ON PARTIALLY COMPOSED PROPERTY OF GENERALIZED LEXICOGRAPHIC PRODUCT GRAPHS

Sayan Panma

Joint work with Nopparat Pleanmani

Department of Mathematics, Faculty of Science
Chiang Mai University

October 10, 2017
Overview

1. Introduction
 - Basic Definitions
 - Graphical Properties
 - Vertex Properties
 - Generalized Partially Composed Vertex Properties
 - Example of Generalized Partially Composed Vertex Properties

2. Main Results
 - \(m_P \) and \(M_P \)
 - Applications
Introduction
Definitions and Notations

$G = (V(G), E(G))$.

$G[S]$ the subgraph of G induced by $S \subseteq V(G)$.

$d(a, b, c, G)$. $G[S] = \{a, b, c\}$. $G[S]$.
Definitions and Notations

- $G = (V(G), E(G))$.

$G \langle S \rangle$ is the subgraph of G induced by S in $V(G)$.

$G \langle a; b; c \rangle = G \langle S \rangle$.

Sayan Panma (CMU)
Definitions and Notations

- $G = (V(G), E(G))$.
- $G\langle S \rangle$ the subgraph of G induced by $S \subseteq V(G)$.
Definitions and Notations

- \(G = (V(G), E(G)) \).
- \(G\langle S \rangle \) the subgraph of \(G \) induced by \(S \subseteq V(G) \).

\[G = \{a, b, c\} \]
Definitions and Notations

- $G = (V(G), E(G))$.
- $G\langle S \rangle$ the subgraph of G induced by $S \subseteq V(G)$.

$S = \{a, b, c\}$

G

$G\langle S \rangle$
Definitions

Projections

For sets \(A \) and \(B \), if \(S \subseteq A \cup B \), we define

\[
1(S) = \{ a \in A : (a, b) \in S \} \quad \text{and} \quad 2(S) = \{ b \in B : (a, b) \in S \}.
\]

Isolated Vertices in \(G \langle S \rangle \).

If \(S \subseteq V \) is nonempty, we define

\[
I_G(S) = \{ v \in S : v \text{ is an isolated vertex of } G \langle S \rangle \}.
\]

\[
J_G(S) = S \setminus I_G(S).
\]
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
- for $a \in \pi_1(S)$, $\pi_{2a}(S) = \{b : (a, b) \in S\}$.
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
- for $a \in \pi_1(S)$, $\pi_{2a}(S) = \{b : (a, b) \in S\}$.

Isolated Vertices in $G\langle S\rangle$
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
- for $a \in \pi_1(S)$, $\pi_{2a}(S) = \{b : (a, b) \in S\}$.

Isolated Vertices in $G\langle S \rangle$

If $S \subseteq V$ is nonempty, we define
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
- for $a \in \pi_1(S)$, $\pi_{2a}(S) = \{b : (a, b) \in S\}$.

Isolated Vertices in $G\langle S \rangle$

If $S \subseteq V$ is nonempty, we define

- $I_G(S) = \{v \in S : v$ is an isolated vertex of $G\langle S \rangle\}$.
Definitions

Projections

For sets A and B, if $S \subseteq A \times B$, we define

- $\pi_1(S) = \{a : (a, b) \in S\}$
- for $a \in \pi_1(S)$, $\pi_{2a}(S) = \{b : (a, b) \in S\}$.

Isolated Vertices in $G\langle S \rangle$

If $S \subseteq V$ is nonempty, we define

- $I_G(S) = \{v \in S : v$ is an isolated vertex of $G\langle S \rangle\}$.
- $J_G(S) = S - I_G(S)$.
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x_1, h_1) and (y_2, h_2) are adjacent whenever (1) $x_1 = y_2$ and $h_1 h_2 \in E(H)$, or (2) $x_1 y_2 \in E(G)$.
Lexicographic Product

Given two graphs G and H, a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices $(x; h_1)$ and $(y; h_2)$ are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.

