Coherency and purity for monoids

International workshop on graphs, semigroups, and semigroup acts 2017
October 13th, 2017

Victoria Gould
University of York
Throughout, S will denote a monoid.

Finitary condition
A condition satisfied by all finite monoids.

Example
Every element of S has an idempotent power.

Finitary conditions were introduced by **Noether** and **Artin** in the early 20th Century to study rings; they changed the course of algebra entirely.
Coherency for Monoids: a finitary condition

Throughout, S will denote a monoid.

Finitary condition

A condition satisfied by all finite monoids.

Example

Every element of S has an idempotent power.

Finitary conditions were introduced by **Noether** and **Artin** in the early 20th Century to study rings; they changed the course of algebra entirely.

Example

Every right congruence on S is finitely generated, i.e. S is **right Noetherian**.

Every right ideal of S is finitely generated, i.e. S is **weakly right Noetherian**.
Coherency for Monoids: the definition

Coherency

This is the (first) finitary condition of importance to us today

Definition

S is right coherent if every finitely generated S-subact of every finitely presented right S-act is finitely presented.\(^a\)

\(^a\)This definition comes from Wheeler (1976)
Coherency for Monoids: the definition

Coherency
This is the (first) finitary condition of importance to us today

Definition
S is right coherent if every finitely generated S-subact of every finitely presented right S-act is finitely presented.a

aThis definition comes from Wheeler (1976)

Left coherency is defined dually: S is coherent if it is left and right coherent.
Acts over monoids: S-acts

Representation of monoid S by mappings of sets

A **(right) S-act** is a set A together with a map

$$A \times S \to A, \ (a, s) \mapsto as$$

such that for all $a \in A, s, t \in S$

$$a1 = a \text{ and } (as)t = a(st).$$

Beware: an S-act is also called an S-set, S-system, S-action, S-operand, or S-polygon.

Let $Act-S$ denote the class of all S-acts.
Acts over monoids: S-acts

Standard definitions/Elementary observations

- S-acts form a variety of universal algebras, to which we may apply the usual notions of subalgebra (S-subact), morphism (S-morphism), congruence, etc.
- S-acts and S-morphisms form a category, $\text{Act-}S$.
- We have usual definitions of free, projective, injective, etc. including variations on flat.
- Free S-acts are disjoint unions of copies of S.
Acts over monoids: \(S \)-acts

Standard definitions/Elementary observations

- \(S \)-acts form a variety of universal algebras, to which we may apply the usual notions of subalgebra (\(S \)-\textit{subact}), morphism (\(S \)-\textit{morphism}), congruence, etc.

- \(S \)-acts and \(S \)-morphisms form a category, \(\text{Act-}S \).

- We have usual definitions of \textit{free}, \textit{projective}, \textit{injective}, etc. including variations on \textit{flat}.

- Free \(S \)-acts are \textbf{disjoint unions of copies of} \(S \).

- \(A \) is \textbf{finitely presented} if

\[
A \cong F_S(X)/\rho
\]

for some finitely generated free \(S \)-act \(F_S(X) \) and finitely generated congruence \(\rho \).
Right coherent monoids
First observations

Definition

S is right coherent if every finitely generated S-subact of every finitely presented (right) S-act is finitely presented.
Right coherent monoids
First observations

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S) is right coherent if every finitely generated (S)-subact of every finitely presented (right) (S)-act is finitely presented.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem: Normak (77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (S) is right noetherian then (S) is right coherent.</td>
</tr>
</tbody>
</table>
Right coherent monoids
First observations

Definition

S is right coherent if every finitely generated S-subact of every finitely presented (right) S-act is finitely presented.

Theorem: Normak (77)

If S is right noetherian then S is right coherent.

Example: Fountain (92)

There is a monoid S which is weakly right noetherian but which is not right coherent.
Right coherent monoids
First observations

Definition

S is right coherent if every finitely generated S-subact of every finitely presented (right) S-act is finitely presented.

Theorem: Normak (77)

If S is right noetherian then S is right coherent.

Example: Fountain (92)

There is a monoid S which is weakly right noetherian but which is not right coherent.

Let us call the example above the **Fountain monoid**; it is made up of a group and a 4 element nilpotent semigroup.
Why is coherency interesting?

- The definition is natural, and fits with that for rings.
Why is coherency interesting?

- The definition is natural, and fits with that for rings.
- A ‘Chase type’ condition involving right annihilator congruences exists (G).
Why is coherency interesting?

- The definition is natural, and fits with that for rings.
- A ‘Chase type’ condition involving right annihilator congruences exists \((G)\).
- Certain nice classes of monoids are coherent (more later).
Why is coherency interesting?

- The definition is natural, and fits with that for rings.
- A ‘Chase type’ condition involving right annihilator congruences exists (G).
- Certain nice classes of monoids are coherent (more later).
- It has connections with products and ultraproducts of flat left S-acts (Bulman-Fleming and McDowell, G, Sedaghatjoo).
Why is coherency interesting?

