1, 2, 3, 4, each vertex u in G′ with
color i has N(u) = {1, 2, 3, 4}\{i}. Then G′ B−→ K4. This is a
contradiction.

From the above, we conclude that !(fi) /∈ {1, 2, 3, 4}. So
we may write !(fi) = 5. By symmetry, we obtain !(c′

i) %=
!(f ′

i ).

Claim 3. We may assume !(ai) = 6 and 6 /∈
{!(b′

i), !(c
′
i), !(d

′
i), !(e

′
i), !(f

′
i )}.

Note that !(ai) %= 4. We will also show that !(ai) /∈
{1, 2, 3, 5}. Since ai has a neighbor, namely bi, with color
4 whereas di and ei do not have such a neighbor, we obtain
!(ai) /∈ {1, 2}. Suppose !(ai) ∈ {3, 5}. Then !(b′

i) ∈ {1, 2}.
We may assume without loss of generality that !(b′

i) = 1.
However, then colors 1 and 4 belong to adjacent vertices,
namely b′

i and bi. Since !(di) = 1, and 4 /∈ !(NG′(di)) =
{2, 3, 5}, this is not possible. Hence !(ai) /∈ {1, 2, 3, 4, 5}.
So we may write !(ai) = 6. By symmetry, we obtain
6 /∈ {!(b′

i), !(c
′
i), !(d

′
i), !(e

′
i), !(f

′
i )}.

Claim 4. We may assume !(b′
i) = 7.

Note that !(b′
i) /∈ {1, 2, 3, 4, 6}. Suppose !(b′

i) = 5. Then
!(NG′(b′

i)) must contain {1, 2, 4, 6}. This is not possible, since
degG′(b′

i) = 3. Hence !(b′
i) > 6, so we may write !(b′

i) = 7.

Claim 5. We may assume !(c′
i) = 8.

Note that !(c′
i) /∈ {1, 2, 3, 7}. The color of c′

i cannot be 4
because then 3 and 6 are colors of adjacent vertices, namely
the neighbors d′

i and e′
i of c′

i, and this is not possible. By
Claim 3, !(c′

i) %= 6.
Suppose !(c′

i) = 5. Then !(gi) = 7 and !({d′
i , e′

i}) =
{1, 2}. Consequently, !(f ′

i ) = 3. Then colors 3 and 7 belong
to adjacent vertices (namely f ′

i and gi). However, this is not
possible, since !(ci) = 3 and 7 /∈ !(NG′(ci)) = {1, 2, 4}.
Hence !(c′

i) > 7, so we may write !(c′
i) = 8.

Claim 6. We may assume !(d′
i) = 9 and !(e′

i) = 10.

We will first show that !(d′
i) > 8. First note that !(d′

i) /∈
{1, 2, 3, 4, 8}. Suppose !(d′

i) = 5. Then !(e′
i) ∈ {1, 2}. This is

not possible since 8 /∈ !(NG′(di)) ∪ !(NG′(ei)) = {1, 2, 3, 5}.
By Claim 3, !(d′

i) %= 6. Suppose !(d′
i) = 7. Then 6 is the

color of e′
i or f ′

i . By Claim 3, this is not possible. Hence,
indeed !(d′

i) > 8 and we we may write !(d′
i) = 9.

By symmetry, !(e′
i) > 8. Since d′

i and e′
i are adjacent,

!(d′
i) %= !(e′

i). Hence !(e′
i) > 9, and we may write !(e′

i) =
10.

Claim 7. We may assume !(f ′
i ) = 11.

Note that !(f ′
i ) /∈ {1, 2, 3, 4, 7, 9, 10}. Suppose !(f ′

i ) = 5.
Then !(NG′(f ′

i )) must contain {1, 2, 9, 10}. This is not possible
since degG′(f ′

i ) = 3. By Claim 3, !(f ′
i ) %= 6. By Claim 2,

!(f ′
i ) %= 8. Hence !(f ′

i ) > 10, and we may write !(f ′
i ) = 11.

Claim 8. We may assume !(g′
i) = 12.

Note that !(g′
i) /∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}. Suppose

!(g′
i) = 6. Then !(NG′(g′

i)) contain colors 4, 5, 7, 11. This
is not possible, since degG′(g′

i) = 3. Hence !(g′
i) > 11,

and we may write !(g′
i) = 12. This completes the proof of

Lemma 27. !

The next lemma shows the following. If G′ does not cover
K4, then the color of each gi(k) cannot be assigned to the
vertices of any multi-diamond Dj(k′) excluding gj(k′), and
the same holds for the color of each ai(k). We need this lemma
to prove in Lemma 29 that also the neighbors of vertices that
are not inner vertices of multi-diamonds have different colors.

Lemma 28. Let G′ be a multi-diamond of a connected K4-
candidate G with |EG| = m. Let ! be a semiregular coloring
of G′. If G′ does not cover K4, then

(i) !(gi(k)) /∈ !(Dj(k′)\{gj(k′)}) for all 1 ≤ i ≤ k +1, for all
1 ≤ k ≤ m and for all 1 ≤ j ≤ k′ + 1, for all 1 ≤ k′ ≤ m.

(ii) !(ai(k)) /∈ !(Dj(k′)\{aj(k′)}) for all 1 ≤ i ≤ k +1, for all
1 ≤ k ≤ m and for all 1 ≤ j ≤ k′ + 1, for all 1 ≤ k′ ≤ m.

(iii) {!(g0(k)), !(ak+2(k))} ∩ !(Dj(k′)) = ∅ for all 1 ≤ j ≤
k′ + 1, for all 1 ≤ k, k′ ≤ m.

Proof. Note that for 1 ≤ k ≤ m, we have defined ver-
tices ak+2(k) and g0(k), while we did not define a0(k) and
gk+2(k). We first prove (i), then (ii) and then (iii).