Sayan Panma (CMU)
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H,
Lexicographic Product

Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$,
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$.
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever

1. $x = y$ and $h_1h_2 \in E(H)$,
2. $xy \in E(G)$.
Lexicographic Product

Lexicographic Product

Given two graphs G and H; a **lexicographic product of G and H**, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever

1. $x = y$ and $h_1 h_2 \in E(H)$,
Lexicographic Product

Given two graphs G and H; a **lexicographic product of G and H**, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.

\[\begin{array}{c}
G \\
H
\end{array} \]
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.

Diagram:

- G: A graph with three vertices and two edges.
- H: A graph with two vertices and one edge.

The lexicographic product $G \circ H$ combines the structures of G and H according to the definitions provided.
Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Lexicographic Product

Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Lexicographic Product

Given two graphs G and H, a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.

Diagram:

- Graph G with 6 vertices and 9 edges.
- Graph H with 3 vertices and 3 edges.

- The lexicographic product $G \circ H$ is shown with the combined set of vertices and edges from both G and H.
Lexicographic Product

Given two graphs G and H, a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.
Lexicographic Product

Given two graphs G and H; a lexicographic product of G and H, denoted by $G \circ H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (x, h_1) and (y, h_2) are adjacent whenever (1) $x = y$ and $h_1 h_2 \in E(H)$, or (2) $xy \in E(G)$.

\[
\begin{align*}
G \circ H & \\
\text{(Diagram of } G \circ H) & \\
H & \\
G &
\end{align*}
\]
Generalized Lexicographic Product

Given graphs G and H, for every $x \in V(G)$, a generalized lexicographic product of G and $(H_x \times x)$, denoted by $G \circ (H_x \times x)$, is a graph with the vertex set $\bigcup_{x \in V(G)} (f \times x \times g \times (H_x \times x))$ such that two vertices $(x; h) \times x$ and $(y; h) \times y$ are adjacent whenever (1) $x = y$ and $h \times h \in E(H_x \times x)$, or (2) $x \times y \in E(G)$.
Generalized Lexicographic Product

Generalized Lexicographic Product
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$;
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} V(H_x)$ such that two vertices $(x; h_x)$ and $(y; h_y)$ are adjacent whenever

1. $x = y$ and $h_x h_y \in E(H_x)$,
2. $xy \in E(G)$.

E E e e e
e H x e e e H y e e e H z
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G);$ a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$,

Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)}(\{x\} \times V(H_x))$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)}(\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever

(1) $x = y$ and $h_x h_y \in E(H_x),$

(2) $xy \in E(G).$
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} \{x\} \times V(H_x)$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalised lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever

1. $x = y$ and $h_x h_y \in E(H_x)$, or
2. $xy \in E(G)$.

- G
- x
- y
- z
- H_x
- H_y
- H_z
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)}(\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} \{x\} \times V(H_x)$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever

1. $x = y$ and $h_x h_y \in E(H_x)$, or
2. $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} (\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)} \{x\} \times V(H_x)$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Generalized Lexicographic Product

Given graphs G and H_x for every $x \in V(G)$; a generalized lexicographic product of G and $(H_x)_{x \in V(G)}$, denoted by $G \circ (H_x)_{x \in V(G)}$, is a graph with the vertex set $\bigcup_{x \in V(G)}(\{x\} \times V(H_x))$ such that two vertices (x, h_x) and (y, h_y) are adjacent whenever (1) $x = y$ and $h_x h_y \in E(H_x)$, or (2) $xy \in E(G)$.
Graphical Properties

\mathcal{U} denotes the class of all finite simple graphs. A graphical property means a nonempty isomorphism-closed subclass of \mathcal{U}. For graphical properties I_1 and I_2 we define $I_1 \circ I_2 = \{G \circ H : G \in I_1 \text{ and } H \in I_2\}$ when we refer \circ as a lexicographic product. $I_1 \circ I_2 = \{G \circ (H \times x) : G \in I_1 \text{ and } H \times x \in I_2\}$ for all $x \in V(G)$ when we refer \circ as a generalized lexicographic product.
A graphical property means a nonempty isomorphism-closed subclass of \(U \).