- The definition is natural, and fits with that for rings.
- A ‘Chase type’ condition involving right annihilator congruences exists (\(G\)).
- Certain nice classes of monoids are coherent (more later).
- It has connections with products and ultraproducts of flat left \(S\)-acts (Bulman-Fleming and McDowell, G, Sedaghatjoo).
- Coherency is related to purity (more later).
Why is coherency interesting?

Theorem: Wheeler (1976); G (1986), Ivanov (1992)

The following are equivalent for a monoid S:

1. S is right coherent;
2. the existentially closed S-acts form an axiomatisable class;
3. the first-order theory of S-acts has a model companion.
Let A be an S-act. An **equation** over A has the form

$$xs = xt, \quad xs = yt \text{ or } xs = a$$

where x, y are variables, $s, t \in S$ and $a \in A$.
Equations over S-acts

Let A be an S-act. An equation over A has the form

$$xs = xt, \quad xs = yt \text{ or } xs = a$$

where x, y are variables, $s, t \in S$ and $a \in A$.

Consistency

A set of equations is consistent if it has a solution in some S-act $B \supseteq A$.
Equations over S-acts

Let A be an S-act. An equation over A has the form

$$xs = xt, \; xs = yt \; \text{or} \; xs = a$$

where x, y are variables, $s, t \in S$ and $a \in A$.

Consistency

A set of equations is **consistent** if it has a solution in some S-act $B \supseteq A$.

Absolutely pure and almost pure

A is **absolutely pure** (**almost pure**) if every finite consistent set of equations over A (in 1 variable) has a solution in A.

absolutely pure = algebraically closed
almost pure = 1-algebraically closed
Equations and inequations over S-acts

Let A be an S-act. An **inequation** over A has the form

$$xs \neq xt, \; xs \neq yt \; \text{or} \; xs \neq a$$

where x, y are variables, $s, t \in S$ and $a \in A$.
Let A be an S-act. An inequation over A has the form

\[xs \neq xt, \ xs \neq yt \text{ or } xs \neq a \]

where x, y are variables, $s, t \in S$ and $a \in A$.

Consistency

A set of equations and inequations is **consistent** if it has a solution in some S-act $B \supseteq A$.
Equations and inequations over S-acts

Let A be an S-act. An inequation over A has the form

$$xs \neq xt, \; xs \neq yt \; \text{or} \; xs \neq a$$

where x, y are variables, $s, t \in S$ and $a \in A$.

Consistency

A set of equations and inequations is **consistent** if it has a solution in some S-act $B \supseteq A$.

Existentially closed and 1-existentially closed

A is **existentially closed** (1-existentially closed) if every finite consistent set of equations and inequations over A (in 1 variable) has a solution in A.
Why is coherency interesting?

Theorem: G (1986)

The following are equivalent for a monoid S:

1. S is right coherent;
2. the existentially closed S-acts \mathcal{E} form an axiomatisable class;
3. the first-order theory of S-acts has a model companion;
4. the 1-existentially closed S-acts \mathcal{E}_1 form an axiomatisable class;
5. the absolutely pure S-acts \mathcal{A} form an axiomatisable class;
6. the almost pure S-acts \mathcal{A}_1 form an axiomatisable class.
The following monoids are right coherent:
Which monoids are right coherent?

Theorem:

The following monoids are right coherent:

- groups;
- semilattices;
The following monoids are right coherent:

- groups;
- semilattices;
- Clifford monoids;
Theorem:
The following monoids are right coherent:

- groups;
- semilattices;
- Clifford monoids;
- regular monoids for which every right ideal is finitely generated;
Theorem:
The following monoids are right coherent:

- groups;
- semilattices;
- Clifford monoids;
- regular monoids for which every right ideal is finitely generated;
- the free commutative monoid on X;
Which monoids are right coherent?

Theorem:
The following monoids are right coherent:

- groups;
- semilattices;
- Clifford monoids;
- regular monoids for which every right ideal is finitely generated;
- the free commutative monoid on X;
- the free monoid on X;
- the free left restriction monoid on X.
Which monoids are right coherent?

Theorem:
The following monoids are right coherent:

- groups;
- semilattices;
- Clifford monoids;
- regular monoids for which every right ideal is finitely generated;
- the free commutative monoid on X;
- the free monoid on X;
- the free left restriction monoid on X.

Theorem:
The free inverse monoid on X for $|X| \geq 2$ is not right coherent.
Completely right pure monoids

Definition: A monoid is completely right pure if every S-act is absolutely pure.

Clearly

\[A \subseteq A_1 \subseteq \text{Act}-S. \]

Theorem: G (1991)

A monoid S is completely right pure if and only if all S-acts are almost pure, i.e.

\[\text{Act}-S = A_1 \iff \text{Act}-S = A. \]
The fact $\text{Act-}S = A_1 \iff \text{Act-}S = A_1$ enabled me to characterise *completely right pure monoids (1991)* in a way analogous to that of Skornjakov (1979), and Fountain (1974) and Isbell (1972) for *completely right injective monoids*.