(i) We use a proof by contradiction. Suppose there exist
indices i, j, k, k′ such that there is a vertex u ∈ Dj(k′)\{gj(k′)}
with !(u) = !(gi(k)). Then (i, k) %= (j, k′) due to Lemma 27.
We note that there exist two vertices v, w ∈ NG′(u) ∩ Dj(k′)
with (v, w) ∈ EG′ . Because !(u) = !(gi(k)), we find that at
least one of the vertices v, w, has a color in {!(fi(k)), !(f ′

i (k))}.
We may assume without loss of generality that !(v) =
!(fi(k)). Then w has a color in {!(di(k)), !(ei(k))}. We may
assume without loss of generality that !(w) = !(di(k)). Then
we have found that !(di(k)) and !(gi(k)) are colors of adja-
cent vertices (namely of u and w). We consider Di(k) again.
By definition of a semiregular coloring, !(gi(k)) must be a
color of one of the neighbors of di(k). Since these neighbors
are ci(k), ei(k), fi(k), we find that !(gi(k)) appears twice on
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FIG. 11. The two multi-diamonds in the proof of Lemma 28 (ii).

Di(k). This is a contradiction to Lemma 27. Hence we have
proven (i).

(ii) Also here, we use a proof by contradiction. Note that
we cannot use the same proof as for statement (i) because
the two cases are not symmetric. Suppose there exist indices
i, j, k, k′ such that there is a vertex u ∈ Dj(k′) \ {aj(k′)} with
!(u) = !(ai(k)). Then (i, k) %= (j, k′) due to Lemma 27.

By Lemma 27, we may assume !(di(k)) = 1, !(ei) =
2, !(ci(k)) = 3, !(bi(k)) = 4, !(fi(k)) = 5, !(ai(k)) =
6, !(b′

i(k)) = 7, !(c′
i(k)) = 8, !(d′

i(k)) = 9, !(e′
i(k)) =

10, !(f ′
i (k)) = 11, !(gi(k)) = 12; see the left hand side of

Figure 11. We write x and y for !(gi−1(k)) and !(ai+1(k)),
respectively.

We write aj for aj(k′), and so on; see the right hand side of
Figure 11. Due to (i), gj does not have color !(ai(k)) = 6. By
symmetry, we are done (i.e., we get our desired contradiction)
if we can show that the color !(v) of each v ∈ {bj, cj, dj, fj} is
not equal to 6. We consider these four cases separately.

Suppose !(cj) = 6. Then {!(dj), !(ej)} ∩{ 4, 7} %= ∅. We
may assume without loss of generality that !(dj) = 4. Then cj
and dj both have a neighbor with color 7. By Lemma 27, we
then obtain !(ej) = 7. Since ej has a neighbor with color 8,
we then find !(fj) = 8. Then colors 4 and 8 belong to adjacent
vertices (namely dj and fj) but this is impossible, since it is
not the case in Di(k). Hence !(cj) %= 6.

Suppose !(fj) = 6. Then {!(dj), !(ej)} ∩{ 4, 7} %= ∅. We
may assume without loss of generality that !(dj) = 4. Then
fj and dj both have a neighbor with color 7. By Lemma 27,
we then obtain !(ej) = 7. Since ej has a neighbor with color
8, we then find !(cj) = 8. Then colors 4 and 8 belong to
adjacent vertices (namely dj and cj) but this is impossible,
since it is not the case in Di(k). Hence !(fj) %= 6.

Suppose !(dj) = 6. Then {!(cj), !(fj)} ∩{ 4, 7} %= ∅. We
assume without loss of generality that 4 ∈ {!(cj), !(fj)}. Sup-
pose !(cj) = 4. Then cj and dj both have a neighbor with
color 7. By Lemma 27, we then obtain !(ej) = 7. Since ej
must have a neighbor with color 8, we then find !(fj) = 8.
Then a vertex with color 8, namely fj, has a neighbor with
color 6, namely dj. This is not possible, since !(b′

i(k)) = 8
and 4 /∈ !(NG(b′

i(k))). Hence !(cj) %= 4. Suppose !(fj) = 4.
Then fj and dj both have a neighbor with color 7. Again, by
Lemma 27, we obtain !(ej) = 7. Since ej must have a neigh-
bor with color 8, we then obtain !(cj) = 8. Then we find the

same contradiction, namely two adjacent vertices with colors
6 and 8. Hence !(dj) %= 6.

Suppose !(bj) = 6. If i ≥ 2, then bj must have a neigh-
bor with color x = !(gi−1(k)). This is not possible, since
!(gi−1(k)) is not a color of Dj(k)\{gj(k)}, as proved in part
(i) of this lemma. Hence, i = 1 and y = !(a2(k)). Note that
a2(k) is a vertex of a multi-diamond, by construction of G′.

Since bj has color 6, colors 4 and 7 must be colors of
neighbors of b. If ci has color 4 or 7, then 6 is the color of two
vertices of Dj(k), namely of bj and fj. This is not possible due
to Lemma 27. Hence, !({aj, b′

j}) = {4, 7}. We may assume
without loss of generality that !(aj) = 7 and !(b′

j) = 4. Con-
sequently, we obtain !(c′

j) = 3, !({d′
j , e′

j}) = {1, 2}, !(f ′
j ) = 5

and !(gj) = 12. Then either !(fj) = !(a2(k)) = y, or !(fj) =
11. We consider each case. Suppose !(fj) = !(a2(k)) = y. In
the same way as we have proven that fj does not have color
!(a1(k)) we can show that fj does not have color !(a2(k))

either. Suppose !(fj) = 11. Then !({dj, ej}) = {9, 10} and
consequently !(cj) = 8. This is not possible, since a vertex
with color 8, namely cj, does not have a neighbor with color
6. This way we have proven statement (ii).

(iii) We use a proof by contradiction. Let u = ak+2(k) for
some 1 ≤ k ≤ m. Let v ∈ Dj(k′) for some 1 ≤ j ≤ k′ +1 and
some 1 ≤ k′ ≤ m such that v and u have the same color !(v) =
!(u). Then v has a neighbor v′ in Dj(k′)\{ai(k), gi(k′)}. Since
!(u) = !(v), there exists a vertex u′ ∈ NG′(u) such that
!(v′) = !(u′). We observe that either u′ = a1(k∗) or u′ =
gk′+1(k∗) for some 1 ≤ k∗ ≤ m. By (i) and (ii), the color
of a1(k∗) and the color of gk+1(k∗) cannot be assigned to
some inner vertex of a multi-diamond Dj(k′). So we obtain
a contradiction. The case u = g0(k) uses exactly the same
arguments. This completes the proof of Lemma 28. !

The proof of the next lemma explains why we replaced
each edge in a K4-candidate by a different number of
multi-diamonds. It shows that the neighbors of all vertices
have different colors if G′ does not cover K4. Hence our
semiregular coloring is a perfect-regular coloring.