For graphical properties \(I_1 \) and \(I_2 \) we define \(I_1 \circ I_2 = \{G \circ H : G \in I_1 \text{ and } H \in I_2 \} \) when we refer \(\circ \) as a lexicographic product.

\[
I_1 \circ I_2 = \{G \circ (H_x) : x \in V(G) \}
\]

when we refer \(\circ \) as a generalized lexicographic product.

\(U \) denotes the class of all finite simple graphs.
Graphical Properties

- \mathcal{U} denotes the class of all finite simple graphs.
- A *graphical property* means a nonempty isomorphism-closed subclass of \mathcal{U}.
Graphical Properties

- \mathcal{U} denotes the class of all finite simple graphs.
- A **graphical property** means a nonempty isomorphism-closed subclass of \mathcal{U}.
- For graphical properties \mathcal{I}_1 and \mathcal{I}_2 we define
Graphical Properties

- \(\mathcal{U} \) denotes the class of all finite simple graphs.
- A \textit{graphical property} means a nonempty isomorphism-closed subclass of \(\mathcal{U} \).
- For graphical properties \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) we define
 - \(\mathcal{I}_1 \circ \mathcal{I}_2 = \{ G \circ H : G \in \mathcal{I}_1 \text{ and } H \in \mathcal{I}_2 \} \) when we refer \(\circ \) as a lexicographic product.
Graphical Properties

• \mathcal{U} denotes the class of all finite simple graphs.
• A **graphical property** means a nonempty isomorphism-closed subclass of \mathcal{U}.
• For graphical properties \mathcal{I}_1 and \mathcal{I}_2 we define
 - $\mathcal{I}_1 \circ \mathcal{I}_2 = \{ G \circ H : G \in \mathcal{I}_1 \text{ and } H \in \mathcal{I}_2 \}$ when we refer \circ as a lexicographic product
 - $\mathcal{I}_1 \circ \mathcal{I}_2 = \{ G \circ (H_x)_{x \in V(G)} : G \in \mathcal{I}_1 \text{ and } H_x \in \mathcal{I}_2 \text{ for all } x \in V(G) \}$ when we refer \circ as a generalized lexicographic product.
For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$. A vertex property is a nonempty subclass of $\bigcup_{U \in \mathcal{G}} S(G)$. For a vertex property P and a nonempty subset S of $V(G)$, S is called a P-set of G if $S \in P$.

For a graphical property I, a vertex property P is said to be appearing in I, whenever there is a P-set of G for each $G \in I$.

Given a graphical property I and a vertex property P appearing in I; for a graph $G \in I$, $M_P(G)$ denotes the maximum cardinality of a P-set of G and $m_P(G)$ denotes the minimum cardinality of a P-set of G. If S is a P-set of a graph G such that $|S| = M_P(G)$ or $|S| = m_P(G)$, we say that S is an M_P-set or an m_P-set of G, respectively.
Vertex Properties

For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.
Vertex Properties

- For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.
- A vertex property is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.
For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.

A vertex property is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.

For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a \mathcal{P}-set of G if $S \in \mathcal{P}$.
For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.

A *vertex property* is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.

For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a *\mathcal{P}-set of G* if $S \in \mathcal{P}$.

For a graphical property \mathcal{I}, a vertex property \mathcal{P} is said to be *appearing in \mathcal{I}*, whenever there is a \mathcal{P}-set of G for each $G \in \mathcal{I}$.

Sayan Panma (CMU)
Vertex Properties

- For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.
- A *vertex property* is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.
- For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a \mathcal{P}-*set of* G if $S \in \mathcal{P}$.
- For a graphical property \mathcal{I}, a vertex property \mathcal{P} is said to be *appearing in* \mathcal{I}, whenever there is a \mathcal{P}-set of G for each $G \in \mathcal{I}$.
- Given a graphical property \mathcal{I} and a vertex property \mathcal{P} appearing in \mathcal{I}; for a graph $G \in \mathcal{I}$,
Vertex Properties

- For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.
- A vertex property is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.
- For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a \mathcal{P}-set of G if $S \in \mathcal{P}$.
- For a graphical property \mathcal{I}, a vertex property \mathcal{P} is said to be appearing in \mathcal{I}, whenever there is a \mathcal{P}-set of G for each $G \in \mathcal{I}$.
- Given a graphical property \mathcal{I} and a vertex property \mathcal{P} appearing in \mathcal{I}; for a graph $G \in \mathcal{I}$,
 - $M_{\mathcal{P}}(G)$ denotes the maximum cardinality of a \mathcal{P}-set of G
For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.

