

Soutenance d'Habilitation à Diriger des Recherches

_ Kévin Perrot _ Études de la complexité algorithmique des réseaux d'automates

Le 25 janvier 2022 devant le jury composé de :

Julio Aracena* Olivier Bournez Nadia Creignou PR, LIS Emmanuel Jeandel* PR. LORIA Jarkko Kari* Loïc Paulevé Sylvain Sené

PR, Univ. Concepción, Chili PR. LIX PR, Univ. Turku, Finlande CR CNRS, LaBRI PR. LIS *rapporteurs

talk and next slides in English

Intro. Computational complexity of automata networks $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ $\equiv f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$

Local functions $(f_i)_{i \in [n]}$ Interaction digraph G_f Dynamics \mathscr{G}_f

Intro. Computational complexity of automata networks $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ $\equiv f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$

Local functions $(f_i)_{i \in [n]}$ Interaction digraph G_f Dynamics \mathscr{G}_{f} $(i,j) \in G_f \iff \exists x : f_i(x+e_i) \neq \overline{f_j(x)}$ n = 41110 1111 $f_1(x) = x_1$ 0110 0111 3 1010 1011 $f_2(x) = x_2$ 0010 0011 $f_3(x) = x_3$ 1100 1101 $f_4(x) = \varphi(x_1, x_2, x_3) \vee \neg x_4$ 0100 0101 1000 1001 $\varphi(x_1, x_2, x_3) = \neg[(x_1 \lor x_2) \Rightarrow \neg(x_2 \land x_3)] \equiv x_2 \land x_3$ 0000 0001

Intro. Computational complexity of automata networks $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ $\equiv f_i : \{0, 1\}^n \rightarrow \{0, 1\}$ for $i \in [n]$

Local functions $(f_i)_{i \in [n]}$ Interaction digraph G_f Dynamics \mathscr{G}_{f} $(i,j) \in \mathbf{G}_f \iff \exists x : f_i(x+e_i) \neq f_i(x)$ n = 41110 1111 $f_1(x) = x_1$ 0110 0111 3 1010 1011 $f_2(x) = x_2$ 0010 0011 $f_3(x) = x_3$ 1100 1101 $f_4(x) = \varphi(x_1, x_2, x_3) \vee \neg x_4$ 0100 0101 1000 1001 $\varphi(x_1, x_2, x_3) = \neg [(x_1 \lor x_2) \Rightarrow \neg (x_2 \land x_3)] \equiv x_2 \land x_3$ 0000 0001

Theorem [Alon 1985]. It is NP-complete to decide whether a given f has at least one fixed point. Theorem [Orponen 1992]. ...and counting them is #P-complete. Remark. ...even under the promise $\Delta(G_f) \leq 2$.

Intro. Computational complexity of automata networks

Alphabets

- Boolean: $X = \{0, 1\}^n$
- Uniform: $X = [\![q]\!]^n = \{0, 1, \dots, q-1\}^n$
- Nonuniform: $X = \llbracket q_1 \rrbracket \times \llbracket q_2 \rrbracket \times \cdots \times \llbracket q_n \rrbracket$

Update modes

- Deterministic=Parallel: $f: X \to X$ with $\forall x, i: f(x)_i = f_i(x)$
- Sequential
- Block-sequential: ordered partition of [n]
- ..
- Asynchronous (perfect)
- Nondeterministic: $r: X \to \mathcal{P}(X)$

Gene regulation $P(G_f) \implies Q(\mathscr{G}_f)$

Outline

 $[n] = \{1, 2, \dots, n\}$ $[[q]] = \{0, 1, \dots, q-1\}$ $f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$ Interaction digraph G_f on [n]Dynamics \mathscr{G}_f on $\{0, 1\}^n$

Introduction. Computational complexity of automata networks

- 2. Preliminaries
- \Rightarrow 3. Encodings
 - 4. Compute the interaction digraph G_f given f
 - 5. Asymptotic dynamics \mathscr{G}_f I given f
- **b** 6. First-Order questions on \mathscr{G}_f given f
- **—** 7. Asymptotic dynamics \mathscr{G}_f II given G_f
- 8. Update modes *

Conclusion. Intuitive "complexity" of automata networks Long-term perspectives

An automata network as input: Boolean circuits. Deterministic Boolean Deterministic Uniform

An automata network as input: Boolean circuits.

