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Abstract4

We study problems related to colouring bottomless rectangles. One of our main results shows that5

for any positive integers <, : , there is no semi-online algorithm that can :-colour bottomless rectangles6

with disjoint boundaries in increasing order of their top sides, so that any <-fold covered point is covered7

by at least two colours. This is, surprisingly, a corollary of a stronger result for arborescence colourings.8

Any semi-online colouring algorithm that colours an arborescence in leaf-to-root order with a bounded9

number of colours produces arbitrarily long monochromatic paths. This is complemented by optimal10

upper bounds given by simple online colouring algorithms from other directions.11

Our other main results study configurations of bottomless rectangles in an attempt to improve the12

polychromatic :-colouring number, <∗
:
. We show that for many families of bottomless rectangles, such13

as unit-width bottomless rectangles, <∗
:
is linear in : . We also present an improved lower bound for14

general families: <∗
:
≥ 2: − 1.15

1 Introduction16

The systematic study of polychromatic colourings and cover-decomposition of geometric ranges was17

initiated by Pach over 30 years ago [17, 18]. The field has gained popularity in the new millennium, with18

several breakthrough results; for a (slightly outdated) survey, see [19], or see the up-to-date interactive19

webpage http://coge.elte.hu/cogezoo.html (maintained by Keszegh and Pálvölgyi).20

A family of geometric regions F and a point set % in some R3 naturally define a primal hypergraph,21

� (%,F). The vertex set of � is the points of %, where F′ ⊂ F is an edge if for some ? ∈ %, ? is covered22

by exactly the regions in F′. We are interested in the dual hypergraph, � (F, %), on the vertex set F, where23

? ∈ % is an edge if for some F′ ⊂ F, ? is covered by exactly the regions in F′.24

�1

�2

�3
�1 �2

�3

Figure 1: A family of circles, a finite point set, and the corresponding dual hypergraph.

We can then define the chromatic number jFof any familyFof geometric regions. This is the minimum25

number of colours needed to colour any finite point set % so that any region containing at least two points26

contains at least two colours. The dual chromatic number, j∗
F
, is defined analogously as the number of27

1

http://coge.elte.hu/cogezoo.html


colours needed to properly colour any finite subfamily of F. In this paper, we will study the polychromatic28

colouring numbers.29

Definition 1.1. The :-th (primal) polychromatic colouring number <: (F) is the smallest number needed30

to :-colour any finite point set % so that any region containing at least <: (F) points contains all : colours.31

Its dual <∗
:
(F) is the smallest number needed to :-colour any finite subfamily of F so that any point32

covered by <∗
:
regions is covered by all : colours.33

The polychromatic colouring problem is partly motivated by the sensor cover problem; given a set of34

sensors covering an area, can we decompose them into : sets so that any area covered by <∗
:
sensors is35

covered in each of these sets? When : = 2, this is called the cover-decomposability problem. In particular,36

we say a set % ⊂ R2 is cover-decomposable if <∗2(F%) < ∞, where F% is the family of all translates of %.37

In [18] it was shown that every centrally-symmetric open convex polygon is cover-decomposable, and this38

was extended to all open convex polygons in [21]. The bound <∗
:
(F%) = $ (:) was proved for any convex39

polygon % in [7].40

The problem becomes more complicated if we consider homothets of a convex polygon. For example,41

if F� denotes the family of axis-parallel squares in the plane, <2(F�) ≤ 215 [1]. On the other hand,42

<∗2(F�) = ∞, that is, for any number < there is a family F< of axis-parallel squares such that (1) each point43

in the plane is covered by at least < squares, but (2) any 2-colouring of F< produces a point covered by44

squares of exactly one colour [15]. Furthermore, if F@A denotes the family of axis-parallel rectangles in the45

plane,<2(F@A) = ∞ [5]. Consequently,<: (F@A) = ∞ for any : . The dual<∗
:
(F@A) is infinite as well; there46

is a constant � > 0 such that for any numbers = ≥ A ≥ 2, there is a family of = axis-parallel rectangles for47

which any colouring with at most � log =(A log A)−1 colours produces a point covered by A monochromatic48

axis-parallel rectangles[20].49

This paper focuses on one particular family: bottomless rectangles.50

Definition 1.2. A subset of R2 is called a (closed) bottomless rectangle if it is of the form {(G, H) : ; ≤ G ≤51

A, H ≤ C}. We simply refer to a bottomless rectangle by these paramaters (;, A, C).52

These range spaces were first defined by Keszegh [11], who showed<2 = 4 and<∗2 = 3. Later Asinowski53

et al. [2] showed that for any positive integer : , any finite set of points in R2 can be :-coloured such that54

any bottomless rectangle with at least 3: − 2 points contains all : colors. They also showed that the optimal55

number that can be written in place of 3: − 2 in the above statement is at least 1.67: . In our language, if Fu56

denotes the family of all bottomless rectangles in the plane, 1.67: ≤ <: (Fu) ≤ 3: − 2.57

Our paper studies the dual problem: we would like to determine the optimal<∗
:
(Fu). About this question58

much less is known; <∗2 = 3 [11], while the best general upper bound is <∗
:
= $ (:5.09), a corollary of a more59

general result [4] about octants (combined with an improvement of the base case [13] that slightly lowered60

the exponent). The general conjecture, however, is that <∗
:
= $ (:) for any family for which <∗2 is finite61

[19]. It was also proved in [4] that there is no semi-online algorithm “from above” for colouring bottomless62

rectangles. One of our main results is a generalisation of this negative statement.63

Theorem 1.3. For any : and <, and any semi-online algorithm that :-colours bottomless rectangles from64

below (resp. from above, from the right, or from the left), there is a family of bottomless rectangles such that65

the algorithm will produce an <-fold covered point that is covered by at most one colour.66

Our proof is much more complicated than the one in [4]; while there an Erdős-Szekeres [6] type67

incremental argument is used, we need a certain diagonalisation method. In particular, we reduce the semi-68

online bottomless rectangle colouring problem to a question about semi-online colourings of arborescences,69

which is interesting in its own right.70

2



Theorem 1.4. For any : and <, and any semi-online colouring algorithm that :-colours the vertices of71

an arborescence in a leaf-to-root order, there is an arborescence that has a leaf-to-root order such that the72

algorithm will produce a directed path of length < that contains at most one colour.73

We apply this theorem to four natural configurations of bottomless rectangles to show that for each74

configuration, there is a direction from which a semi-online algorithm fails. Furthermore, we show in75

Theorem 4.1 that bottomless rectangles do not admit shallow hitting sets, which are another standard tool to76

bound polychromatic colouring numbers.77

These negative results are complemented by optimal upper bounds given by online algorithms from the78

other directions. We obtain linear bounds for <∗
:
for the following families of bottomless rectangles:79