A vertex property is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.

For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a \mathcal{P}-set of G if $S \in \mathcal{P}$.

For a graphical property \mathcal{I}, a vertex property \mathcal{P} is said to be appearing in \mathcal{I}, whenever there is a \mathcal{P}-set of G for each $G \in \mathcal{I}$.

Given a graphical property \mathcal{I} and a vertex property \mathcal{P} appearing in \mathcal{I}; for a graph $G \in \mathcal{I}$,

- $M_{\mathcal{P}}(G)$ denotes the maximum cardinality of a \mathcal{P}-set of G
- $m_{\mathcal{P}}(G)$ denotes the minimum cardinality of a \mathcal{P}-set of G.
For a graph G, $S(G)$ denotes the class of all nonempty subsets of $V(G)$.

A vertex property is a nonempty subclass of $\bigcup_{G \in \mathcal{U}} S(G)$.

For a vertex property \mathcal{P} and a nonempty subset S of $V(G)$, S is called a \mathcal{P}-set of G if $S \in \mathcal{P}$.

For a graphical property \mathcal{I}, a vertex property \mathcal{P} is said to be appearing in \mathcal{I}, whenever there is a \mathcal{P}-set of G for each $G \in \mathcal{I}$.

Given a graphical property \mathcal{I} and a vertex property \mathcal{P} appearing in \mathcal{I}; for a graph $G \in \mathcal{I}$,

- $M_{\mathcal{P}}(G)$ denotes the maximum cardinality of a \mathcal{P}-set of G
- $m_{\mathcal{P}}(G)$ denotes the minimum cardinality of a \mathcal{P}-set of G.

If S is a \mathcal{P}-set of a graph G such that $|S| = M_{\mathcal{P}}(G)$ or $|S| = m_{\mathcal{P}}(G)$, we say that S is an $M_{\mathcal{P}}$-set or an $m_{\mathcal{P}}$-set of G, respectively.
Generalized Partially Composed Vertex Properties

Given graphical properties I_1 and I_2, a vertex property P_1 appearing in I_1, a vertex property P_2 appearing in I_2 and a vertex property P appearing in $I_1 \circ I_2$; P is said to be partially composed by P_1 and P_2 if it satisfies: for any $G \subseteq I_1$; $H \subseteq I_2$ and a nonempty subset S of $V(G \circ H)$, we have S is a P-set of $G \circ H$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_2(S)$ is a P_2-set of H for every $a \subseteq I(G(\pi_1(S)))$.

P is said to be generalized partially composed by P_1 and P_2 if it satisfies: for any $G \subseteq I_1$; $H_x \subseteq I_2$ and a nonempty subset S of $V(G \circ (H_x \circ H))$, we have S is a P-set of $G \circ (H_x \circ H)$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_2(S)$ is a P_2-set of H_a for every $a \subseteq I(G(\pi_1(S)))$.

Sayan Panma (CMU)
Given graphical properties \mathcal{I}_1 and \mathcal{I}_2, a vertex property P appearing in \mathcal{I}_1, a vertex property P' appearing in \mathcal{I}_2 and a vertex property P'' appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$; P is said to be partially composed by P_1 and P_2 if it satisfies: for any $G \in \mathcal{I}_1$; $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ H)$, we have S is a P-set of $G \circ H$ if and only if $1(S)$ is a P_1-set of G and $2(a)$ is a P_2-set of H for every $a \in I(G \circ H)$. P is said to be generalized partially composed by P_1 and P_2 if it satisfies: for any $G \in \mathcal{I}_1$; $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ (H \circ V(G)))$, we have S is a P-set of $G \circ (H \circ V(G))$ if and only if $1(S)$ is a P_1-set of G and $2(a)$ is a P_2-set of H for every $a \in I(G \circ H \circ V(G))$.
Generalized Partially Composed Vertex Properties