Lemma 29. Let G′ be a multi-diamond graph of a connected
K4-candidate G. Let ! be a semiregular coloring of G′. If G′

does not cover K4, then ! is a perfect-regular coloring of G′.
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Proof. Let |EG| = m. By definition of a perfect-regular
coloring, we prove this lemma by showing that the neighbors
of any vertex u ∈ VG′ all have different colors. This statement
is true if u is an inner vertex of a multi-diamond, due to
Lemma 27.

Suppose u = gi(k) for some 1 ≤ i ≤ k + 1 and some
1 ≤ k ≤ m. By Lemma 27, we obtain !(fi(k)) %= !(f ′

i (k)).
By Lemma 28, we obtain !(ai+1(k)) /∈ {!(fi(k)), !(f ′

i (k))}.
Hence all neighbors of u have a different color. The case
u = ai(k) for 1 ≤ i ≤ k + 1 uses the same arguments.

In the two remaining cases, we have u = g0(k) or
u = ak+2(k), respectively, for some 1 ≤ k ≤ m. First
suppose u = g0(k) for some 1 ≤ k ≤ m. Suppose u has
neighbors v, w in G′ with !(v) = !(w). We distinguish three
possibilities. First, if {v, w} = {a1(k′), gk∗+1(k∗)} for some
1 ≤ k′, k∗ ≤ m, then we obtain a contradiction due to
Lemma 28. Second, suppose {v, w} = {a1(k′), a1(k∗)}, say
v = a1(k′) and w = a1(k∗), for some 1 ≤ k′ ≤ k∗ − 1. Note
u = g0(k′) = g0(k∗). So we have !(g0(k′)) = !(g0(k∗)) and
!(a1(k′)) = !(a1(k∗)). We apply Lemma 26 for k′+1 times in
order to obtain !(ak′+2(k′)) = !(ak′+2(k∗)). This contradicts
Lemma 28. Third, suppose {v, w} = {gk′+1(k′), gk∗+1(k∗)}
for some 1 ≤ k′ ≤ k∗ − 1. This third possible case uses the
same arguments as the second one. Hence we obtain that all
neighbors of u have a different color.

Suppose u = ak+2(k) for some 1 ≤ k ≤ m. We can prove
that all neighbors of u have a different color in the same
way as we did for u = g0(k). This completes the proof of
Lemma 29. !

6.3.3. The Reduction. We are now ready to show that the
Proper semi-regular coloring problem is NP-complete.

Proof. To show membership in NP, we must verify the
following for a given labeling ! of a graph G. First we must
check O(n) subgraphs G[i] for being edgeless. Second, we
must check O(n2) subgraphs G[i, j] of G for semiregular
bipartiteness. Both checks can be performed in polynomial
time. Hence, the problem is a member of NP.

We prove NP-completeness by a reduction from the
K4-cover problem. By Lemma 25, we may consider a multi-
diamond graph G′ of a connected K4-candidate G as our
instance. We claim that the following three statements are
equivalent. Note that we prove a bit more than required by
including statement (ii). The reason we do this is made clear
in Remark 30.

(i) G′ covers K4.
(ii) G′ has a proper semiregular coloring ! with |!−1(i)| ≥ 2

for all 1 ≤ i ≤ |!(VG)|.
(iii) G′ has a proper semiregular coloring.

The proof is as follows.
(i) ⇒ (ii)
Suppose G′ covers K4. Let f be a locally bijective homo-

morphism from G′ to K4. By Observation 2, f is a proper

perfect-regular coloring, and consequently, a proper semireg-
ular coloring of G′ that uses four colors. On any multi-
diamond of G′ these four colors appear at least twice. Hence
|f −1(i)| ≥ 2 for all 1 ≤ i ≤ |f (VG)|.

(ii) ⇒ (iii)
This is trivial.
(iii) ⇒ (i)
Suppose G′ does not cover K4. We show that G′ does not

have a proper semiregular coloring.
Since we can map each vertex of G′ to a unique color, G has

at least one semiregular coloring. So, let ! be a semiregular
coloring of G′. By Lemma 29, ! is a perfect-regular color-
ing, and consequently, a pseudo-regular labeling of G′. We
show that any vertex u that does not belong to some multi-
diamond of G′ has a unique color !(u) = x, in other words
|!−1(x)| = 1. Since ! is a pseudo-regular labeling, we then
apply Observation 18 to conclude that all vertices in G′ have
a unique color. Hence, ! is not proper and we are done.

So, let !(u) = x be a color of a vertex u ∈ VG′ that is not in
any multi-diamond, i.e., u = g0(k) or u = ak+2(k) for some
1 ≤ k ≤ m. First suppose u = g0(k). We will use a proof by
contradiction to show that x /∈ !(VG′ \{u}).

Suppose x = !(v) for some vertex v ∈ VG′ \{u}. By
Lemma 28, v does not belong to some multi-diamond. Hence
v = ak′+2(k′) or v = g0(k′) for some 1 ≤ k′ ≤ m. We write
y = !(a1(k)). Since ! is a perfect-regular coloring of G′, v has
a neighbor v′ with !(v′) = y. By Lemma 28, v′ %= gk∗+1(k∗)
for some 1 ≤ k∗ ≤ m. Hence v′ = a1(k∗) for some
1 ≤ k∗ ≤ m. By construction of G′ (also see Fig. 11), we
then have v = g0(k∗). So we have x = !(g0(k)) = !(g0(k∗))
and y = !(a1(k)) = !(a1(k∗)). We may assume without loss
of generality that k ≤ k∗ − 1. We apply Lemma 25 k + 1
times to obtain !(ak+2(k)) = !(ak+2(k∗)). This contradicts
Lemma 28. The case u = ak+2(k) can be proven using the
same arguments. Hence u is the only vertex in G′ with color
x. As explained earlier on, we may now conclude that G′ does
not allow a proper semiregular coloring. !

Remark 30. The equivalence of statements (i)–(iii) above,
combined with Theorem 12, shows that Theorem 17 holds for
the leader election problem in model (5).

Remark 31. As perfect-regular and regular colorings are
semiregular colorings, NP-completeness of Proper perfect-
regular coloring and Proper regular coloring also follows
from the proof for Proper semi-regular coloring; we use
the same arguments after replacing each occurrence of the
adjective “semiregular” by “regular” or “perfect-regular,”
respectively.