Deterministic Boolean

Local functions $(f_i)_{i \in [n]}$

n = 4 $f_1(x) = x_1$ $f_2(x) = x_2$ $f_3(x) = x_3$ $f_4(x) = \varphi(x_1, x_2, x_3) \lor \neg x_4$

 $\varphi(x_1, x_2, x_3) = \neg[(x_1 \lor x_2) \Rightarrow \neg(x_2 \land x_3)] \equiv x_2 \land x_3$

Deterministic Uniform

An automata network as input: Boolean circuits.

Deterministic Boolean

 $\varphi(x_1, x_2, x_3) = \neg[(x_1 \lor x_2) \Rightarrow \neg(x_2 \land x_3)] \equiv x_2 \land x_3$

Local functions $(f_i)_{i \in [n]}$

$$n = 4$$

$$f_1(x) = x_1$$

$$f_2(x) = x_2$$

$$f_3(x) = x_3$$

$$f_4(x) = \varphi(x_1, x_2, x_3) \lor \neg x_4$$

Deterministic Uniform

Circuits for $(f_i)_{i \in [n]}$

Theorem. Given f and G, does $G_f = G$? is DP-complete*, and in P under the promise $\Delta(G_f) \leq d$ for some fixed $d \in \mathbb{N}$. *DP = { $L_1 \cap L_2 \mid L_1 \in \mathbb{NP}$ and $L_2 \in \text{coNP}$ }

An automata network as input: Boolean circuits.

Deterministic Boolean

Local functions $(f_i)_{i \in [n]}$

n = 1q = 16

denote x_i the bit of weight 2^{n-i} in integer $x \in [16]^1$

 $f_1(x) = 8 \cdot x_1 + 4 \cdot x_2 + 2 \cdot x_3 + (\varphi(x_1, x_2, x_3) \vee \neg x_4)$

 $\varphi(x_1, x_2, x_3) = \neg[(x_1 \lor x_2) \Rightarrow \neg(x_2 \land x_3)] \equiv x_2 \land x_3$

Deterministic Uniform

Circuits for $(f_i)_{i \in [n]}$

An automata network as input: Boolean circuits.

Deterministic Boolean

Local functions $(f_i)_{i \in [n]}$

n = 1q = 16

denote x_i the bit of weight 2^{n-i} in integer $x \in [16]^1$

 $f_1(x) = 8 \cdot x_1 + 4 \cdot x_2 + 2 \cdot x_3 + (\varphi(x_1, x_2, x_3) \vee \neg x_4)$

$$\varphi(x_1, x_2, x_3) = \neg[(x_1 \lor x_2) \Rightarrow \neg(x_2 \land x_3)] \equiv x_2 \land x_3$$

Deterministic Uniform

Circuits for $(f_i)_{i \in [n]}$

Remark. From *n* to 1 automaton quickly (succinct graph representation of \mathscr{G}_{f}). \implies Problems on fixed/bounded alphabets to enforce interactions. Convention. If $\log_2(q) \notin \mathbb{N}$ then checking validity (of outputs) is coNP-complete \implies consider outputs modulo *q*.

Outline

 $[n] = \{1, 2, \dots, n\}$ $[[q]] = \{0, 1, \dots, q-1\}$ $f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$ Interaction digraph G_f on [n]Dynamics \mathscr{G}_f on $\{0, 1\}^n$

Introduction. Computational complexity of automata networks

- 2. Preliminaries
- 3. Encodings
 - 4. Compute the interaction digraph G_f given f
 - 5. Asymptotic dynamics \mathscr{G}_f I given f
- \blacksquare 6. First-Order questions on \mathscr{G}_f given f
- **—** 7. Asymptotic dynamics \mathscr{G}_f II given G_f
- 8. Update modes *

Conclusion. Intuitive "complexity" of automata networks Long-term perspectives

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO".