Given graphical properties \mathcal{I}_1 and \mathcal{I}_2, a vertex property \mathcal{P}_1 appearing in \mathcal{I}_1, a vertex property \mathcal{P}_2 appearing in \mathcal{I}_2 and a vertex property \mathcal{P} appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$; \mathcal{P} is said to be partially composed by \mathcal{P}_1 and \mathcal{P}_2 if it satisfies: for any $G \in \mathcal{I}_1$; $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ H)$, we have S is a \mathcal{P}-set of $G \circ H$ if and only if $\mathcal{P}_1(S)$ is a \mathcal{P}_1-set of G and $\mathcal{P}_2(S)$ is a \mathcal{P}_2-set of H for every $a \in \mathcal{I}(G)(1(S))$.

\mathcal{P} is said to be generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2 if it satisfies: for any $G \in \mathcal{I}_1$; $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ (H \circ a))$, we have S is a \mathcal{P}-set of $G \circ (H \circ a)$ if and only if $\mathcal{P}_1(S)$ is a \mathcal{P}_1-set of G and $\mathcal{P}_2(S)$ is a \mathcal{P}_2-set of $H \circ a$ for every $a \in \mathcal{I}(G)(1(S))$.

Sayan Panma (CMU)
Given graphical properties I_1 and I_2, a vertex property P_1 appearing in I_1, a vertex property P_2 appearing in I_2 and
Given graphical properties \mathcal{I}_1 and \mathcal{I}_2,
a vertex property \mathcal{P}_1 appearing in \mathcal{I}_1,
a vertex property \mathcal{P}_2 appearing in \mathcal{I}_2 and
a vertex property \mathcal{P} appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$;

\mathcal{P} is said to be partially composed by $\mathcal{P}_1 \circ \mathcal{P}_2$ if it satisfies:
for any $G \in \mathcal{I}_1$ and $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ H)$,
we have S is a \mathcal{P}-set of $G \circ H$ if and only if S is a \mathcal{P}_1-set of G and
S is a \mathcal{P}_2-set of H for every $a \in I(G(S))$.

\mathcal{P} is said to be generalized partially composed by $\mathcal{P}_1 \circ \mathcal{P}_2$ if it satisfies:
for any $G \in \mathcal{I}_1$ and $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ H)$,
we have S is a \mathcal{P}-set of $G \circ H$ if and only if S is a \mathcal{P}_1-set of G and
S is a \mathcal{P}_2-set of H for every $a \in I(G(S))$.

Sayan Panma (CMU)
Given graphical properties I_1 and I_2, a vertex property P_1 appearing in I_1, a vertex property P_2 appearing in I_2 and a vertex property P appearing in $I_1 \circ I_2$;

- P is said to be partially composed by P_1 and P_2 if it satisfies: for any $G \in I_1, H \in I_2$ and a nonempty subset S of $V(G \circ H)$, we have
Generalized Partially Composed Vertex Properties

Given graphical properties I_1 and I_2, a vertex property P_1 appearing in I_1, a vertex property P_2 appearing in I_2 and a vertex property P appearing in $I_1 \circ I_2$;

- P is said to be *partially composed* by P_1 and P_2 if it satisfies: for any $G \in I_1$, $H \in I_2$ and a nonempty subset S of $V(G \circ H)$, we have

 - S is a P-set of $G \circ H$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_{2a}(S)$ is a P_2-set of H for every $a \in l_G(\pi_1(S))$.

- P is said to be *generalized partially composed* by P_1 and P_2 if it satisfies: for any $G \in I_1$, $H \in I_2$ and a nonempty subset S of $V(G \circ H)$, we have

 - S is a P-set of $G \circ H$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_{2a}(S)$ is a P_2-set of H for every $a \in l_G(\pi_1(S))$.