7. THE PROOF OF THEOREM 5

The proofs for Semi-regular k-labeling and Connected k-
labeling are given in Section 3. Here is the proof for the other
nine statements. We first analyze the proofs in Section 6.

18 NETWORKS—2011—DOI 10.1002/net



This immediately gives us NP-completeness results for many
values of k. Then we discuss the remaining (small) values of
k for each of the nine labelings separately.

7.1. Using the Proofs for Proper Labelings

We first discuss the case k = 1. In Section 6, we showed
membership of NP for every proper labeling problem by
explaining how to check in polynomial time if a given label-
ing of a graph G is a required labeling. This implies that the
case k = 1 is polynomial-time solvable (because for k = 1
we have ! ≡ 1). We now consider every reduction in Section 6
to obtain a number of NP-completeness results.

Recall the reduction in Section 6.1.3. For any k ≥ 5, we let
G be a K-candidate on at least k vertices (such that a labeling
of diamond graph Gq that uses at most k labels is proper).
Then we can replace statements (ii)–(viii) in the reduction in
Section 6.1.3 by

(ii) Gq has a perfect-regular coloring that uses at most k colors;
(iii) Gq has a regular coloring that uses at most k colors;
(iv) Gq has a pseudo-regular coloring that uses at most k colors;
(v) Gq has a symmetric regular labeling that uses at most k

labels;
(vi) Gq has a perfect-regular labeling that uses at most k labels;

(vii) Gq has a regular labeling that uses at most k labels;
(viii) Gq has a pseudo-regular labeling that uses at most k labels,

and repeat all arguments made in this reduction. We then find
that the following problems are NP-complete for any fixed
k ≥ 5:

• Perfect regular k-coloring
• Regular k-coloring
• Pseudo-regular k-coloring
• Symmetric regular k-labeling
• Perfect-regular k-labeling
• Regular k-labeling
• Pseudo-regular k-labeling

Note that for k ≤ 4 we cannot use the argument above,
because |VK | = 5.

Recall the reduction in Section 6.2.3. For any k ≥ 3 we
let (Q, S) be a non-trivial hypergraph with |Q| ≥ k (such that
a connected coloring of C3-minimizer I∗ that uses at most k
labels is proper). Then we can replace statement (iii) in the
reduction in Section 6.2.3 by

(iii) I∗ admits a connected coloring that uses at most k colors,

and repeat all arguments made in this reduction. We then find
that the connected k-coloring problem is NP-complete for
any fixed k ≥ 3. Note that for k ≤ 2 we cannot use the
argument above, because any connected coloring of I∗ uses
at least three colors due to the presence of a triangle.

Recall the reduction in Section 6.3.3. For any k ≥ 4, we
let G be a K4-candidate on at least k vertices (such that a
labeling of a multi-diamond graph G′ that uses at most k labels
is proper). Then we replace statement (iii) in the reduction

in Section 6.3.3 by the following three statements (see also
Remark 31):

(iii) G′ has a perfect-regular coloring using at most k colors;
(iv) G′ has a regular coloring using at most k colors;
(v) G′ has a semiregular coloring using at most k colors,

and repeat all arguments made in this reduction. We then find
that Perfect-regular k-coloring, Regular k-coloring and Semi-
regular k-coloring are NP-complete for any fixed k ≥ 4;
note that we already proved above that the first two problems
are NP-complete for any fixed k ≥ 5. New arguments are
required for k ≤ 3, because |VK4 | = 4.

7.2. The Remaining Values of k

To complete our dichotomy results, we use reductions
from several NP-complete problems. We explain them below.

7.2.1. Known NP-Complete Problems used in the Proofs.
For several cases, we use a variant on the Hypergraph
2-colorability problem for some specific classes of hyper-
graphs, which we explain below.

A hypergraph (Q, S) with incidence graph I is called p-
regular if every q ∈ Q belongs to exactly p sets in S, or
equivalently, if degI(q) = p for all q ∈ Q. Hypergraph (Q, S)

is called m-uniform if every set S ∈ S contains exactly m
elements of Q, or equivalently, if degI(S) = m for all S ∈ S.

For any 1 ≤ k ≤ m − 1, an m-uniform hypergraph (Q, S)
is said to have a (k-in-m)-coloring if there exists a partition
of Q into Q1 ∪ Q2 such that |Q1 ∩ Sj| = k (and consequently
|Q2 ∩ Sj| = m − k) for each Sj ∈ S. Then, for fixed integers
k, m with 1 ≤ k ≤ m − 1, one can define the following
decision problem.

Hypergraph (k-in-m)-colorability
Instance: An m-uniform hypergraph (Q, S).
Question: Does (Q, S) have a (k-in-m)-coloring?

Kratochvíl [19] proved the following result, which is very
useful for us; in our proofs we will use reductions from Hyper-
graph (1-in-3)-colorability for 3-regular 3-uniform hyper-
graphs and Hypergraph (3-in-6)-colorability for 3-regular
6-uniform hypergraphs.

Theorem 32 ([19]). For every p ≥ 3, m ≥ 3 and 1 ≤
k ≤ m − 1, the Hypergraph (k-in-m)-colorability problem
restricted to the class of p-regular m-uniform hypergraphs is
NP-complete.

We also use the Graph k-colorability problem. This prob-
lem asks if a given graph G is k-colorable for some fixed
integer k. The Graph k-colorability problem is well known to
be NP-complete for all fixed k ≥ 3 (cf. [18]).

Finally, we make again use of the H-cover problem. We
take H = K3,3 and H = K4,4. Here, Kp,p denotes the complete
bipartite graph, in which each partition class consists of p
vertices. Both problems are NP-complete [13].
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7.2.2. Perfect-Regular Labelings. We are left to prove
that the perfect regular k-labeling problem is polynomial-
time solvable for k = 2 and NP-complete for 3 ≤ k ≤ 4.

Proof. Let k = 2. Then G has a perfect-regular labeling
with at most two colors if and only if one of the following
conditions holds:

• G has no edge (then one color can be used).
• Each connected component of G has two vertices (then one

color can be used).
• Each connected component of G is a path u1u2u3u4 (then

u1 and u4 get color 1 and u2, u3 get color 2).
• Each connected component of G is a cycle on 4p vertices

(then the vertices can be colored in order 1,1,2,2,1,1 and
so on, when going along the cycle).