Nontrivial.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO". $\neg, \land, \lor, \Rightarrow, \exists, \forall$ on signature $\{=, \rightarrow\}$. $\exists x \forall y : y \rightarrow x$

Nontrivial.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO". $\neg, \land, \lor, \Rightarrow, \exists, \forall$ on signature $\{=, \rightarrow\}$. $\mathscr{G}_f \models \exists x \forall y : y \rightarrow x$

Nontrivial.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

 $\begin{array}{ll} \exists x: x \to x & \text{Fixed point} \\ \exists x_1, x_2, x_3: (x_1 \to x_2) \land (x_2 \to x_3) \land (x_3 \to x_1) & \text{3-cycle} \\ \forall x_1, x_2, y_1, y_2: [(x_1 \to y_1) \land (x_2 \to y_2)] \Rightarrow (y_1 = y_2) & \text{Constant} \\ \forall x_1, x_2, y: [(x_1 \to y) \land (x_2 \to y)] \Rightarrow (x_1 = x_2) & \text{Injectivity} \end{array}$

Nontrivial.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO". $\neg, \land, \lor, \Rightarrow, \exists, \forall$ on signature $\{=, \rightarrow\}$. $\mathscr{G}_f \models \exists x \forall y : y \rightarrow x$

 $\begin{array}{ll} \exists x: x \to x & \mbox{Fixed point} \\ \exists x_1, x_2, x_3: (x_1 \to x_2) \land (x_2 \to x_3) \land (x_3 \to x_1) & \mbox{3-cycle} \\ \forall x_1, x_2, y_1, y_2: [(x_1 \to y_1) \land (x_2 \to y_2)] \Rightarrow (y_1 = y_2) & \mbox{Constant} \\ \forall x_1, x_2, y: [(x_1 \to y) \land (x_2 \to y)] \Rightarrow (x_1 = x_2) & \mbox{Injectivity} \end{array}$

Nontrivial. ψ has an infinity of models and countermodels.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO". $\neg, \land, \lor, \Rightarrow, \exists, \forall$ on signature $\{=, \rightarrow\}$. $\mathscr{G}_f \models \exists x \forall y : y \rightarrow x$

 $\begin{array}{ll} \exists x: x \to x & \mbox{Fixed point} \\ \exists x_1, x_2, x_3: (x_1 \to x_2) \land (x_2 \to x_3) \land (x_3 \to x_1) & \mbox{3-cycle} \\ \forall x_1, x_2, y_1, y_2: [(x_1 \to y_1) \land (x_2 \to y_2)] \Rightarrow (y_1 = y_2) & \mbox{Constant} \\ \forall x_1, x_2, y: [(x_1 \to y) \land (x_2 \to y)] \Rightarrow (x_1 = x_2) & \mbox{Injectivity} \end{array}$

Nontrivial. ψ has an infinity of models and countermodels.

Hard.

 ψ -dynamics

Input : the circuits of an automata network f. Ouput : does $\mathscr{G}_f \models \psi$?

Theorem [GGPT 2021]. Deterministic. If ψ is nontrivial, then ψ -dynamics is NP-hard or coNP-hard, otherwise it is $\mathcal{O}(1)$.

Metatheorem. Given f, any <u>nontrivial</u> property of \mathscr{G}_f is <u>hard</u> to check.

Property "Graph FO". $\neg, \land, \lor, \Rightarrow, \exists, \forall$ on signature $\{=, \rightarrow\}$. $\mathscr{G}_f \models \exists x \forall y : y \rightarrow x$

 $\begin{array}{ll} \exists x: x \to x & \text{Fixed point} \\ \exists x_1, x_2, x_3: (x_1 \to x_2) \land (x_2 \to x_3) \land (x_3 \to x_1) & \text{3-cycle} \\ \forall x_1, x_2, y_1, y_2: [(x_1 \to y_1) \land (x_2 \to y_2)] \Rightarrow (y_1 = y_2) & \text{Constant} \\ \forall x_1, x_2, y: [(x_1 \to y) \land (x_2 \to y)] \Rightarrow (x_1 = x_2) & \text{Injectivity} \end{array}$

Nontrivial. ψ has an infinity of models and countermodels.