Sayan Panma (CMU)
Generalized Partially Composed Vertex Properties

Given graphical properties \mathcal{I}_1 and \mathcal{I}_2, a vertex property \mathcal{P}_1 appearing in \mathcal{I}_1, a vertex property \mathcal{P}_2 appearing in \mathcal{I}_2 and a vertex property \mathcal{P} appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$;

- \mathcal{P} is said to be partially composed by \mathcal{P}_1 and \mathcal{P}_2 if it satisfies: for any $G \in \mathcal{I}_1$, $H \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ H)$, we have
 - S is a \mathcal{P}-set of $G \circ H$ if and only if $\pi_1(S)$ is a \mathcal{P}_1-set of G and $\pi_2a(S)$ is a \mathcal{P}_2-set of H for every $a \in I_G(\pi_1(S))$.

- \mathcal{P} is said to be generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2 if it satisfies: for any $G \in \mathcal{I}_1$, $H_x \in \mathcal{I}_2$ and a nonempty subset S of $V(G \circ (H_x)_{x \in V(G)})$, we have
Generalized Partially Composed Vertex Properties

Given graphical properties I_1 and I_2, a vertex property P_1 appearing in I_1, a vertex property P_2 appearing in I_2 and a vertex property P appearing in $I_1 \circ I_2$;

- P is said to be **partially composed** by P_1 and P_2 if it satisfies: for any $G \in I_1$, $H \in I_2$ and a nonempty subset S of $V(G \circ H)$, we have

 - S is a P-set of $G \circ H$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_{2a}(S)$ is a P_2-set of H for every $a \in l_G(\pi_1(S))$.

- P is said to be **generalized partially composed** by P_1 and P_2 if it satisfies: for any $G \in I_1$, $H_x \in I_2$ and a nonempty subset S of $V(G \circ (H_x)_{x \in V(G)})$, we have

 - S is a P-set of $G \circ (H_x)_{x \in V(G)}$ if and only if $\pi_1(S)$ is a P_1-set of G and $\pi_{2a}(S)$ is a P_2-set of H_a for every $a \in l_G(\pi_1(S))$.

Sayan Panma (CMU)
Generalized Partially Composed Vertex Properties

P is generalized partially composed by P_1 and P_2.

$V(G \circ (H \times x)) \times V(G)$.

$S_2 P$.

S is a P-set of $G \circ (H \times x) \times V(G)$.

$1(S)$ is a P_1-set of G.

$G(1(S))$.

a.

for every $a \in I_G(1(S))$.

$2 a(S)$ is a P_2-set of H_a.

$2(S)$.

Sayan Panma (CMU)

October 10, 2017 25 / 38
Generalized Partially Composed Vertex Properties

\(\mathcal{P} \) is generalized partially composed by \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \).
Generalized Partially Composed Vertex Properties

\[V(G \circ (H_x)_{x \in V(G)}) \]

\(\mathcal{P} \) is generalized partially composed by \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \)
Generalized Partially Composed Vertex Properties

\[V(G \circ (H_x)_{x \in V(G)}) \]

\[S \in \mathcal{P} \]

\[\mathcal{P} \text{ is generalized partially composed by } \mathcal{P}_1 \text{ and } \mathcal{P}_2 \]

\[S \text{ is a } \mathcal{P} \text{-set of } G \circ (H_x)_{x \in V(G)} \]
Generalized Partially Composed Vertex Properties

$V(G \circ (H_x)_{x \in V(G)})$

$S \in \mathcal{P}$

\mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2

S is a \mathcal{P}-set of $G \circ (H_x)_{x \in V(G)}$

if and only if
Generalized Partially Composed Vertex Properties

\(V(G \circ (H_x)_{x \in V(G)}) \)

\(S \in \mathcal{P} \)

\(\mathcal{P} \) is generalized partially composed by \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \)

\(S \) is a \(\mathcal{P} \)-set of \(G \circ (H_x)_{x \in V(G)} \)

if and only if

\(\pi_1(S) \) is a \(\mathcal{P}_1 \)-set of \(G \)