We can check all three conditions in polynomial time.
Let k = 3. We prove that perfect-regular 3-labeling is NP-

complete by a reduction from K3,3-cover. We observe that any
graph that allows a locally bijective homomorphism to K3,3 is
(3,3)-regular bipartite. Since we can check this condition in
polynomial time, we may assume without loss of generality
that our instance graph G of K3,3-cover is (3,3)-regular bipar-
tite. We denote the vertices of K3,3 by 1, 2, 3, 1′, 2′, 3′ such
that the edges of K3,3 are of the form (i, j) for any i ∈ {1, 2, 3}
and j ∈ {1′, 2′, 3′}.

We claim that G B−→ K3,3 holds if and only if G has a
perfect-regular labeling of at most three colors.

Suppose G B−→ K3,3 holds. Let f be a locally bijective
homomorphism from G to K3,3. We replace each occurrence
of color 1′ by 1, each occurrence of color 2′ by 2, and each
occurrence of color 3′ by 3. The resulting labeling is perfect-
regular.

Suppose G has a perfect-regular labeling ! using at most
3 labels. Since G is (3,3)-regular bipartite, every vertex in G
has three neighbors. By definition of a perfect-regular label-
ing, each such neighbor must have a different label. Hence,
!(VG) = {1, 2, 3}. Let the partition classes of G be A and
B. Then we replace each occurrence of label 1 on B by 1′,
each occurrence of label 2 on B by 2′, and each occurrence of
label 3 on B by 3′. The resulting mapping is a locally bijective
homomorphism from G to K3,3.

Let k = 4. We prove NP-completeness by a reduction
from K4,4-cover. The proof uses exactly the same arguments
as in the previous case. !

7.2.3. Perfect-Regular Colorings. We are left to prove
that the perfect regular k-coloring problem is polynomial-
time solvable for 2 ≤ k ≤ 3.

Proof. Let k = 2. Let G be a graph. Then G has a perfect-
regular coloring with at most two colors if and only if G has
no edge (then one color can be used), or each connected
component of G has exactly one edge. We can check both
conditions in polynomial time.

Let k = 3. Let G be a graph. Recall that the cycle on
three vertices is denoted C3, and let P3 denote the path on

FIG. 12. An example of a graph I ′ obtained from a 3-regular 6-uniform
hypergraph (Q, S).

three vertices. We first check (in polynomial time) if G has a
perfect-regular coloring with at most two colors. Suppose not.
Then we check if G has a perfect-regular coloring with exactly
three colors. This is the case if and only if each connected
component of G is a cycle of length divisible by three (then
G B−→ C3), or if each connected component of G is a path on
three vertices (then G B−→ P3). Clearly, we can check these
two conditions in polynomial time. !

7.2.4. Connected Colorings. We are left to prove that the
connected k-coloring problem is polynomial-time solvable
for k = 2.

Proof. Let k = 2. Let G be a graph. Then G has a con-
nected coloring with at most two colors if and only if G has
no edge (then one color can be used), or each connected com-
ponent of G is bipartite and contains at least one edge. We
can check both conditions in polynomial time. !

7.2.5. Semiregular Colorings. We are left to prove that
the semi-regular k-coloring problem is polynomial-time
solvable for k = 2 and NP-complete for k = 3.

Proof. Let k = 2. Let G be a graph. Then G has a
semiregular coloring with at most two colors if and only if G
has no edge (then one color can be used), or G is semiregular
bipartite. We can check both conditions in polynomial time.

Let k = 3. We show NP-completeness by reduc-
ing from the Hypergraph (3-in-6)-colorability problem for
the class of 3-regular 6-uniform hypergraphs. By Theo-
rem 32, this problem is NP-complete. Let (Q, S) be a 3-
regular 6-uniform hypergraph (Q, S) with Q = {q1, . . . , qm}
and S = {S1, . . . , Sn}. We modify its incidence graph I
as follows.

First, we make a copy S′
j of each Sj ∈ S and a copy q′

i
of each qi ∈ Q. For all i, j, we add an edge (q′

i, S′
j) if and

only if qi ∈ Sj. For each 1 ≤ i ≤ m, we add an edge (qi, q′
i).

We denote the resulting graph by I ′. Note that, in I ′, all qi
and all copies q′

i have degree four, while all Sj and all copies
S′

j have degree six. See Figure 12 for an example of I ′. For
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clarity reasons, we only display the adjacencies of one set
Sj ∈ S and one element qi ∈ Q, together with their copies in
S ′ and Q′, respectively. We prove that I ′ admits a semiregular
coloring with at most 3 colors if and only if (Q, S) admits a
3-in-6 coloring.

Suppose (Q, S) admits a 3-in-6 coloring Q1 ∪ Q2. For all
Sj, we define !(Sj) = !(S′

j) = 3. For all qi ∈ Q1, we let
!(qi) = 1 and !(q′

i) = 2. For all qi ∈ Q2, we let !(qi) = 2
and !(q′

i) = 1. Since (Q, S) is 6-uniform and 3-regular, ! is
a semiregular coloring of I ′ using exactly 3 colors.

Suppose I ′ admits a semiregular coloring ! using at most 3
colors. Since ! is a semiregular coloring, all vertices in I ′ with
the same color must have the same degree. Since vertices in
Q have degree four and vertices in S have degree six, ! uses
at least two colors. By construction, there exists an edge in
I ′ between any qi and its copy q′

i, which are both of degree
four. Since adjacent vertices have different colors, we then
find that there are at least two colors, say 1, 2, that appear only
on vertices of degree four. Consequently, ! uses exactly three
colors such that all vertices of degree four have color 1 or 2,
and all vertices of degree six have the same color, say color
3. Since each qi and its copy q′

i are adjacent, we then find
that either qi, q′

i are colored by 1, 2, respectively, or else by
2,1, respectively. Consequently, if a vertex Sj has p neighbors
labeled by 1, then its copy S′

j has 6 − p neighbors labeled
by 1. Since Sj and S′

j have the same color, we obtain p = 3.
Then each Sj has 3 neighbors labeled by 1 and 3 neighbors
labeled by 2. Thus, Q1 ∪ Q2 with Q1 = {q ∈ Q|!(q) = 1}
and Q2 = Q \ Q1 is a 3-in-6-coloring of (Q, S). !