Hard.

 ψ -dynamics

Input : the circuits of an automata network f. Ouput : does $\mathscr{G}_f \models \psi$?

Theorem [GGPT 2021]. Deterministic. If ψ is nontrivial, then ψ -dynamics is NP-hard or coNP-hard, otherwise it is $\mathcal{O}(1)$.

Proof sketch. Recall that ψ is fixed.

Theorem [GGPT 2021]. Deterministic. If ψ is nontrivial, then ψ -dynamics is NP-hard or coNP-hard, otherwise it is $\mathcal{O}(1)$.

Proof sketch. Recall that ψ is fixed.

1. Reduction from **SAT** requires *N*, *S* such that:

 $N \sqcup \cdots \sqcup N \sqcup \cdots \sqcup N \not\models \psi$ $N \sqcup \cdots \sqcup S \sqcup \cdots \sqcup N \models \psi$

On each configuration the network evaluates φ , and:

- not satisfied: produces a copy of N,
- satisfied: produces a copy of *S*.

Theorem [GGPT 2021]. Deterministic. If ψ is nontrivial, then ψ -dynamics is NP-hard or coNP-hard, otherwise it is $\mathcal{O}(1)$.

Proof sketch. Recall that ψ is fixed.

1. Reduction from **SAT** requires N, S such that:

 $B \sqcup N \sqcup \cdots \sqcup N \sqcup \cdots \sqcup N \not\models \psi$ $B \sqcup N \sqcup \cdots \sqcup S \sqcup \cdots \sqcup N \models \psi$

On each configuration the network evaluates φ , and:

- not satisfied: produces a copy of N,
- satisfied: produces a copy of *S*.
- 2. Model theory...
 - Finite \equiv_m of structures (\mathscr{G}_f)
 - Ehrenfeucht-Fraïssé games
 - Hanf locality

...gives B, N, S and $\sqcup_1, \sqcup_2, \sqcup_3$ and $(\models, \not\models)$ -symmetry.

Extensions and perspectives.

 $\llbracket q \rrbracket$

Nondet

MSO

Extensions and perspectives.

 $\llbracket q \rrbracket$ On fixed alphabet ?

Almost no control on |B|, |N|, |S|, but \mathscr{G}_f has q^n configurations... Ok for FO questions on the limit dynamics $\mathscr{G}_f[\Omega_f]$

Nondet

MSO

Extensions and perspectives.

[[q]] On fixed alphabet ? Almost no control on |B|, |N|, |S|, but \mathscr{G}_f has q^n configurations... Ok for FO questions on the limit dynamics $\mathscr{G}_f[\Omega_f]$

Nondet Analogous result for nondeterministic networks ? Nontrivial-det \subsetneq nontrivial-nondet...

MSO

Extensions and perspectives.

- **[***q***]** On fixed alphabet ? Almost no control on |B|, |N|, |S|, but \mathscr{G}_f has q^n configurations... Ok for FO questions on the limit dynamics $\mathscr{G}_f[\Omega_f]$
- Nondet Analogous result for nondeterministic networks ? Nontrivial-det \subsetneq nontrivial-nondet...
 - MSO Monadic Second Order logic ? Connectivity...

Enrich the signature $\{=,\rightarrow\}$ to distinguish configurations ? Some P-complete problems...

