Monomorphisms in categories of firm acts

Valdis Laan

University of Tartu, Estonia

(Joint research with Ülo Reimaa)
1. Preliminaries

In this talk, S will always stand for a semigroup.
1. Preliminaries

In this talk, S will always stand for a semigroup. A semigroup S is called **factorisable** if every element of S is a product of two elements.
1. Preliminaries

In this talk, S will always stand for a semigroup. A semigroup S is called \textbf{factorisable} if every element of S is a product of two elements. A right S-act A_S is called \textbf{firm} if the mapping

$$\mu_A : A \otimes S \to A, \quad a \otimes s \mapsto as$$

is bijective.
1. Preliminaries

In this talk, S will always stand for a semigroup. A semigroup S is called **factorisable** if every element of S is a product of two elements. A right S-act A_S is called **firm** if the mapping

$$
\mu_A : A \otimes S \rightarrow A, \quad a \otimes s \mapsto as
$$

is bijective. A semigroup S is called **firm** if the mapping

$$
\mu_S : S \otimes S \rightarrow S, \quad t \otimes s \mapsto ts
$$

is bijective.
1. Preliminaries

In this talk, S will always stand for a semigroup. A semigroup S is called **factorisable** if every element of S is a product of two elements. A right S-act A_S is called **firm** if the mapping

$$
\mu_A : A \otimes S \rightarrow A, \quad a \otimes s \mapsto as
$$

is bijective. A semigroup S is called **firm** if the mapping

$$
\mu_S : S \otimes S \rightarrow S, \quad t \otimes s \mapsto ts
$$

is bijective. A right S-act A_S is called **unitary** if μ_A is surjective, i.e. $AS = A$.
Notation:

\(\text{Act}_S \) — the category of all right \(S \)-acts,
\(\text{UAct}_S \) — the category of all unitary right \(S \)-acts,
\(\text{FAct}_S \) — the category of all firm right \(S \)-acts.

Morphisms in these categories are the right \(S \)-act homomorphisms.
Notation:

Act_S — the category of all right S-acts,
UAct_S — the category of all unitary right S-acts,
FAct_S — the category of all firm right S-acts.

Morphisms in these categories are the right S-act homomorphisms.

$\text{FAct}_S \subseteq \text{UAct}_S \subseteq \text{Act}_S$
In a category \mathcal{A}, a morphism f is called a **monomorphism** if for any morphisms u, v

$$fu = fv \implies u = v.$$
In a category \mathcal{A}, a morphism f is called a **monomorphism** if for any morphisms u, v

$$fu = fv \implies u = v.$$

A monomorphism f is called **extremal** if for any morphism g and any epimorphism e

$$f = ge \implies g \text{ is an isomorphism.}$$
In a category \mathcal{A}, a morphism f is called a **monomorphism** if for any morphisms u, v
\[fu = fv \implies u = v. \]

A monomorphism f is called **extremal** if for any morphism g and any epimorphism e
\[f = ge \implies g \text{ is an isomorphism.} \]

A monomorphism f is called **regular** if it is an equalizer of a pair of morphisms.
In a category A, a morphism f is called a **monomorphism** if for any morphisms u, v

$$fu = fv \implies u = v.$$

A monomorphism f is called **extremal** if for any morphism g and any epimorphism e

$$f = ge \implies g \text{ is an isomorphism}.$$

A monomorphism f is called **regular** if it is an equalizer of a pair of morphisms.

regular mono \implies **extremal mono** \implies **mono**
2. Monomorphisms in act categories

Proposition

If S is a semigroup then the monomorphisms, the extremal monomorphisms and the regular monomorphisms in Act_S are precisely the injective homomorphisms.
2. Monomorphisms in act categories

Proposition

If S is a semigroup then the monomorphisms, the extremal monomorphisms and the regular monomorphisms in Act_S are precisely the injective homomorphisms.

Proposition

Let S be a factorisable semigroup. The extremal monomorphisms and the regular monomorphisms of UAct_S are precisely the injective homomorphisms.
2. Monomorphisms in act categories

Proposition
If S is a semigroup then the monomorphisms, the extremal monomorphisms and the regular monomorphisms in Act_S are precisely the injective homomorphisms.

Proposition
Let S be a factorisable semigroup. The extremal monomorphisms and the regular monomorphisms of UAct_S are precisely the injective homomorphisms.

Proposition
Let S be a semigroup. Then a morphism $f : A_S \longrightarrow B_S$ in UAct_S is a monomorphism in UAct_S if and only if for all $a, b \in A$

\[f(a) = f(b) \iff \forall s \in S \ as = bs. \]
Corollary

If S is a semigroup and $A_S \in \text{UAct}_S$ then the mapping

\[\mu_A : A \otimes S \rightarrow A, \ a \otimes s \mapsto as \]

is a monomorphism in UAct_S.