7.2.6. Regular Colorings and (Symmetric) Regular
Labelings. We are left to prove that problem regular k-
coloring is polynomial-time solvable for k = 2 and NP-
complete for k = 3, and that the problems symmetric
regular k-labeling and regular k-labeling are polynomial-time
solvable for k = 2 and NP-complete for 3 ≤ k ≤ 4.

Proof. Let k = 2. Let G be a graph.
We find that G has a regular coloring with at most two

colors if and only if G has no edge (then one color can be
used), or G is regular bipartite. We can check both conditions
in polynomial time.

We now show how to check in polynomial time if G admits
a regular labeling with at most two colors. First we check (in
polynomial time) if G has a regular labeling with one color.
This is the case if and only if G is regular. So, if G is regular
then we are done.

Suppose G is not regular. We (efficiently) check if the ver-
tices of G can be split into two different classes according to
their degrees. If not, then G does not have a regular labeling
with at most two colors. This is because in that case the num-
ber of different degrees in G is at least three. However, in any
regular labeling of G, two vertices with the same color have
the same degree.

Suppose VG can indeed be partitioned into two sets V1
and V2 such that all vertices in V1 (resp. V2) have the same
degree. We color all vertices in V1 by 1 and all vertices in V2

by 2. Then we are left to check if this labeling is a regular
labeling, which we can do in polynomial time (i.e., we check
if both G[1] and G[2] are regular, and if G[1, 2] is regular
bipartite).

We now show how to check in polynomial time whether G
admits a symmetric regular labeling with at most two colors.
We first check (in polynomial time) if G has a symmetric
regular labeling with one color. This is the case if and only if
G is regular and admits a perfect matching in case its vertices
have odd degree. If so, we are done. Suppose this is not the
case.

First, we (efficiently) check if G is regular. If so, then G
does not have a symmetric regular labeling with at most two
colors. This can be seen as follows. Suppose G is d-regular
for some d ≥ 1. Since G does not have a symmetric regular
labeling with at most one color, d is odd, and G does not
admit a perfect matching. If G admits a symmetric regular
labeling with two colors, say 1, 2, then G[1, 2] is regular
bipartite. Then G[1, 2], and consequently, G would admit a
perfect matching due to König’s Theorem (cf. [5]). This is
not possible.

Suppose G is not regular. Also, in any symmetric regu-
lar labeling two vertices with the same color have the same
degree. Furthermore, as noted at the start of this proof, we
can efficiently check if a given labeling is a symmetric reg-
ular labeling. Hence, we can perform similar steps as in the
previous algorithm (for regular labelings).

Let 3 ≤ k ≤ 4. We prove NP-completeness by reduc-
tion from Hypergraph (3-in-6)-colorability for 3-regular 6-
uniform hypergraphs. Due to Theorem 32 this problem is NP-
complete. Given a hypergraph (Q, S) with incidence graph
I , we prove that the following statements are equivalent.

(i) (Q, S) has a (3-in-6)-coloring.
(ii) I admits a regular coloring with at most three colors.

(iii) I admits a symmetric regular labeling with at most three
colors.

(iv) I admits a symmetric regular labeling with at most four
colors.

(v) I admits a regular labeling with at most three colors.
(vi) I admits a regular labeling with at most four colors.

(i) ⇒ (ii)
Consider a (3-in-6)-coloring Q1 ∪ Q2 of (Q, S). For each

q ∈ Qi, i = 1, 2, let !(q) = i. For each S ∈ S, let !(S) =
3. Then, each vertex labeled by 1 or 2 has three neighbors
labeled by 3, and each vertex labeled by 3 has three neighbors
labeled by 1 and three neighbors labeled by 2. Then ! is a
regular coloring of I that uses at most three colors.

(ii) ⇒ (iii) ⇒ (v) ⇒ (vi)
This is trivial, or follows directly from the definitions.
(ii) ⇒ (iv) ⇒ (vi)
This is trivial, or follows directly from the definitions.
(vi) ⇒ (i)
Consider a regular labeling ! : VI → {1, 2, 3, 4} of I .

Since (Q, S) is 3-regular 6-uniform, there exists an integer
p such that |S| = p and |Q| = 2p. Since ! is a regular
labeling of I , vertices with the same color have the same
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FIG. 13. An example of a graph I ′ obtained from a 3-regular 3-uniform
hypergraph (Q, S).

degree in I . Because ! is also a pseudo-regular labeling, we
find by Observation 18 that all color classes in a connected
component of I must have the same size. Hence |!(S)| = 1
and |!(Q)| = 2. We assume without loss of generality that
!(Q) = {1, 2} and !(S) = {3}. Since |!−1(1)| = |!−1(2)|
and since all the vertices of S must have the same number
of neighbors labeled by 1 (resp. 2), each vertex of S has
three neighbors in !−1(1) and three neighbors in !−1(2). Thus
!−1(1) ∪ !−1(2) is a (3-in-6)-coloring of (Q, S). !

7.2.7. Pseudo-Regular Colorings and Labelings. We are
left to prove that pseudo-regular k-coloring is polynomial-
time solvable for k = 2 and NP-complete for 3 ≤ k ≤ 4, and
that pseudo-regular k-labeling is NP-complete for 2 ≤ k ≤ 4.

Proof. Let k = 2. Let G be a graph. Then G has a pseudo-
regular coloring with at most two colors if and only if G has
no edge (then one color can be used), or else G is bipartite and
admits a perfect matching. Both conditions can be checked
in polynomial time.

Below we prove that the problem of deciding if a graph
G has a pseudo-regular labeling with at most two colors
is NP-complete. We use reduction from the hypergraph
(1-in-3)-colorability problem for 3-regular 3-uniform hyper-
graphs. This problem is NP-complete due to Theorem 32.
Consider a 3-regular 3-uniform hypergraph (Q, S) where
Q = {q1, . . . , qm} and S = {S1, . . . , Sn}. We observe that its
incidence graph I is 3-regular. From I we construct a graph
I ′ as follows.