Outline

 $[n] = \{1, 2, \dots, n\}$ $[[q]] = \{0, 1, \dots, q-1\}$ $f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$ Interaction digraph G_f on [n]Dynamics \mathscr{G}_f on $\{0, 1\}^n$

Introduction. Computational complexity of automata networks

- 2. Preliminaries
- 3. Encodings
 - 4. Compute the interaction digraph G_f given f
 - 5. Asymptotic dynamics \mathscr{G}_f I given f
- **b** 6. First-Order questions on \mathscr{G}_f given f
- \blacksquare 7. Asymptotic dynamics \mathscr{G}_f II given G_f
- 8. Update modes *

Conclusion. Intuitive "complexity" of automata networks Long-term perspectives

Results on deterministic Boolean automata networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$

Results on deterministic Boolean automata networks $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$

 $\mathfrak{P}^{\max}(G) =$ maximum number of fixed points on G $\mathfrak{P}^{\min}(G) =$ minimum number of fixed points on G

Results on deterministic Boolean automata networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$

 $\mathfrak{P}^{\max}(G) =$ maximum number of fixed points on G $\mathfrak{P}^{\min}(G) =$ minimum number of fixed points on G

	/ / / / /			
000	000	000	000	000
001	000	100	110	110
010	000	100	100	101
011	100	100	110	111
100	000	000	010	011
101	010	110	110	111
110	001	101	111	111
111	111	111	111	111

123	$\wedge \wedge \wedge$	$\nabla \wedge \wedge$	$\vee \vee \wedge$	~~~
000	111	111	111	111
001	001	101	111	111
010	010	110	110	111
011	000	000	010	011
100	100	100	110	111
101	000	100	100	101
110	000	100	110	110
111	000	000	000	000

Results on deterministic Boolean automata networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$

 $\mathfrak{P}^{\max}(G) =$ maximum number of fixed points on G $\mathfrak{P}^{\min}(G) =$ minimum number of fixed points on G

On *n* automata, there are 2^{n2^n} Boolean networks and 4^{n^2} signed digraph \uparrow $\{0, +, -, \pm\}$

Results on deterministic Boolean automata networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$

 $\mathfrak{P}^{\max}(G) =$ maximum number of fixed points on G $\mathfrak{P}^{\min}(G) =$ minimum number of fixed points on G

Theorem [BDPR 2019 2022+]. Given a signed digraph G, deciding whether...

Problem	k = 1	$k \ge 2$	k given in input	
$\mathfrak{P}^{\max}(G) \geq k$	Р	NP complete	NEXPTIME-complete	
		NF-complete	$NP^{\#P}$ -complete if $\Delta(G) \leq d$	
$\mathfrak{P}^{\min}(G) < k$	NEXPTIME-complete			
	NP ^{NP} -	complete if $\Delta(G) \leq d$	$NP^{\#P}$ -complete if $\Delta(G) \leq d$	

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

Fixed points

 \heartsuit

Positive cycles (even number of – arcs)

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Lemma [\Longrightarrow by Aracena 2008]. $\mathfrak{P}^{\max}(G) \ge 1 \iff$ each initial strongly connected component of Ghas a positive cycle.
- Theorem [Robertson, Seymour, Thomas 1999; McCuaig 2004]. ▲
 We can decide in polytime whether G has a positive cycle.

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

• Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.
- Lower bound NP: reduction from SAT.

Basic observation.

The idea is to "neutralize" such negative chords by satisfying φ .

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.
- Lower bound NP: reduction from SAT.

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3)$$

2 fixed points

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.
- Lower bound NP: reduction from SAT.

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3)$$

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.
- Lower bound NP: reduction from SAT.

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3)$$

Theorem. Given a signed digraph G, deciding whether $\mathfrak{P}^{\max}(G) \ge k$ is in P for k = 1, and NP-complete for any fixed $k \ge 2$.

Proof sketch. k = 1 k = 2

- Upper bound NP: not trivial because checking $G_f = G$ is DP-complete.
- Lower bound NP: reduction from SAT.

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3)$$

In order to get two fixed points $x \neq y$:

1. Each clause must be "neutralized" by a literal equal in both fixed points.

But never $x_i = y_i$ and $\neg x_i = \neg y_i$ because:

2. Distinct fixed points must differ on a positive cycle.

Extensions and perspectives.