• <∗
:
(Funit) ≤ 2: − 1 for unit-width families, Proposition 2.5,80

• <∗
:
(Fhanging) ≤ 2: − 1 for hanging families, Theorem 2.8, and81

• <∗
:
(Fint) ≤ 3: for intersecting families. Theorem 2.9,82

We also improve the current lower bound for <∗
:
, by showing <∗

:
≥ 2: − 1 (Theorem 4.2).83

In section 2, we introduce certain configurations of bottomless rectangles, and define the corresponding84

colouring problem. We also prove our other main results: that for many families of bottomless rectangles,85

such as unit-width1 and intersecting2 families, <∗
:
is linear. In section 3, we prove Theorem 1.4 and deduce86

Theorem 1.3 as a corollary of it. In section 4, we look at other methods to improve the upper bound on <∗
:
,87

and improve the lower bound for general families to <∗
:
≥ 2: − 1.88

2 Configurations of bottomless rectangles89

2.1 Erdős-Szekeres configurations90

We would like to improve the upper bound <∗
:
(Fu) = $ (:5.09) for general families by classifying some91

configurations of bottomless rectangles, finding a colouring for each configuration, and combining these92

to obtain a good colouring for general families. To this end, we will use the classical result of Erdős and93

Szekeres [6] that any sequence of length (: − 1)2 + 1 contains a monotone subsequence of length : .94

Recall that we associated to each rectangle its parameters (;, A, C). We refer to ; as its left-coordinate, A95

its right-coordinate, and C its height. Let ? be a point covered by (< − 1)4 + 1 rectangles. Ordering these96

rectangles by left endpoint, we find a subsequence of length (<−1)2+1 whose right endpoints are monotone.97

Applying the result of Erdős and Szekeres again, we find a (sub)subsequence of length < whose heights are98

monotone. This proves that any point that is contained in (< − 1)4 + 1 bottomless rectangles is contained99

in < bottomless rectangles such that each of the three parameters of these < bottomless rectangles are100

in increasing or decreasing order. We name these configurations, respectively, increasing/decreasing steps,101

towers and nested rectangles (see Figure 2).102

We are interested in colouring families with respect to a fixed configuration. For example, canwe :-colour103

a finite family Fso that any point covered by an <-tower is covered by all : colours? We refer to least such104

< as <∗
:
for towers, and analogously for the other configurations.105

Theorem 2.1. <∗
:
= : for each fixed configuration.106

1See subsection 2.2
2See subsection 2.3

3



A result of Berge [3] shows that for any family F of geometric regions, <∗2(F) = 2 if and only if107

<∗
:
(F) = : for all : . It is not hard to show that <∗2 = 2 for each configuration, and then apply the result of108

Berge. Nevertheless, it is valuable to see that there is a simple online algorithm for each configuration.109

'1

'2

'<

increasing m-steps

'1
'2

'<

decreasing m-steps

'1

'2

'<

m-tower

'1
'2

'<

m-nested rectangles

Figure 2: Erdős-Szekeres configurations

Definition 2.2. In this paper, we will consider the following two types of colouring algorithms for hyper-110

graphs, which receive the vertices in some order. Both types must colour the vertices irrevocably – they are111

not allowed to recolour vertices.112

(1) An online algorithm must colour each vertex immediately so that at each step, there is no conflict in113

the partial colouring. 3114

(2) A semi-online algorithm need not colour each vertex immediately, but must ensure that at each step115

there is no conflict in the partial colouring.116

This condition on the partial colouring means that, for example, at every step the algorithmmust maintain117

that a point covered by < rectangles is covered by all : colours, but not all points have to be colored.118

Proof of Theorem 2.1. We first present a colouring algorithm for towers. We colour the rectangles in increas-119

ing order of height, i.e. from below, so that at every step the following property holds.120

(*) If a point ? is covered by a 9-tower for 9 ≤ : , then ? is covered by at least 9 different colours.121

At step 1, colour the rectangle of least height arbitrarily. Suppose the first C − 1 rectangles have been122

coloured so that (*) holds. We colour the rectangle 'C as follows. For each 1 ≤ 8 ≤ : , let H8 be the largest123

number so that if ? ∈ 'C has H-coordinate less than H8 , then ? is covered by colour 8. (This corresponds to124

a tallest rectangle ( of colour 8 such that ((, 'C ) is a tower.) If H8 does not exist for some colour 8, colour 'C125

with colour 8. Otherwise, suppose H1 > · · · > H: , and colour 'C with colour : .126

Property (*) holds: if ? is covered by a 9-tower, then either ? was already covered by 9 colours, or we127

added a new colour to the set of colours covering ?. We use the same algorithm to colour :-nested sets, only128

we colour the rectangles from above. It is easy to check that with this ordering, the same property holds.129

3There is a large literature on online algorithms [8, 9, 16].
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(↑)

'C

H1

H2

?

(↓)
'C

H2

H1

?

Figure 3: Colouring algorithms for :-towers and :-nested sets respectively

The algorithm for increasing :-steps is only slightly different. We colour the rectangles in decreasing130

order of right endpoint (from the right). At step C, for 1 ≤ 8 ≤ : , let G8 be the least number so that if ? ∈ 'C131

has G-coordinate greater than G8 , then ? is covered by a rectangle of colour 8 (corresponding to the leftmost132

rectangle ( of colour 8 such that ('C , () form increasing steps). As earlier, if some G8 does not exist, give 'C133

colour 8. Otherwise, if G1 < · · · < G: , give 'C colour : .134

'C

G1

G2

(←)

?

'C

G1

G2

(→)

?

Figure 4: Colouring algorithms for increasing and decreasing :-steps respectively

135

Note that ordering a tower in increasing order of height (from below) is the same as ordering it in136

decreasing order of right endpoint (from the right), or increasing order of left endpoint (from the left). We137

may repeat the same algorithm for towers, colouring the rectangles from the left (or right) and we will still138

obtain a good colouring. Similarly, ordering a nested set from above is the same as ordering it from the left or139

right. Ordering increasing steps from the right (resp. decreasing steps from the left) is the same as ordering140

them from above. This is all to say that the same algorithm can be used from these “good” directions for141

each fixed configuration.142

left (→) right (←) below (↑) above (↓)

inc. steps ∞ = : ∞ = :

dec. steps = : ∞ ∞ = :

towers = : = : = : ∞

nested = : = : ∞ = :