Since I is 3-regular and bipartite, each qi ∈ Q has three
neighbors Si

1, Si
2, and Si

3 in S (with possibly Sh
a = Si

b for some
h %= i). We remove all edges between Q and S and replace
each qi ∈ Q by three copies qi

1, qi
2 and qi

3 with new edges
(Si

1, qi
1), (S

i
2, qi

2), and (Si
3, qi

3). For each Sj, we add edges
between all its three neighbors in the graph constructed so
far. So, if Sj = Sg

a = Sh
b = Si

c then its three neighbors are
qg

a, qh
b, qi

c with |{g, h, i}| = 3, and the subgraph induced by Sj

and qg
a, qh

b, qi
c is isomorphic to K4. Furthermore, each vertex

qi
a belongs to exactly one K4 and each vertex Sj belongs to

exactly one K4.

We now add a set of n−1 new vertices T = T1, . . . , Tn−1,
together with edges (Sj, Tj) and (Tj, Sj+1) for j = 1, . . . , n−1.
To each Tj we glue a graph K4(Tj) isomorphic to K4. For
each 1 ≤ i ≤ m, we add two new vertices pi, ri with edges
(qi

1, pi), (pi, qi
2), (q

i
2, ri) and (ri, qi

3). Finally, we glue a K4
denoted by K4(pi) to each pi, and a K4 denoted by K4(ri) to
each ri. See Figure 13 for an example of a graph I ′, where we
assume that S contains a set Sj = {qg, qh, qi}, and Q contains
an element qi that belongs to set Sj, Sk , Sl. In this figure, only
the relevant edges and vertices of I ′ are depicted (all other
vertices and edges have been omitted for clarity). Note that
I ′ is connected, even in case I was not. We now prove that
(Q, S) admits a (1-in-3)-coloring if and only if I ′ admits a
pseudo-regular labeling with at most two colors.

Suppose that (Q, S) admits a (1-in-3)-coloring Q1 ∪ Q2.
We let !(Sj) = 1 for all 1 ≤ j ≤ n and !(Tj) = 2 for all
1 ≤ j ≤ n−1. We label two of the three remaining vertices in
K4(Tj) by 1 and the other remaining one by 2. For all qi ∈ Q1
we let !(qi

1) = !(qi
2) = !(qi

3) = 1 and !(pi) = !(ri) = 2,
and in K4(pi) and K4(ri) we label two of their three remaining
vertices by 1 and the other remaining one by 2. For all qi ∈ Q2
we let !(qi

1) = !(qi
2) = !(qi

3) = 2 and !(pi) = !(ri) = 1.
We label, both in K4(pi) and in K4(ri), two of their three
remaining vertices by 2 and the other remaining one by 1.
This way we have defined a labeling ! of I ′.

Below we show that ! is a pseudo-regular labeling of I ′.
We first observe that both I ′[1] and I ′[2] are 1-regular graphs.
To see this, recall that Q1 ∪ Q2 is a 1-in-3 coloring of (Q, S).
Hence each Sj (which has !(Sj) = 1) contains exactly one
element in Q1, i.e., has only one neighbor labeled by 1. Fur-
thermore, all vertices u in each K4(Tj), in each K4(pi) and
in each K4(ri) have exactly one neighbor labeled by !(u), by
definition of !. The same is true for any vertex qi

a that is a
copy of a vertex qi.

We are left to show that I ′[1, 2] contains a perfect matching
M. All K4(Tj), K4(pi), K4(ri) contain two vertices labeled 1
and two vertices label 2. In each of them we chose two match-
ing edges whose end vertices are labeled by 1,2, respectively,
to be in M. We now consider the remaining vertices, which are
all vertices in Sj and all copies qi

a. By construction of I ′, each
vertex qi

a belongs to exactly one K4 and each vertex Sj belongs
to exactly one K4. Consider such a K4, say I ′[Sj, qg

a, qh
b, qi

c].
By definition of !, such a K4 consists of exactly two vertices
labeled by 2 and two vertices labeled by 1. Hence, also here
we can pick two matching edges for M. We conclude that !

is a pseudo-regular labeling of I ′.
To prove the reverse implication, suppose I ′ admits a

pseudo-regular labeling ! using at most two colors. Since
I ′ is not regular, we obtain !(VI ′) = {1, 2} as otherwise, i.e.,
in case !(VI ′) = {1}, I ′[1] = I ′ would not be regular.

Consider any glued K4(Tj) or K4(pi) or K4(qi). If all ver-
tices of such a K4 are labeled with the same color, we would
have |!(VG| = 1. As we already noticed, this is not possi-
ble. Hence ! uses both the two colors 1 and 2 on such a K4.
Since I ′[1, 2] admits a perfect matching, we even find that
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FIG. 14. A graph G with glued copies of C3. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

two vertices of such a K4 are labeled by 1 and the other two
are labeled by 2. This means that both I ′[1] and I ′[2] are 1-
regular. Consequently, by construction of I ′, we obtain for
all 1 ≤ i ≤ n, !(qi

1) = !(qi
2) = !(qi

3) and !(pi) = !(ri)

with !(qi
1) %= !(pi). Assume without loss of generality that

!(T1) = 2. Then, again by construction of I ′, we obtain
that each Sj has label 1 and each Tj has label 2. We define
Q1 = {qi | !(qi

1) = 1} and Q2 = Q \ Q1.
We claim that Q1 ∪ Q2 is a (1-in-3)-coloring of (Q, S). In

order to see this consider an arbitrary Sj ∈ S. By construction
of I ′, Sj belongs to exactly one K4. Let qg

a, qh
b, qi

c be the neigh-
bors of Sj in this K4. Since I ′[1] is 1-regular, !(Sj) = 1, and its
neighbors inT have label 2, there is exactly one vertex, say qg

a,
in {qg

a, qh
b, qi

c} with label 1, while the other two vertices have
label 2. Consequently, there is exactly one q ∈ Sj that belongs
to Q1, namely qg. Hence Q1 ∪ Q2 is a (1-in-3)-coloring of
(Q, S).

Let k = 3. For our NP-completeness proofs, we use
reduction from the graph 3-colorability problem. This prob-
lem is NP-complete (cf. [18]), even for the class of graphs
that are not regular (as otherwise we could just add one
vertex adjacent to an arbitrary vertex of G to make G
non-regular).

Let G be a non-regular instance graph of graph 3-
colorability. To each vertex v of G, we glue a C3. We denote
this C3 by C3(v) and its three vertices by v, v′, v′′ (where v′
and v′′ are the new vertices). We denote the resulting graph by
G′; see Figure 14 for an example. We show that the following
statements are equivalent.