Example

The category UAct_S may contain non-injective monomorphisms.

1. Let S be a factorisable semigroup which is not firm (such semigroups exist). Then S is unitary and the mapping $\mu_S : S \otimes S \rightarrow S$ is surjective but not injective. By the previous corollary, it is a monomorphism in UAct_S.

2. Consider a non-trivial right zero semigroup S and a one-element right act $\Theta_S = \{ \theta \}$. The unique morphism $f : S \rightarrow \Theta_S$ is a monomorphism in UAct_S, but it is not injective.
Corollary

If S is a semigroup and $A_S \in \text{UAct}_S$ then the mapping

$$\mu_A : A \otimes S \rightarrow A, \ a \otimes s \mapsto as$$

is a monomorphism in UAct_S.

Example

The category UAct_S may contain non-injective monomorphisms.

1. Let S be a factorisable semigroup which is not firm (such semigroups exist). Then S_S is unitary and the mapping

$$\mu_S : S \otimes S \rightarrow S$$

is surjective but not injective. By the previous corollary, it is a monomorphism in UAct_S.
Corollary

If S is a semigroup and $A_S \in \text{UAct}_S$ then the mapping
$\mu_A : A \otimes S \rightarrow A, \ a \otimes s \mapsto as$ is a monomorphism in UAct_S.

Example

The category UAct_S may contain non-injective monomorphisms.

1. Let S be a factorisable semigroup which is not firm (such semigroups exist). Then S_S is unitary and the mapping
$\mu_S : S \otimes S \rightarrow S$ is surjective but not injective. By the previous corollary, it is a monomorphism in UAct_S.

2. Consider a non-trivial right zero semigroup S and a one-element right act $\Theta_S = \{\theta\}$ over it. The unique morphism $f : S_S \rightarrow \Theta_S$ is a monomorphism in UAct_S, but it is not injective.
Theorem

The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \longrightarrow A_S$ in FAct_S.

1. f is a monomorphism.
2. f is an extremal monomorphism.
3. f is a regular monomorphism.
4. For all $a, b \in B_S$, $f(a) = f(b) \Rightarrow \forall s \in S \text{ as } s = bs$.
5. $f = \mu_A(m \otimes 1_S)g$ for a unitary S-act M_S, an injective homomorphism $m : M_S \longrightarrow A_S$ and an isomorphism $g : B_S \longrightarrow M \otimes S$.
6. $f = h(m \otimes 1_S)g$ for an injective homomorphism $m : M_S \longrightarrow N_S$ and isomorphisms $g : B_S \longrightarrow M \otimes S$, $h : N \otimes S \longrightarrow A_S$.
Theorem
The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \to A_S$ in FAct_S.

1. f is a monomorphism.
Theorem
The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \rightarrow A_S$ in FAct_S.

1. f is a monomorphism.
2. f is an extremal monomorphism.
Theorem

The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \rightarrow A_S$ in FAct_S.

1. f is a monomorphism.
2. f is an extremal monomorphism.
3. f is a regular monomorphism.
Theorem
The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \to A_S$ in FAct_S.

1. f is a monomorphism.
2. f is an extremal monomorphism.
3. f is a regular monomorphism.
4. For all $a, b \in B$,

$$f(a) = f(b) \implies \forall s \in S \text{ as } as = bs.$$

5. $f = \mu_{A_S}(m \otimes 1_S)g$ for a unitary S-act M_S, an injective homomorphism $m : M_S \to A_S$ and an isomorphism $g : B_S \to M_S \otimes S$.

6. $f = h(m \otimes 1_S)g$ for an injective homomorphism $m : M_S \to N_S$ and isomorphisms $g : B_S \to M_S \otimes S$, $h : N_S \otimes S \to A_S$.
Theorem
The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \rightarrow A_S$ in FAct_S.

1. f is a monomorphism.
2. f is an extremal monomorphism.
3. f is a regular monomorphism.
4. For all $a, b \in B$,
 \[f(a) = f(b) \implies \forall s \in S \text{ as } as = bs. \]
5. $f = \mu_A(m \otimes 1_S)g$ for a unitary S-act M_S, an injective homomorphism $m : M_S \rightarrow A_S$ and an isomorphism $g : B_S \rightarrow M \otimes S$.
Theorem

The following assertions are equivalent for a firm semigroup S and a morphism $f : B_S \to A_S$ in Fact_S.

1. f is a monomorphism.

2. f is an extremal monomorphism.

3. f is a regular monomorphism.