143

Table 1: <∗
:
values for each configuration given by semi-online algorithms from different directions.144
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The value∞ indicates the non-existence of semi-online colouring algorithms, which we prove in the next145

section.146

The next natural question to ask is: how can we combine these colourings? Nested rectangles seem to147

have the “simplest” structure of the four configurations. Indeed, ordering nested rectangles from above is148

the same as ordering them from the left or right. Further, if ('1, '2) are nested ('1 contains '2), then any149

point in '2 is neccessarily contained in '1. This shows that we can modify the algorithms for the other150

configurations to also colour nested rectangles.151

Proposition 2.3. <∗
:
= : if we :-colour any finite family Fwith respect to152

(a) towers and nested sets153

(b) increasing steps and nested sets154

(c) decreasing steps and nested sets155

Proof. We first present the algorithm for towers and nested sets. The precise statement is that any finite156

family F can be :-coloured so that any point contained in a :-tower or a :-nested set is covered by all :157

colours. We colour the rectangles from the right (this can also be done from the left). We maintain the same158

property as earlier.159

(*) If a point ? is covered by a 9-tower or a 9-nested set for 9 ≤ : , then ? is covered by at least 9 different160

colours.161

At step C, for 1 ≤ 8 ≤ : , let H8 be the greatest number so that if ? ∈ 'C has H-coordinate less than H8 , then ?162

is covered by a rectangle of colour 8. As earlier, if some H8 does not exist, give 'C colour 8. Otherwise, suppose163

H1 > . . . > H: , and give 'C colour : . To prove that (*) holds is not as straightforward as in Theorem 2.1. Let164

H denote the height of 'C . If H: > H, or H > H1, (*) holds by the same argument as in Theorem 2.1. If not, we165

have H1 > · · · > H;−1 > H > H; > · · · > H: . Suppose ? ∈ 'C is covered by a 9-nested set '1, . . . , ' 9−1, 'C .166

Since each H8 is maximal, (*) holds by the same argument as earlier. The only essentially different case is167

when ? ∈ 'C is covered by a 9-tower. If we did not add a new colour to the set of rectangles containing ?,168

this means that ? was already covered by a rectangle of colour : . However, as H: was chosen to be maximal,169

the H-coordinate of ? must be less than H: , so ? is already covered by all : colours.170

The algorithms for increasing and decreasing steps are modified in the exact same way.171

2.2 Unit-width rectangles172

The next natural pair of Erdős-Szekeres configurations to attempt to combine is the increasing and173

decreasing steps. For this, we consider a different setup; refer to steps as the case when we assume that F174

does not contain any towers or nested sets. What is <∗
:,steps?175

Let unit bottomless be the case when all the rectangles in Fhave the same width, or unit width. It is clear176

that “unit bottomless ⊂ steps”, as any family of unit bottomless rectangles cannot contain towers or nested177

sets.178

Proposition 2.4. “steps = unit bottomless”, i.e. any family of tower- and nested set-free rectangles can be179

realised as a family of unit width bottomless rectangles so that the corresponding dual hypergraphs are180

isomorphic.181
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Proof. We prove the inclusion steps ⊆ unit bottomless by our favourite method, induction on |F|. Suppose182

any family Fof =− 1 rectangles that do not contain towers or nested sets can be realised as a family FD=8C of183

unit bottomless rectangles (with an isomorphic hypergraph), and that this realisation preserves heights and184

the ordering of left endpoints. That is, the height of a rectangle ' in F is the same as its realisation in FD=8C .185

Let |F| = =, and let ' be the leftmost rectangle in F. Take any realisation of F\ ' as a family G, and186

let '1, . . . , '< be the rectangles that intersect ', and '′1, . . . , '
′
< their realisations. Assume without loss of187

generality that ; ('1) < · · · < ; ('<).188

In particular, ; ('<) < A (') < A ('1) (as they intersect), so '1, . . . , '< also intersect each other. This189

implies that the interval [; ('′1), . . . , ; ('
′
<)] has length strictly less than 1. Thus for n small enough, if we190

realise ' as a unit width rectangle '′ with A ('′) = ; ('′<) + n with the same height, then '′ will intersect191

exactly the rectangles '′1, . . . , '
′
< (with the same hypergraph structure).192

'′

'′1

'′<

Figure 5: We ensure that the realisation of ' preserves the hypergraph structure.

193

So instead of considering colouring points with respect to bottomless rectangles, we may consider194

colouring steps with respect to points.195

Proposition 2.5. For steps, <∗
:
≤ 2: − 1.196

The proof of the proposition will use ABA-free hypergraphs [14]. We say a hypergraph H with an197

ordering < of its vertex set is ABA-free if there are no hyperedges � and � and vertices G < H < I with198

G, I ∈ � \ � and H ∈ � \ �. For example, interval hypergraphs - where the vertices are points in R and199

the hyperedges are the subsets induced by some intervals - are ABA-free. A result of [14] tells us that for200

ABA-free hypergraphs, <: ≤ 2: − 1.201

Proof of Proposition 2.5. Let Fbe a family containing no nested sets or towers and % a finite point set. We202

claim that by ordering the rectangles by left endpoint, the resulting hypergraph on the vertex setFwith edges203

induced by % is ABA-free. Suppose for contradiction we have three rectangles with ; ('1) < ; ('2) < ; ('3),204

and points ? and @ so that ? ∈ ('1 ∩ '3) \ '2, and @ ∈ '2 \ ('1 ∩ '2).205

Recall that a point (G, H) is in a rectangle ' if and only if G ∈ [; ('), A (')] and H < H('). Let ? = (G?, H?)206

and @ = (G@, H@). Then, ? ∈ '1, '3 but ? ∉ '2 implies,207

; ('1) < ; ('2) < ; ('3) < G? < A ('1) < A ('2) < A ('3), and
208

H('1), H('3) > H? > H('2)
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'1

'2

'3
?

Figure 6: An arrangement of ? and the three rectangles implied by the above conditions.

As a result, [; ('2), A ('2)] is covered by the intervals [; ('1), A ('1)] and [; ('3), A ('3)], and '2 is below209

'1 and '3; the “top side” of '2 is covered by the top sides of '1 and '3 as in Figure 6. Thus any point in '2210

is contained in at least one of '1 and '3, contradicting that @ ∈ '2 but @ ∉ '1 or '3.211

212

We end this subsection by extending this to families that do not contain towers.213

Theorem 2.6. For families F that do not contain towers, <∗
:
≤ 2: − 1.214

Proof. As earlier, we want to show that the corresponding hypergraph is ABA-free. Suppose again that we215

have three rectangles with ; ('1) < ; ('2) < ; ('3), and points ? and @ so that ? ∈ '1, '3, @ ∉ '1, '3, and216

@ ∈ '2, ? ∉ '2.217

The previous proposition shows '1, '2, '3 must contain at least one nested set. It is also easy to see that218

not all three of them can form a nested set, so exactly two of them do. Further, the condition ? ∈ '1, '3 but219

@ ∉ '1, '3 implies that ('1, '3) must form a nested set (where '1 contains '3). In this case, it is easy to220

check that it is not possible to have a rectangle '2 that forms steps with both '1 and '3, and contains @ but221

not ?.222

2.3 Other families223

For families that are tower-free, <∗
:
is linear. What of families that do contain towers?224