(i) G is 3-colorable,
(ii) G′ admits a pseudo-regular coloring using at most three

colors,
(iii) G′ admits a pseudo-regular labeling using at most three

colors,

(i) ⇒ (ii)
Given a coloring !of G using three colors 1, 2, 3, we extend

it to G′ as follows. For each v ∈ VG, we give two different
colors to v′ and v′′ that are also distinct from !(v). Thus, for
each i ∈ [1, 3], G′[i] is empty. Moreover, for all 1 ≤ i, j ≤ 3
with i %= j, G′[i, j] admits a perfect matching. This can be seen
as follows. For each v ∈ VG, all three vertices v, v′, v′′ have
different colors. So exactly one of the edges in each C3(v)
has its end vertices colored by i, j, respectively, and that edge
will be in the perfect matching.

(ii) ⇒ (iii)
This follows directly from the definitions.
(iii) ⇒ (i)
Consider a pseudo-regular labeling ! of G′ using at most

three colors. Note that G contains an edge, because G is not
regular. Hence there exists a vertex v ∈ VG that has at least
one neighbor distinct from v′, v′′ in G′. If !(v) = !(v′) =
!(v′′), then G′ = G′[1]. However, since G is not regular, G′

is not regular. So this is not possible, and we may assume
without loss of generality that v and v′ have different colors,
say !(v) = 1 and !(v′) = 2. Since G′[1, 2] admits a perfect
matching, !(v′′) %= 2. Suppose !(v′′) = 1. Then, !(VG′) =
{1, 2}, G′[2] is edgeless and G′[1] is 1-regular. Since G′[1] is
1-regular, !(u) = 2 for some neighbor u of v. Since G′[2] is
edgeless, !(u′) = !(u′′) = 1, but then G′[1, 2] does not admit
a perfect matching. Consequently, we may assume !(v′′) = 3.
Then, G′[2] and G′[3] are edgeless.

Suppose all vertices in VG have color 1. Then G′[1] = G.
This is not possible since G is not regular. Hence there exists a
vertex w ∈ VG with !(w) %= 1. Then we may assume without
loss of generality that !(w) = 2. Since G′[2] and G′[3] are
edgeless, we may again assume without loss of generality
that !(w′) = 1 and !(w′′) = 3. Consequently G′[1] is also
edgeless. Hence, ! is a 3-coloring of G′ and its restriction to
G is a 3-coloring of G.

Let k = 4. For our NP-completeness proofs we use reduc-
tion from graph 4-colorability. This problem is NP-complete
(cf. [18]), even for the class of graphs that are not regular (as
otherwise we could just add one vertex adjacent to an arbitrary
vertex of G) and that are not bipartite (as those graphs can be
efficiently checked and colored with at most two colors).

Let G be a non-bipartite non-regular instance graph of
graph 4-colorability. To each vertex v of G, we glue a K4. We
denote this K4 by K4(v) and its four vertices by v, v′, v′′, v∗
(where v′, v′′ and v∗ are the new vertices). We denote the
resulting connected graph by G′. We show that the following
statements are equivalent.

(i) G is 4-colorable,
(ii) G′ admits a pseudo-regular coloring using at most four

colors,
(iii) G′ admits a pseudo-regular labeling using at most four

colors,

(i) ⇒ (ii)
Given a coloring ! of G using four colors 1,2,3,4, we

extend it to G′ as follows. For each v ∈ VG, we give three dif-
ferent colors to v′, v′′ and v∗ that are also distinct from !(v).
Thus, for each 1 ≤ i ≤ 4, G′[i] is empty. Moreover, for all
1 ≤ i, j ≤ 4 with i %= j, G′[i, j] admits a perfect matching.
This can be seen as follows. For each v ∈ VG, all four vertices
v, v′, v′′, v∗ have different colors. So exactly one of the edges
in each K4(v) has its end vertices colored by i, j, respectively,
and that edge will be in the perfect matching.

(ii) ⇒ (iii)
This follows directly from the definitions.
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(iii) ⇒ (i)
Consider a pseudo-regular labeling ! of G′ using at most

four colors. Note that G contains an edge, because G is not
regular. Hence there exists a vertex v ∈ VG that has at least
one neighbor distinct from v′, v′′, v∗ in G′.

If !(v) = !(v′) = !(v′′) = !(v∗) = 1, then G′ = G′[1].
However, since G is not regular, G′ is not regular. So this
is not possible, and we may assume without loss of gener-
ality that v and v′ have different colors, say !(v) = 1 and
!(v′) = 2.

Suppose !(v′′) = 1. Since G[1, 2] admits a perfect match-
ing, !(v∗) %= 1. Suppose !(v∗) = 2. This means that !(VG′) =
{1, 2} and that G[1] and G[2] are 1-regular. Consequently, for
each u ∈ NG(v), !(u) = 2, and thus G is 2-colorable. This
is not possible since we assume that G is not bipartite. Sup-
pose !(v∗) = 3. This means that !(VG′) = {1, 2, 3}, that
G[1] is 1-regular and that G[2] and G[3] are edgeless. Let
u be a neighbor of v in G. Since G[1] is 1-regular, we may
assume without loss of generality that !(u) = 2. Since G[2]
is edgeless, !({u′, u′′, u∗}) ⊆ {1, 3}. Since G[3] is edgeless,
there are at least two vertices among u′, u′′, u∗ that are labeled
by 1. However, this is not possible, since G[1, 2] would
not admit a perfect matching in that case. Consequently,
!(v′′) %= 1.

Suppose !(v′′) = 2. Since G[1, 2] admits a perfect match-
ing, this implies that !(v∗) = 1. Then, by symmetry, we
return to the previous case. Thus, we may assume without
loss of generality that !(v′′) = 3 and !(v∗) = 4. Then,
G′[2], G′[3], G′[4] are edgeless.

Suppose all vertices in VG have color 1. Then G′[1] = G.
This is not possible, since G is not regular. Hence there exists a
vertex w ∈ VG with !(w) %= 1. Then we may assume without
loss of generality that !(w) = 2. Since G′[2], G′[3] and G′[4]
are edgeless, we may then assume without loss of generality
that !(w′) = 1, !(w′′) = 3 and !(w∗) = 4. Consequently
G′[1] is also edgeless. Hence, ! is a 4-coloring of G′ and its
restriction to G is a 4-coloring of G. !
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