4. For all $a, b \in B$,

 $f(a) = f(b) \implies \forall s \in S \ as = bs$.

5. $f = \mu_A(m \otimes 1_S)g$ for a unitary S-act M_S, an injective homomorphism $m : M_S \to A_S$ and an isomorphism $g : B_S \to M \otimes S$.

6. $f = h(m \otimes 1_S)g$ for an injective homomorphism $m : M_S \to N_S$ and isomorphisms $g : B_S \to M \otimes S$, $h : N \otimes S \to A_S$.
Proposition

Let S be a firm semigroup and let a firm act A_S have a unitary subact B_S which is not firm. Let $m : B \rightarrow A$ be the inclusion mapping. Then $m \otimes 1_S : B \otimes S \rightarrow A \otimes S$ is a non-injective regular monomorphism in FAct_S.

Example

Consider the semigroup $S = \{0, a, b, e\}$ given by the following multiplication table:

\[
\begin{array}{c|cccc}
 & 0 & a & b & e \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0 \\
b & 0 & 0 & 0 & \ \\
e & a & b & e & \ \\
\end{array}
\]

Since S has a left identity e, it easily follows that S_S is a firm act. Its subact $B_S = \{0, b\}$ is unitary but not firm because $b \cdot 0 = 0 = ba$ while $b \otimes 0 \neq b \otimes a$ in $B \otimes S$.
Proposition

Let S be a firm semigroup and let a firm act A_S have a unitary subact B_S which is not firm. Let $m : B \rightarrow A$ be the inclusion mapping. Then $m \otimes 1_S : B \otimes S \rightarrow A \otimes S$ is a non-injective regular monomorphism in FAct_S.

Example

Consider the semigroup $S = \{0, a, b, e\}$ given by the following multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>e</td>
</tr>
</tbody>
</table>

Since S has a left identity e, it easily follows that S_S is a firm act. Its subact $B_S = \{0, b\}$ is unitary but not firm because $b0 = 0 = ba$ while $b \otimes 0 \neq b \otimes a$ in $B \otimes S$.
3. When are monomorphisms injective?
3. When are monomorphisms injective?

Proposition

Let \(S \) be a firm semigroup. Then the following statements are equivalent:

1. monomorphisms in \(\text{UAct}_S \) are injective,
2. \(\mu_A \) is injective for all right \(S \)-acts \(A_S \),
3. every unitary right \(S \)-act is firm (i.e. \(\text{UAct}_S = \text{FAct}_S \)).
3. When are monomorphisms injective?

Proposition

Let S be a firm semigroup. Then the following statements are equivalent:

1. monomorphisms in UAct_S are injective,
2. μ_A is injective for all right S-acts A_S,
3. every unitary right S-act is firm (i.e. $\text{UAct}_S = \text{FAct}_S$).

Corollary

Monomorphisms in FAct_S are injective if

1. for every $s, t \in S$, there exists $u \in S$ such that $s = su$ and $t = tu$, or
2. S is nilpotent.
A left S-act sM is called **flat** if for every injective homomorphism $f : B_S \rightarrow A_S$ of right S-acts the mapping $f \otimes 1_M : B \otimes M \rightarrow A \otimes M$ is injective.
A left S-act sM is called **flat** if for every injective homomorphism $f : B_S \rightarrow A_S$ of right S-acts the mapping $f \otimes 1_M : B \otimes M \rightarrow A \otimes M$ is injective. A semigroup S is said to be **left absolutely flat** if all left S-acts are flat.

Proposition

Let S be a firm semigroup. Monomorphisms in $FAct^S$ are injective if and only if S is flat.

Corollary

If S is a left absolutely flat semigroup then monomorphisms in $FAct^S$ are injective.

Corollary

If S is an inverse semigroup then monomorphisms in $FAct^S$ are injective.
A left S-act $_M$ is called **flat** if for every injective homomorphism $f : B_S \rightarrow A_S$ of right S-acts the mapping $f \otimes 1_M : B \otimes M \rightarrow A \otimes M$ is injective. A semigroup S is said to be **left absolutely flat** if all left S-acts are flat.

Proposition

Let S be a firm semigroup. Monomorphisms in FAct_S are injective if and only if $_S$ is flat.
A left S-act $S M$ is called flat if for every injective homomorphism $f : B_S \to A_S$ of right S-acts the mapping $f \otimes 1_M : B \otimes M \to A \otimes M$ is injective. A semigroup S is said to be left absolutely flat if all left S-acts are flat.

Proposition

Let S be a firm semigroup. Monomorphisms in FAct_S are injective if and only if $S S$ is flat.