We say a family of bottomless rectangles is hanging if their left endpoints lie on the line H = G. It is clear225

that we can choose any line with positive slope, as rotating the line H = G and moving the left endpoints along226

with it preserves the hypergraph structure. So more generally, a hanging family is one whose left endpoints227

all lie on a fixed line with positive slope, which will be H = G for convenience. A tower, for example, can be228

realised as a hanging arrangement by “stretching” the left endpoints.229

Proposition 2.7. For hanging families, <∗
:
≤ 3: − 2.230

This proof relies on a reduction to the primal problem for general families of bottomless rectangles,231

when we colour points with respect to bottomless rectangles. We want to show that any hanging family F232

and point set % can be realised as a family F(%) and point set %(F) so that a rectangle ' ∈ Fcovers a point233

@ ∈ % if and only if the corresponding point A ∈ %(F) is contained in the rectangle & ∈ F(%).234

To each rectangle ' ∈ F, we associate its right endpoint A ('), and to each point @ = (G, H) ∈ %, we235

associate an infinite hanging rectangle from the point (G, G). Of course, when we say infinite, we simply236

mean that the right endpoint of the corresponding rectangle in F(%) is sufficiently large.237
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' ?

A (')

Figure 7: The infinite hanging rectangle from ? contains A (') if and only if ' contains ?.

Since the best upper bound for the primal problem is 3: − 2, we have the desired bound for hanging238

families. However, by modifying the proof of this upper bound from [2], we can improve it to 2: − 1. By the239

duality we observed, it suffices to consider colouring points with respect to infinite hanging rectangles. Order240

the points in increasing order of H-coordinate (from below). Note that if ? is to the left of some hanging241

rectangle ', then ' does not contain ?, so once we start colouring points of ' we may “disregard” ?. We242

present the points in increasing order of H-coordinate as follows. At step C, suppose @ is to be presented, and243

? is the leftmost point at this step. If @ is covered by a rectangle to the right of ?, first we “delete” ?, then244

we present @. If not, then we present @ without deleting any points. This enables us to only care about the245

leftmost 2: − 1 points, as we discard the nonessential ones.246

More precisely,we frame this as a dynamic colouring problem on the line.Wewish to colour a dynamically247

appearing point set % where one of the following kinds of events can occur.248

(1) A new point appears.249

(2) The leftmost point disappears.250

Theorem 2.8. For hanging arrangements, <∗
:
≤ 2: − 1.251

Proof. Given a dynamically appearing point set % as discussed, we want to :-colour it so that at every step,252

the leftmost 2: − 1 points contain at least one point of each colour. For 8 = 1, . . . , : , define an 8-gap to be an253

inclusion-maximal set of points between two points of colour 8, and an 8-prefix to be the set of points before254

the first point of colour 8. It suffices to maintain the following invariants at each step.255

(a) All 8-gaps have size at least : − 1, and256

(b) all 8-prefixes have size at most 2: − 2.257

Suppose that these invariants are satisfied at some step, and then an event of type (1) occurs. This can only258

harm (b) by creating an 8-prefix of size 2: − 1 for some 8. At most : − 1 colours occur in the leftmost :259

points, and by (a), no colour occurs more than once. So there is some uncoloured point which we can colour260

with colour 8; by construction, this is separated from the next point of colour 8 by at least : − 1 points, so (a)261

is preserved.262

Now suppose an event of type (2) occurs: the first point disappears. Again, this can only harm (b) by263

creating an 8-prefix of size 2: − 1. This means that the leftmost point had colour 8, so we may once again264

find an uncoloured point in the leftmost : points of the 8-prefix, and colour it with colour 8.265

Another type of family we consider is the intersecting family. These are families where any two rectangles266

are pairwise intersecting. In particular, there is a point E contained in the intersection of all the rectangles.267

We call the vertical line through E the spine of the family.268
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E

L R

Figure 8: The spine through E defines the sides L and R.

Theorem 2.9. For intersecting families, <∗
:
≤ 3: .269

Our proof will rely on shallow hitting sets.270

Definition 2.10. A subset ( ⊂ Fis a 2-shallow hitting set for depth 3 if every point that is covered by exactly271

3 rectangles is covered by at least 1 and at most 2 rectangles of (.272

Suppose for fixed 2 and a family F of bottomless rectangles, we have a 2-shallow hitting set for any273

depth 3. First we construct a 2-shallow hitting set (1 for depth 2: , then remove (1 from Fand construct a274

2-shallow hitting set (2 for depth 2:−2, then remove (2 fromFand so on, yielding some disjoint subfamilies275

(1, . . . , (: . It is now easy to check that any point covered by 2: rectangles is covered by at least 1 rectangle276

from each of (1, . . . , (: : <∗: ≤ 2: for F.277

Proof of Theorem 2.9. Let 3 be arbitrary.Wewill construct hitting sets (! and (', and show that ( = (!∪('278

is a 3-shallow hitting set for depth 3. Order the points at depth exactly 3 from below, andwewill add rectangles279

to (! and (' in this order. If ? is a point at depth 3 on side B that is not yet covered by any rectangle of280

(B, add to (B the rectangle covering ? whose extension to the other side is shortest. Once we are finished281

constructing (! and (' in this order, we reduce ( = (! ∪ (' so that it is a minimal hitting set for depth 3.282

To show that it is 3-shallow, we show that every point ? at depth 3 on side, say !, is covered by at most 2283

rectangles from (! and at most 1 from ('. This is by minimality; if ? is covered by )1, )2, )3 ∈ (! , removing284

the one of the lower two whose left endpoint is closer to the spine preserves that ( is a hitting set. (This is285

not true without the fact that F is intersecting.) If ? is contained by two rectangles '1, '2 ∈ (', suppose286

that H('1) > H('2). Since we chose '1 for (' from below, there must be a point @ on the right side that is287

covered by '1 but is above '2. As a result, there are 3 − 1 other rectangles covering @ whose heights are288

between '1 and '2. By the choice of '2 for @ by minimality of its left endpoint, the left endpoints of these289

3 − 1 rectangles extend beyond the left endpoint of '2, so they cover ?. This gives 3 + 1 rectangles that cover290

?, a contradiction.291
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E

)1

)2

)3

?

E

'1

'2

?

@

. . .

Figure 9: (left) )2 is not needed to hit points at depth 3 on the left, and (right) there are 3 − 1 rectangles between '1
and '2 that cover ?.