New...

Extensions and perspectives.

New... point of view on a classical direction $P(G_f) \implies Q(\mathscr{G}_f)$ Many further questions:

- Limit cycles ?
- $|\Omega_f|$?
- Unsigned G_f ?
- Alphabet $\llbracket q \rrbracket$?
- Other update modes ?

Outline

 $[n] = \{1, 2, \dots, n\}$ $[[q]] = \{0, 1, \dots, q-1\}$ $f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$ Interaction digraph G_f on [n]Dynamics \mathscr{G}_f on $\{0, 1\}^n$

Introduction. Computational complexity of automata networks

- 2. Preliminaries
- 3. Encodings
 - 4. Compute the interaction digraph G_f given f
 - 5. Asymptotic dynamics \mathscr{G}_f I given f
- **b** 6. First-Order questions on \mathscr{G}_f given f
- **—** 7. Asymptotic dynamics \mathscr{G}_f II given G_f
- **=** 8. Update modes *

Conclusion. Intuitive "complexity" of automata networks Long-term perspectives

Block-sequential = ordered partition of [n]

(parallel within each block, and blocks sequentialy)

Remark. Block-seq.: fixed points are invariant, limit cycles are not. Remark. From f and β we can compute $f' = f^{[\beta]}$ in polytime.

Remark. Block-seq.: fixed points are invariant, limit cycles are not. Remark. From f and β we can compute $f' = f^{[\beta]}$ in polytime.

Theorem [Aracena et al. 2013]. Fix $k \ge 2$. Given f, deciding whether $\exists \beta$ such $\mathscr{G}_{f[\beta]}$ has a limit cycle of length k, is NP-complete.

Theorem [BGMPS 2021]. Fix $k \ge 2$. Given f, deciding whether $\exists \beta$ such $\mathscr{G}_{f^{[\beta]}}$ has <u>no</u> limit cycle of length k, is NP^{NP}-complete.

We have the same $\mathscr{G}_{f[\beta]}$ for any β among: $({1,2})$, {3, 4} $, \{5, 6\})$ $(\{2\},\{1\},\{3,4\})$ $, \{5, 6\})$ $(\{1,2\},\{4\},\{3\})$ $, \{5, 6\})$ $(\{2\},\{1\},\{4\},\{3\})$ $, \{5, 6\})$ $(\{1,2\},\{3,4\})$, {6}, {5<u>}</u>) $(\{2\},\{1\}$ $, \{3, 4\}$ $, \{6\}, \{5\})$ $(\{1,2\},\{4\},\{3\})$ $, \{6\}, \{5\})$ $(\{2\},\{1\},\{4\},\{3\})$ $, \{6\}, \{5\})$

We have the same $\mathscr{G}_{f[\beta]}$ for any β among: $({1,2})$ $, \{3, 4\}$ $, \{5, 6\})$ $(\{2\},\{1\},\{3,4\})$ $, \{5, 6\})$ $(\{1,2\},\{4\},\{3\})$ $, \{5, 6\})$ $(\{2\},\{1\},\{4\},\{3\})$ $, \{5, 6\})$ $, \{6\}, \{5\})$ $(\{1,2\})$, {3, 4} $(\{2\},\{1\}$ $, \{3, 4\}$ $, \{6\}, \{5\})$ $(\{1,2\},\{4\},\{3\})$ $, \{6\}, \{5\})$ $(\{2\},\{1\},\{4\},\{3\})$ $, \{6\}, \{5\})$

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

Caution [Aracena et al. 2011]. Forbidden patterns.

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

Caution [Aracena et al. 2011]. Forbidden patterns.

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

Caution [Aracena et al. 2011]. Forbidden patterns.

Theorem [Palma et al. 2016]. #P-complete to count.

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

Caution [Aracena et al. 2011]. Forbidden patterns.

Theorem [Palma et al. 2016]. #P-complete to count.