Corollary

If S is a left absolutely flat semigroup then monomorphisms in FAct_S are injective.
A left S-act SM is called **flat** if for every injective homomorphism $f : BS \to AS$ of right S-acts the mapping $f \otimes 1_M : BM \to AM$ is injective. A semigroup S is said to be **left absolutely flat** if all left S-acts are flat.

Proposition

Let S be a firm semigroup. Monomorphisms in FAct_S are injective if and only if S is flat.

Corollary

If S is a left absolutely flat semigroup then monomorphisms in FAct_S are injective.

Corollary

If S is an inverse semigroup then monomorphisms in FAct_S are injective.
4. The lattice of subobjects

In a category \(\mathcal{A} \), subobjects of an object \(A \) are defined as equivalence classes of monomorphisms \(f : B \to A \) with respect to the equivalence relation \(\equiv \) defined by

\[
 f \equiv g \iff f = gh \text{ for some isomorphism } h.
\]

\[
\begin{array}{c}
A \\
\uparrow f \quad \downarrow g \\
B \quad \quad \quad \quad C \\
\downarrow h
\end{array}
\]

We will denote such an equivalence class by \(\overline{f} \) and the class of subobjects of \(A \) in the category \(\mathcal{A} \) by \(\text{Sub}_{\mathcal{A}}(A) \).
4. The lattice of subobjects

In a category \mathcal{A}, subobjects of an object A are defined as equivalence classes of monomorphisms $f : B \rightarrow A$ with respect to the equivalence relation \equiv defined by

$$f \equiv g \iff f = gh \text{ for some isomorphism } h.$$

We will denote such an equivalence class by \bar{f} and the class of subobjects of A in the category \mathcal{A} by $\text{Sub}_\mathcal{A}(A)$. On $\text{Sub}_\mathcal{A}(A)$ one can define a partial order by

$$\bar{f} \leq \bar{g} \iff f = gh \text{ for some morphism } h.$$
Theorem (González-Férez and Marín, 2010)

In the category of firm modules over an associative ring, the lattices of subobjects are modular.
For $A_S \in \text{FAct}_S$ we write

$$S(A) = \text{Sub}_{\text{FAct}_S}(A).$$
For $A_S \in \text{FAct}_S$ we write

$$S(A) = \text{Sub}_{\text{FAct}_S}(A).$$

By a subact of an act A_S we mean a subset $B \subseteq A$ such that $bs \in B$ for each $b \in B$ and $s \in S$.

Theorem: Let A_S be a firm right act over a firm semigroup S. Then $S(A)$ is a poset which is a modular lattice, isomorphic to the lattice $U(A)$. So the study of monomorphisms in FAct_S reduces to the study of unitary subacts of firm acts.
For \(A_S \in \text{FAct}_S \) we write

\[S(A) = \text{Sub}_{\text{FAct}_S}(A). \]

By a \textbf{subact} of an act \(A_S \) we mean a subset \(B \subseteq A \) such that \(bs \in B \) for each \(b \in B \) and \(s \in S \). We denote by \(\mathcal{U}(A) \) the set of unitary subacts of a firm act \(A_S \). It is easy to see that \(\mathcal{U}(A) \) is a modular lattice where meets are intersections, joins are unions, and the order is given by inclusion.
For $A_S \in \text{FAct}_S$ we write

$$S(A) = \text{Sub}_{\text{FAct}_S}(A).$$

By a **subact** of an act A_S we mean a subset $B \subseteq A$ such that $bs \in B$ for each $b \in B$ and $s \in S$. We denote by $\mathcal{U}(A)$ the set of unitary subacts of a firm act A_S. It is easy to see that $\mathcal{U}(A)$ is a modular lattice where meets are intersections, joins are unions, and the order is given by inclusion.

Theorem

*Let A_S be a firm right act over a firm semigroup S. Then $S(A)$ is a poset which is a modular lattice, isomorphic to the lattice $\mathcal{U}(A)$.***
For $A_S \in \text{FAct}_S$ we write
\[S(A) = \text{Sub}_{\text{FAct}_S}(A). \]

By a subact of an act A_S we mean a subset $B \subseteq A$ such that $bs \in B$ for each $b \in B$ and $s \in S$. We denote by $\mathcal{U}(A)$ the set of unitary subacts of a firm act A_S. It is easy to see that $\mathcal{U}(A)$ is a modular lattice where meets are intersections, joins are unions, and the order is given by inclusion.

Theorem

Let A_S be a firm right act over a firm semigroup S. Then $S(A)$ is a poset which is a modular lattice, isomorphic to the lattice $\mathcal{U}(A)$.

So the study of monomorphisms in FAct_S reduces to the study of unitary subacts of firm acts.
References