3 Arborescences292

The goal for this section is to prove Theorem 1.4,293

Theorem 1.4. For any : and <, and any semi-online colouring algorithm that :-colours the vertices of294

an arborescence in a leaf-to-root order, there is an arborescence that has a leaf-to-root order such that the295

algorithm will produce a directed path of length < that contains at most one colour.296

and to show that Theorem 1.3 can be deduced from it.297

Theorem 1.3. For any : and <, and any semi-online algorithm that :-colours bottomless rectangles from298

below (resp. from above, from the right, or from the left), there is a family of bottomless rectangles such that299

the algorithm will produce an <-fold covered point that is covered by at most one colour.300

We would like to associate to each family F of rectangles a simple graph, and derive a polychromatic301

colouring of F from a suitable colouring of this graph. First we will define the family of graphs that we302

consider (arborescences), prove Theorem 1.4, then show how these graphs are obtained from bottomless303

rectangles.304

3.1 The setup305

An arborescence is a directed tree with a distinguished root vertex such that all edges are directed away306

from the root, i.e. there is a unique directed path from the root to any vertex. We denote the length of the307

shortest directed path from D to E, if it exists, by 38BC (D, E). Recall that the length of a path is the number of308

edges, or one less than the number of vertices. A disjoint union of arborescences is called a branching. We say309

that an ordering of the vertices of a branching is root-to-leaf if every vertex is preceded by its in-neighbors310

and succeeded by its out-neighbors; in particular, from every component first the root is presented and last a311

leaf.312

Claim 1. The vertices of any branching can be :-coloured by an online algorithm in a root-to-leaf order313

such that any directed path on : vertices contains all : colours.314

Proof. If a root is presented, colour it with colour 1. Every time a new vertex E is presented in the component315

with root A , colour E according to the parity of 38BC (A, E) (mod :) (which can be determined from a root-to-leaf316

ordering).317
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We call the reversal of a root-to-leaf ordering a leaf-to-root ordering; from each component, first a leaf318

is presented and last the root. Our main result, Theorem 1.4, shows that the converse of the above claim319

fails: any semi-online algorithm will in fact leave arbitrarily long monochromatic paths. In order to apply320

this result to bottomless rectangles, however, we will need a stronger condition on the leaf-to-root ordering.321

For two vertices D and E of a branching, say D < E if they are in the same component and there is a322

directed path from D to E. This forms a partial order where the roots are the minimal elements and the leaves323

the maximal. A leaf-to-root ordering is a linear extension of this partial order that presents the <-maximal324

element first.325

If D < E and there are no other vertices between them, i.e. DE is a directed edge, write D l E and say that326

E is a parent of D. (Thus, somewhat contradicting the laws of nature, every vertex can have only one child,327

but several parents.) When presenting the vertices of a branching in a leaf-to-root order, the newly presented328

vertex D will always form a root, while its parents were all roots of the branching before D was presented.329

A

D1

D3D2
E1

E2

A ′

D′
E′

Figure 10: A branching with roots A and A ′. In this example, D1 m A, i.e. D1 is a parent of A, but D2 is not a parent of A
even though D2 > A (D2 is a “grandparent” of A), and E′ ≯ A . A linear extension of this (or a leaf-to-root ordering) might
present the vertices D′, E′ and A ′ before D3, so it is not necessary that the roots of the branching are the last vertices
presented.

Denote the roots of the branching before a new vertex D is presented by E1, E2, . . . indexed in the order330

in which they were presented. We say that a leaf-to-root ordering is geometric if the parents of D form an331

interval in this order, i.e., for every D, {E8 | D l E8} = {E8 | ; < 8 < A} for some ; and A. Intuitively, we do not332

allow an ordering of the following type.333

E1 E2 E3

D

Figure 11: The order E1, E2, E3, D is a leaf-to-root order but it is not geometric, because D is adjacent to E1 and E3 but
not to E2.

Now we state a stronger form of Theorem 1.4.334

Theorem 3.1. For any numbers<, : , there is no semi-online :-colouring algorithm that receives the vertices335

of an arborescence in a geometric leaf-to-root order and maintains that at every stage, all directed paths of336

length < contain all 2 colours.337

Call a semi-online :-colouring algorithm<-proper if any path on< vertices contains at least two colours.338

The theorem states there is no <-proper semi-online :-colouring algorithm for arborescences presented in339

geometric leaf-to-root order. The idea of the proof is that for any vertex D, there are only finitely many340

possibilities for all directed paths of length< from D. However, we can always force the algorithm to produce341

a new “type” of path, leading to a contradiction.342
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Fix : colours, �1, . . . , �: , a branching Fwith a geometric leaf-to-root order, a point ? ∈ + (F), and the343

time C at which ? appears. To ease future notation, let us get some (many) definitions out of the way.344

• ?D is a D-parent of ? if there is a directed path (?, ?1, . . . , ?D), i.e. 38BC (?, ?D) = D in the graph. We345

refer to the subpath (?1, . . . , ?D) as the chain corresponding to ?D .346

• A D-parent ?D of ? is in�8 if ?D is a D-parent of ? and every point in the chain (?1, . . . , ?D) is coloured347

with �8 at time C. (Note that ? itself need not have colour �8 .)348

• A D-parent ?D of ? in �8 is maximal if there is no ?D+1 m ?D that is also coloured with �8 at time C349

(note that this depends only on C, even if some such ?D+1 is coloured later).350

• Similarly, ?D is an uncoloured D-parent of ? if every point of (?1, . . . , ?D) is uncoloured, and it is a351

maximal uncoloured D-parent if there is no ?D+1 m ?D that is also uncoloured.352

• The type of ?, C ?(?) is defined as the vector (C1, . . . , C:) ∈ N: , where353

C8 = max{D : ? has a maximal D-parent in �8}

• If two partially coloured trees, t1 and t2, are isomorphic, we write t1 � t2. Note that for the354

isomorphism we require that vertices coloured, say red, must be mapped to red vertices - we do not355

allow the isomorphism to permute the colours.356

?

@
@2

@1

@′

Figure 12: Suppose this is the partially 2-coloured arborescence when ? appears. @ is an uncoloured 1-parent of ?,
while @2 is amaximal uncoloured 2-parent. The type of ? is (0, 0). We cannot say anything about the type of @′, because
this depends on the time at which @′ appears. If the blue points were coloured when @′ appeared, then C ?(@′) = (0, 2).
If they were only coloured when ? appeared, then C ?(@′) = (0, 0), even though it now has blue points above it.

Let (C be the set of points that have appeared by time C in the same connected component of Fas ? (or357

in the subtree rooted at ? at time C). We now associate to ? a tree t(?) by “trimming” the induced subgraph358

F[(C ] in the following steps. (See Figure 13.)359

1. If @ is uncoloured and 38BC (?, @) > <, delete @.360

2. If @1 and @2 are both maximal C8-parents in �8 for some remaining @, delete @2 and all points that are361

> @2.362

3. For 8 = 1, . . . <, if @ is a (< − 8)-parent of ?, and @1 m @ and @2 m @ are such that the subtrees rooted363

at @1 and @2 are isomorphic, delete @2.364
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?

@
@2

@1

@′ →
step 1

?