A Question

Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure??????
Purity: Absolute purity vs almost purity
The Question: does $A = A_1$ for every monoid S?

Theorem: G, Yang Dandan, Salma Shaheen (2016)

Let S be a finite monoid and let A be an almost pure S-act. Then A is absolutely pure.

Consequently: $A = A_1$ is a finitary condition.
Purity: Absolute purity vs almost purity
The Question: does $A = A_1$ for every monoid S?

Theorem: G, Yang Dandan, Salma Shaheen (2016)
Let S be a finite monoid and let A be an almost pure S-act. Then A is absolutely pure.

Consequently: $A = A_1$ is a finitary condition.

Theorem: G, Yang Dandan (2016/7)
Let S be a right coherent monoid and let A be an almost pure S-act. Then A is absolutely pure.

That is,

$$S \text{ right coherent } \implies A = A_1$$
Purity: Absolute purity vs almost purity
New Question: does $A = A_1$ if and only if S is right coherent?
Purity: Absolute purity vs almost purity
New Question: does $\mathcal{A} = \mathcal{A}_1$ if and only if S is right coherent?

Counterexample **G, Yang Dandan (2017)**

No! The Fountain Monoid is an example of a non-coherent monoid such that $\mathcal{A} = \mathcal{A}_1$.
Purity: Absolute purity vs almost purity
The Question: does $A = A_1$ for every monoid S?

For an S-act A we can build canonical absolutely pure (almost pure) extensions $A(\aleph_0)$ ($A(1)$).

Proposition G: 2017

The following are equivalent for a monoid S:

1. every almost pure S-act is absolutely pure;
2. for every **finitely generated subact of every finitely presented** S-act A, we have $A(1)$ is a retract of $A(\aleph_0)$.
• Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; **now find an S not satisfying this condition.**
Questions, Questions...!

- Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; now find an S not satisfying this condition.

- What happens for rings and modules? Are the almost pure (1-algebraically closed) absolutely pure (algebraically closed)?
Questions, Questions...!

- Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; **now find an S not satisfying this condition.**
- What happens for rings and modules? Are the almost pure (1-algebraically closed) absolutely pure (algebraically closed)?
- When is $\mathcal{E} = \mathcal{E}_1$?
Questions, Questions...!

- Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; **now find an S not satisfying this condition.**

- What happens for rings and modules? Are the almost pures (1-algebraically closed) absolutely pure (algebraically closed)?

- When is $\mathcal{E} = \mathcal{E}_1$?

- Is \mathcal{I}_X coherent? Is \mathcal{T}_X right (or left) coherent?
Questions, Questions...!

- Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; **now find an S not satisfying this condition.**

- What happens for rings and modules? Are the almost pure S-acts (1-algebraically closed) absolutely pure (algebraically closed)?

- When is $\mathcal{E} = \mathcal{E}_1$?

- Is \mathcal{I}_X coherent? Is \mathcal{T}_X right (or left) coherent?

- Determine exact connections of right coherency with products-ultraproducts of flat **left** S-acts.
Questions, Questions...!

- Does there exist a monoid S and an S-act A such that A is almost pure but not absolutely pure? Use the last result to write down a condition on chains of right congruences such that every almost pure S-act is absolutely pure; now find an S not satisfying this condition.

- What happens for rings and modules? Are the almost purer (1-algebraically closed) absolutely pure (algebraically closed)?

- When is $\mathcal{E} = \mathcal{E}_1$?

- Is \mathcal{I}_X coherent? Is \mathcal{T}_X right (or left) coherent?

- Determine exact connections of right coherency with products/ultraproducts of flat left S-acts.

- Other finitary conditions arise from model theoretic considerations of S-acts; many open questions remain!
Why am I interested in coherency?

Purity: absolute purity vs almost purity

Purity properties may be reformulated as weak injectivity properties. Injectivity may be reformulated as a stronger purity property.

Definition: A monoid is completely right injective (completely right pure) if every S-act is injective (absolutely pure).

Fountain (1974), Isbell (1972) (following work of Skornjakov (69) and others)

Characterised completely right injective monoids in terms of right ideals and elements.
Completely right injective monoids

Theorem: Skornjakov (1969)

A monoid S is completely right injective if S has a left zero and S satisfies (*) for any right ideal I of S and right congruence ρ on S, there is an $s \in I$ such that for all $u, v \in S$, $w \in I$, $sw \rho w$ and if $u \rho v$ then $su \rho sv$.

Theorem: Fountain (1974)

A monoid S is completely right injective if and only if S has a zero, and each right ideal I has an idempotent generator e such that, for each pair of elements $a, b \in S \setminus I$, we have $a'ea \mathcal{R} b'eb$ for all $a' \in V(a)$, $b' \in V(b)$ implies that $a'ea = b'eb$ for all $a' \in V(a)$, $b' \in V(b)$.