Theorem [NPSV 2020]. Polytime on digraphs of treewidth \leq 2.

Connexion between update digraphs and feedback arc sets.

Theorem [NPSV 2020]. $\# \cdot \text{OptP}[\log n]$ -complete to count \boxplus -minim<u>um</u>.

An update digraph is a $\{\boxplus, \boxminus\}$ -edge-labeling of G_f .

Theorem [Aracena et al. 2009]. Same update digraph \implies Same dynamics.

Given G, how many update digraphs ?

Caution [Aracena et al. 2011]. Forbidden patterns.

Theorem [Palma et al. 2016]. #P-complete to count.

Theorem [NPSV 2020]. Polytime on digraphs of treewidth \leq 2.

Connexion between update digraphs and feedback arc sets. Theorem [NPSV 2020]. $\# \cdot OptP[\log n]$ -complete to count \boxplus -minim<u>um</u>.

A fun combinatorial problem: • $n! \Leftrightarrow$ tournament

- $3^n 2^{n+1} + 2$ on periodic ECAs
- $\mathcal{T}_{\bar{G}}(2,0)$ on acyclic
- impossible to get 5 ?

Outline

 $[n] = \{1, 2, \dots, n\}$ $[[q]] = \{0, 1, \dots, q-1\}$ $f_i : \{0, 1\}^n \rightarrow \{0, 1\} \text{ for } i \in [n]$ Interaction digraph G_f on [n]Dynamics \mathscr{G}_f on $\{0, 1\}^n$

Introduction. Computational complexity of automata networks

- 2. Preliminaries
- 3. Encodings
 - 4. Compute the interaction digraph G_f given f
 - 5. Asymptotic dynamics \mathscr{G}_f I given f
- **b** 6. First-Order questions on \mathscr{G}_f given f
- **—** 7. Asymptotic dynamics \mathscr{G}_f II given G_f
- 8. Update modes *

Conclusion. Intuitive "complexity" of automata networks Long-term perspectives

Intuitive "complexity" of automata networks

Long-term perspectives

Intuitive "complexity" of automata networks

- Fixed or bounded alphabets to enforce interactions Succinct graph representation
- Bounded degree to enforce some locality May decrease the computational complexity
- Update modes offer a vast world (caution with encodings)
- \implies A systematic study ? [Paulevé Sené] poset of update modes [Ríos-Wilson Theyssier] symmetry versus asynchronism

Long-term perspectives

Intuitive "complexity" of automata networks

- Fixed or bounded alphabets to enforce interactions Succinct graph representation
- Bounded degree to enforce some locality May decrease the computational complexity
- Update modes offer a vast world (caution with encodings)
- \implies A systematic study ? [Paulevé Sené] poset of update modes [Ríos-Wilson Theyssier] symmetry versus asynchronism

Long-term perspectives

Extension of some partial information

- on f_i from some h_i of domain $X' \subsetneq X$
- on G_f mandatory and/or forbidden arcs, graph families
- on \mathscr{G}_{f} number of fixed points, structural properties
- Model theory to state metatheorems questions on \clubsuit given \blacklozenge as input, with $\clubsuit, \blacklozenge \in \{f, G_f, \mathscr{G}_f\}$

Intuitive "complexity" of automata networks

- Fixed or bounded alphabets to enforce interactions Succinct graph representation
- Bounded degree to enforce some locality May decrease the computational complexity
- Update modes offer a vast world (caution with encodings)
- \implies A systematic study ? [Paulevé Sené] poset of update modes [Ríos-Wilson Theyssier] symmetry versus asynchronism

Long-term perspectives

- Extension of some partial information
 - on f_i from some h_i of domain $X' \subsetneq X$
 - on G_f mandatory and/or forbidden arcs, graph families
 - on \mathscr{G}_{f} number of fixed points, structural properties
- Model theory to state metatheorems questions on \clubsuit given \blacklozenge as input, with $\clubsuit, \blacklozenge \in \{f, G_f, \mathscr{G}_f\}$

Thank you !