@
@2

@1

@′ →
step 2

?

@
@2

@1

@′ →
step 3

?

@

@1

@′

Figure 13: Example for trimming with < = : = 2. In step 1, we delete the uncoloured 3-parent of ?, but preserve the
red parent of @1. In step 2, we “trim” the blue parents of @′. In step 3, the subtrees rooted at @1 and @2 are isomorphic,
so we delete @2.

The idea of this trimming process is to retain only the “essential” information about the colouring when365

? appears and reduce the number of possible t(?) to a bounded number of options. If we assume that the366

algorithm has produced a <-proper colouring until the time that ? appears, then we can disregard vertices at367

distance > < from ?. If a vertex was not deleted during the trimming, we say that it was preserved.368

We could modify step 1 to delete all points at distance > < from ?. However, in the proof we will use369

the fact that the type of any point at distance ≤ < from ? is preserved. Of course, if the algorithm is good,370

then any directed path of length < contains at least 2 colours, so deleting only the uncoloured points is just a371

technical condition that simplifies notation. Finally, in step 3, we ensure that we do not have any “repetitions”.372

For example, if all the branches rooted at ? are isomorphic, by considering only one of them we do not lose373

any important information.374

We emphasise that t(?) depends only on the time at which ? appears. For instance, in the above figure,375

even if @′ is coloured blue at a later time, t(?) does not change.376

3.2 Proof of the main theorem377

The crucial result of the trimming process is that the following lemma holds.378

Lemma 3.2. Suppose that a semi-online colouring algorithm as in the statement of the theorem exists. Then379

the following hold.380

1. The set {t(?) : F is a branching, ? ∈ + (F)} is finite.381

2. If @ ∈ (C is preserved after the trimming, and @ had an C8-parent in �8 in F, then @ has an C8-parent in382

�8 in t(?). In particular, the type of @ is preserved.383

3. Suppose ?′ l ? is presented, and @ was an uncoloured D-parent of ? in t(?) for D < 3. If none of the384

points on the chain from ?′ to @ are coloured when ?′ is presented, then @ is preserved in t(?′).385

Proof. We show that there are only finitely many possibilities for t(?). In step 1 of the trimming we delete386

uncoloured points at distance > < from ?. In step 2 we preserve only maximal parents in �8 of ? for387

each colour �8 . Since the algorithm is <-proper, t(?) will have depth at most <. In step 2, we also delete388

“repetitions” so there are only finitely many possibilities for each of the branches above ?. And in step 3,389

we delete isomorphic subtrees, so no two of the branches above ? are isomorphic. Thus t(?) can take only390

finitely many values.391

The second claim follows from our earlier argument. For the third claim, we only need to consider the392

case when the algorithm produces an uncoloured D-parent @′ such that one of @ and @′ must be trimmed (i.e.,393

the subtrees rooted at @ and @′ are isomorphic). In this case, we can assume without loss of generality that394

@′ is trimmed so the second property holds.395
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Lemma 3.3. At any stage of the algorithm, suppose that we have a collection of trees with roots ?1, . . . , ?B396

presented in this order such that no two t(?8) and t(? 9) are isomorphic. Then presenting a vertex ? with397

parents ?1, . . . , ?B, will give a tree t(?) that is non-isomorphic to any t(?8).398

Proof. Suppose for contradiction that for some ?8 , t(?) � t(?8). Let i : t(?) → t(?8) be an isomorphism399

(preserving colourings). We prove by induction for all D < < that there is a chain ? = A0 l A1 l · · · l AD in400

t(?) such that for all 8 ≤ D we have i(A8−1) = A8 , and A8 is uncoloured.401

First suppose ? is coloured, say with �1, in t(?), and let C1 be maximal such that ? has a C1-parent in �1.402

A1 = ?8 = i(?) was coloured with �1 in t(A1), and by the isomorphism A1 has a C1-parent in �1. Since we403

did not recolour any points, this produces a (C1 + 1)-parent in �1 of ? in t(?), contradicting the maximality404

of C1.405

So ? must be uncoloured in t(?), which implies that A1 was uncoloured in t(A1). To complete the base406

case of the induction hypothesis, we need to show that A1 remains uncoloured in t(?), i.e., when ? appears.407

Let C1 be as earlier, and suppose again that A1 is coloured with �1 in t(?). Then ? has an (C1 + 1)-parent in408

�1 in t(?), again a contradiction.409

Suppose we have produced a chain ? = A0 l A1 l · · · l AD−1 from the induction hypothesis. If D − 1 =410

<, then we are done. Otherwise, let AD = i(AD−1). Then AD is uncoloured in t(A1). Since AD−1 m AD−2,411

AD m i(AD−2) = AD−1, so ? = A0 l A1 l · · · l AD is a chain, and it remains to show that AD is uncoloured in412

t(?). Suppose AD is coloured in t(?) with �1. If B1 is maximal so that AD−1 has an B1-parent in �1 in t(?),413

then AD has an B1-parent in �1 in t(?1), producing an (B1 + 1)-parent in �1 for AD−1 in t(?). This contradicts414

the maximality of B1.415

This eventually produces a chain of < uncoloured points, which contradicts the correctness of the416

semi-online algorithm.417

Proof. From here we can finish the proof of Theorem 3.1 with an infinite descent argument as follows. Order418

the finite sequences of naturals, N<l , such that (B1, B2, . . . , B;) > (B′1, B
′
2, . . . , B

′
;′) if there is some 8 such that419

for all 9 < 8 we have B 9 = B′
9
but B8 > B′

8
, or ; > ; ′ and for all 9 ≤ ; ′ we have B 9 = B′

9
. For a branching F,420

we define its associated sequence as follows. For each root ?8 of F, consider the sequence of trees t(?8)421

in the order their roots were presented. Let 81 be the smallest index such that for every t(?8) there is an422

8′ ≤ 81 such that t(?8) � t(?8′). The number of different trees t(?8) (same as the number of different trees423

up to 81) is denoted by B1. In general, after 8 9−1 has been defined, let 8 9 be the smallest index such that for424

every t(?8) with 8 > 8 9−1 there is an 8 9−1 < 8
′ ≤ 8 9 such that t(?8) � t(?8′). The number of different trees425

t(?8) for 8 9−1 < 8 ≤ 8 9 is denoted by B 9 . We repeat this for # steps, where # denotes the number of possible426

different (i.e., non-isomorphic) trees t, or until there are no more roots in F. The numbers (B1, . . . , B;) are427

the associated sequence of F.428

Note that there are finitely many associated sequences, as each # ≥ B1 ≥ B2 ≥ · · · ≥ B;, and also ; ≤ # .429

Applying Lemma 3.3 to the largest associated sequence that can be attained during the run of the semi-online430

algorithm, we get a contradiction as follows. Let Fbe a branching whose associated sequence, (B1, . . . , B;),431

is the largest.432

Case 1: If B1 = # , then we present a new point ? whose parents are the roots of F, and by Lemma 3.3433

we produce a new tree, which is not possible.434

Case 2: If # > B1 > · · · > B;, then ; < # . Introduce a new vertex disjoint from all vertices of F. This435

will either increase an earlier B8 , or give a new B;+1 = 1, but both of these contradict the maximality of436

(B1, . . . , B;).437

Case 3: There is some 9 for which B 9 = B 9+1. This is only possible if all the trees t(?8) for 8 9−1 < 8 ≤ 8 9438

have an isomorphic copy t(?8′) for some 8 9 < 8 ≤ 8 9+1. Introduce a new vertex ? under all the roots ?8 of F439

with index 8 > 8 9 to obtain a new branching F′. By Lemma 3.3, the tree t(?) is non-isomorphic to any t(?8)440

15



with 8 9−1 < 8 ≤ 8 9 . Therefore, the associated sequence of F′ will be larger than (B1, . . . , B;), contradicting its441

maximality.442

In summary, it is not possible for a semi-online :-colouring algorithm to produce finitely many associated443

sequences, so it cannot be <-proper.444

3.3 Application to bottomless rectangles445

In this section, we apply Theorem 3.1 to semi-online colouring algorithms for Erdős-Szekeres configu-446

rations. We start with towers.447

Corollary 3.4. There is no semi-online colouring algorithm for towers from above, i.e., for any numbers :448

and <, for any semi-online algorithm that :-colours bottomless rectangles from above, there is a family of449

bottomless rectangles such that any two intersecting rectangles form a tower, and the algorithm produces an450

<-fold covered point that is covered by at most one colour.451

Proof. In order to apply Theorem 3.1, we need to show that any branching can be realised as a family of452

towers so that453

1. ordering the rectangles from above corresponds to a geometric leaf-to-root order of the branching, and454

2. a semi-online colouring algorithm for towers from above corresponds to an <-proper semi-online455

:-colouring algorithm for branchings in this order.456

For any arborescence F in geometric leaf-to-root order, we show by induction on |F| that it can be457

realised as a family of towers with this order. For |F| = 1 this is clear. For the inductive step, we will need458

to use the fact that the ordering is geometric. For example, suppose we have a non-geometric order and459

three roots ?, @, A that are realised as disjoint rectangles, with @ between ? and A . Then if the next root B is460

presented with B < ? and B < A, but B ≮ @, B cannot be realised as a rectangle.461

? @ A

Figure 14: There is no way to present a new rectangle B that intersects ? and A but not @.

Now we prove the induction step. Let |F| = =, and A be the last element in the ordering of + (F). Take462

any realisation of F\ {A} as a family of towers. If A is an isolated vertex in F, present A as a disjoint rectangle463

to the right of the realisation F\ {A}. Otherwise, since the order is geometric, A will only intersect some464

geometrically adjacent rectangles of F (by construction). Hence A can be realised as a minimal rectangle.465

A

Figure 15: By the geometric ordering, we can realise A as a minimal element.

The proof for nested rectangles from below is analogous.466

Corollary 3.5. There is no semi-online :-colouring algorithm from the left or from below for increasing467

steps. More precisely, for any integers : and <, there is no semi-online algorithm to :-colour rectangles468
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from the left (or from below) so that at every step, any point covered by <-increasing steps is covered by at469

least 2 colours. Similarly, there is no semi-online colouring algorithm for decreasing steps from the right or470

from below.471

Note that this statement is slightly weaker than Theorem 1.3 or Corollary 3.4 because we do not exclude472

the other kind of configurations from the family.473

Proof. We first prove the statement for increasing steps from the left. Again, we will prove the corollary by474

induction on |F|. However, we also weaken our requirements for the colouring of the steps. That is, we need475

not assume that every directed path of length < in the branching corresponds to a point covered by exactly476

< increasing steps. It is easy to see that a semi-online colouring algorithm of F is <-proper if and only if477

when any point ? ∈ F is presented, any directed path of length < from ? contains at least 2 colours. So it478

suffices to prove the following by induction.479

Any branching Fwith a geometric leaf-to-root order can be realised as a family of bottomless rectangles480

so that481

1. when ? ∈ F is presented, we realise ? as a rectangle so that any directed path of length < from ?482

corresponds to a point covered by exactly < increasing steps, and483

2. any two rectangles intersect either as increasing or as decreasing steps.484

The second assumption is a technical condition to ensure that @ covers the top-right corner of A if and485

only if (A, @) form increasing steps, so we can choose the top-right corner of an appropriate rectangle as the486

point satisfying the first induction hypothesis.487

The case |F| = 1 is trivial. Let |F| = =, and A be the last element in the ordering ofF. Take any realisation488

of F\ {A} satisfying the induction hypotheses. If A is an isolated vertex, let @ be the last element presented489

(thus a root), and realise A as a rectangle so that (@, A) form decreasing 2-steps (see Figure 16). There are no490

directed paths of length < from A so both induction hypotheses are satisfied.491

A@

Figure 16: The rectangles in decreasing steps correspond to roots of the branching.

Otherwise, since the ordering is geometric, A will only intersect the rightmost rectangles (by construction),492

thus can be realised as a rectangle that forms increasing steps with these rightmost roots, and decreasing493

steps with the other roots (see Figure 17).494

To see that the first hypothesis is satisfied, consider the rectangles corresponding to any directed path of495

length < from A , say (A1, . . . , A<−1, A). Then the top-right corner of A1 will not be covered by any rectangle496

other than the ones in this chain - this follows from the induction hypothesis and the fact thatFis a branching,497

so A2 is the unique child of A1.498
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A
A<−1

A1

Figure 17: The new rectangle A is presented in increasing steps with A<−1, and decreasing steps with the other minimal
elements.

The proof for increasing steps from below follows analogously, except we change the second induction499

hypothesis to assume that any two rectangles intersect either as increasing steps or as a tower. In this500

construction, the roots of the branching at any time will correspond to a tower, and the geometric ordering501

ensures that a new root can be placed in increasing steps with the top-most rectangles of the tower.502

The proof for decreasing steps is exactly the same, only interchanging left and right.503

4 Further results for bottomless rectangles504

4.1 No shallow hitting sets505

To prove an upper bound for intersecting families in Theorem 2.9, we used the fact that if a family admits506

a 2-shallow hitting set for arbitrary depths 3, then <∗
:
≤ 2: . Unfortunately, general families of bottomless507

rectangles do not admit such hitting sets.508

Theorem 4.1. For every integer 2 ≥ 0, there exists a real number A < 1 and an integer � ≥ 1 such that for509

every integer 3 ≥ �, there is a family F = F(ℎ, 3) such that the following holds. For any hitting set � of510

the 3-cells of F, there is a vertical line ℓ such that |ℓ ∩F| ≤ dA3e and |ℓ ∩ � | ≥ ℎ.511

In particular, F(ℎ, 3) witnesses that there are no (ℎ − 1)-shallow hitting sets for depth 3.512

Proof. We construct F(ℎ, 3) by induction on ℎ. For ℎ = 0, letting A = 0, � = 1, and F(ℎ, 3) be the empty513

family, the conditions are satisfied. Let Aℎ−1 and �ℎ−1 be the values given by the induction hypothesis for514

ℎ − 1. Choose B to be a real number such that 0 < B < 1 − Aℎ−1. Set515

� > max
(�ℎ−1

B
,

1
B(1 − Aℎ−1)

)
; A = max

(
Aℎ−1 + B, 1 − B(1 − Aℎ−1) −

1
�

)
.

For 3 ≥ �, we define F= F(ℎ, 3) as follows. Take 3 rectangles ('1, . . . , '3) in increasing 3-steps. We will516

insert families of the formF(ℎ−1, 8) for some�ℎ−1 ≤ 8 ≤ 3. First, set 80 = bB3c, so that 80 ≥ bB�c�ℎ−1 ≥ 1.517

Insert a copy of F(ℎ − 1, 3) so that it intersects only the rectangles '1, . . . , '80 , and the top sides of all the518

rectangles are above that of '80 . Next, for every 80 < 8 ≤ 3, insert a copy of F(ℎ − 1, 8) so that it intersects519

exactly the rectangles '8 , . . . , '3 , and all the top sides lie between those of '8 and '8+1 (or just above that of520

'3 when 8 = 3).521
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'1 '80

F(ℎ − 1, 3)

'80+1

F(ℎ − 1, 80 + 1)

'80+2

F(ℎ − 1, 80 + 2)

'3

F(ℎ − 1, 3)

?

Figure 18: The construction of F= F(ℎ, 3).

Now, let � be a hitting set for the 3-cells of F. Since the point ? is in a 3-cell, � must contain at least522

one of '1, . . . , '3 . First, suppose that '8 ∈ � for some 8 ≤ 80. The intersection of � with the leftmost523

copy of F(ℎ − 1, 3) is a hitting set for the 3-cells in F(ℎ − 1, 3). By induction, there is a line ℓ such that524

|ℓ ∩F(ℎ − 1, 3) | ≤ Aℎ−13 and |ℓ ∩ � ∩F(ℎ − 1, 3) | ≥ ℎ − 1. Then,525

|ℓ ∩F| ≤ Aℎ−13 + 80 ≤ (Aℎ−1 + B)3 < A3

and526

|ℓ ∩ � | ≥ (ℎ − 1) + 1 ≥ ℎ.

On the other hand, suppose � does not contain any rectangle '8 for 8 ≤ 80. Let 8 be maximal so that '8 ∈ �.527

Then, � ∩F(ℎ − 1, 8) is a hitting set for the 8-cells in F(ℎ − 1, 8). Again, we have a vertical line ℓ such that528

|ℓ ∩F(ℎ − 1, 8) | ≤ Aℎ−18 and |ℓ ∩ � ∩F(ℎ − 1, 8) | ≥ ℎ − 1. Similarly,529

|ℓ ∩ � | ≥ ℎ

and

|ℓ ∩F| ≤ Aℎ−18 + (3 − 8) + 1
= 3 + 1 − 8(1 − Aℎ−1)
≤ 3 + 1 − B3 (1 − Aℎ−1)
= 3 (1 − B(1 − Aℎ−1) + 1/3)
≤ A3.

530

4.2 An improved lower bound531

Finally, we present an improved lower bound for general bottomless rectangle families, and a weaker532

lower bound that can be applied to the steps problem.533

Theorem 4.2. <∗
:
(Fu) ≥ 2: − 1 for general families of bottomless rectangles.534

Proof. Our lower bound construction proceeds in two steps.535

1. If <∗
:
< <∗

:−1 + 2, then every family has a polychromatic :-colouring that is proper.536
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2. There is a family so that no polychromatic :-colouring is proper.537

This contradiction shows that <∗
:
≥ <∗

:−1 + 2, so by induction <∗
:
≥ 2: − 1.538

1. Suppose for some family F, no polychromatic :-colouring of F is proper. Let Gbe a witness to the539

sharpness of<∗
:−1, i.e. any (: −1)-colouring of Gproduces a point covered by<∗

:−1−1 rectangles but not all540

: colours. In a small interval around every 2-covered point in F, we place a thin copy of G (see Figure 19).541

Any polychromatic colouring of this new family F′ must induce a polychromatic colouring of F, so542

some copy of G is covered by 2 rectangles of the same colour, say red. By hypothesis, any point in this543

copy of G covered by at least <∗
:
rectangles is covered by all : colours. Since every such point is covered544

by exactly two red rectangles from F, recolouring every red rectangle in Gblue cannot ruin this property.545

However, this induces a (: − 1)-colouring of G so that any point in <∗
:−1 − 1 rectangles is covered by all546

: − 1 colours, a contradiction.547

So every family must have a polychromatic colouring that is proper.548

G G

G

Figure 19: Place disjoint thin copies of Garound every 2-covered point in F.

2. Consider the family in Figure 20.549

?

'

Figure 20: No polychromatic colouring of this family will be proper.

We have an <-tower (where < may be arbitrarily large), so that each rectangle from the tower meets550

' in a 2-covered point. Suppose without loss of generality that ' is coloured red in some polychromatic551

:-colouring. For this colouring to be proper, no rectangle of the tower can be red - however the point ? will552

then be covered by < rectangles, none of which are red, so the colouring cannot be polychromatic. This553

completes our proof.554

This lower bound cannot be applied to unit bottomless, as this construction relies heavily on towers. For555

these, we prove the following weaker lower bound.556

Proposition 4.3. <∗
:
(Funit) ≥ 2b 2:−1

3 c + 1 for unit bottomless.557

Proof. This is a generalisation of the construction that shows that <∗
:
= 3. Let F be a family of 2: − 1558

rectangles partitioned into 3 almost equal subfamilies, F1, F2 and F3 as follows.559
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F1

F2
F3

?2

?1?3

Figure 21: This construction shows that <: ≥ 2b 2:−1
3 c + 1.

Consider any :-colouring of F. Some colour, say red, is used at most once, so it appears in at most one560

of F1,F2 and F3, say F8 . Then the point ?8 is covered by the other two subfamilies, and no red rectangle.561

Since b 2:−1
3 c ≤ |F8 | ≤ d

2:−1
3 e, this proves the lower bound.562

Note that the family in the figure does not contain any towers or nested sets. This gives a lower bound to563

complement Proposition 2.5, namely that for steps, <∗
:
≥ 2b 2:−1

3 c + 1.564
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