\(\pi_1(S) \in \mathcal{P}_1 \)
$V(G \circ (H_x)_{x \in V(G)})$

$S \in \mathcal{P}$

\mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2

S is a \mathcal{P}-set of $G \circ (H_x)_{x \in V(G)}$

if and only if

$\pi_1(S)$ is a \mathcal{P}_1-set of G

$\pi_1(S) \in \mathcal{P}_1$
Generalized Partially Composed Vertex Properties

$V(G \circ (H_x)_{x \in V(G)})$

$S \in \mathcal{P}$

P is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2

S is a \mathcal{P}-set of $G \circ (H_x)_{x \in V(G)}$

if and only if

$\pi_1(S)$ is a \mathcal{P}_1-set of G

$\pi_1(S) \in \mathcal{P}_1$

$I_G(\pi_1(S))$
Generalized Partially Composed Vertex Properties

\(V(G \circ (H_x)_{x \in V(G)}) \)

\(S \in \mathcal{P} \)

\(\mathcal{P} \) is generalized partially composed by \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \)

\(S \) is a \(\mathcal{P} \)-set of \(G \circ (H_x)_{x \in V(G)} \)

if and only if

\(\pi_1(S) \) is a \(\mathcal{P}_1 \)-set of \(G \)

for every \(a \in I_G(\pi_1(S)) \).
Generalized Partially Composed Vertex Properties

- $V(G \circ (H_x)_{x \in V(G)})$

 - $S \in \mathcal{P}$

 - \mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2

 - S is a \mathcal{P}-set of $G \circ (H_x)_{x \in V(G)}$

 - if and only if

 - $\pi_1(S)$ is a \mathcal{P}_1-set of G

 - $\pi_1(S) \in \mathcal{P}_1$

 - for every $a \in I_G(\pi_1(S))$.

Sayan Panma (CMU)
October 10, 2017 25 / 38
Generalized Partially Composed Vertex Properties

\mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2

S is a \mathcal{P}-set of $G \circ (H_x)_{x \in V(G)}$ if and only if

$\pi_1(S)$ is a \mathcal{P}_1-set of G

and $\pi_2a(S)$ is a \mathcal{P}_2-set of H_a

for every $a \in I_G(\pi_1(S))$.

\begin{align*}
V(G \circ (H_x)_{x \in V(G)}) \\
S \in \mathcal{P} \\
\pi_2a(S) \in \mathcal{P}_2 \\
I_G(\pi_{\bullet a}(S)) \\
\pi_1(S) \in \mathcal{P}_1
\end{align*}
Example of Generalized Partially Composed Vertex Properties
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a \textit{dominating set}.
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a *dominating set* if every vertex in $V - S$ is adjacent to a vertex in S.
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a *dominating set* if every vertex in $V - S$ is adjacent to a vertex in S.

Definitions
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a *dominating set* if every vertex in $V - S$ is adjacent to a vertex in S.

Definitions

Given dominating set S of a graph G;
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a dominating set if every vertex in $V - S$ is adjacent to a vertex in S.

Definitions

Given dominating set S of a graph G;

- S is total if $G[S]$ has no isolated vertices
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a *dominating set* if every vertex in $V - S$ is adjacent to a vertex in S.

Definitions

Given dominating set S of a graph G;

- S is *total* if $G\langle S \rangle$ has no isolated vertices
- S is *independent* if $G\langle S \rangle$ has no edges.
Example of Generalized Partially Composed Vertex Properties

Definition of Dominating Sets

A set S of vertices is said to be a dominating set if every vertex in $V - S$ is adjacent to a vertex in S.

Definitions

Given dominating set S of a graph G;

- S is total if $G[S]$ has no isolated vertices
- S is independent if $G[S]$ has no edges.
- S is connected if $G[S]$ is connected.
Let I denote the class of all vertex-disjoint graphs. If $I_1 = I_2 = I$ and $P_1 = P_2 = \cup G_2 I_1 f S V(G)$, then $P = \cup G_2 I_1 \circ I_2 f S V(G)$ is generalized partially composed by P_1 and P_2.

Sayan Panma (CMU)

October 10, 2017 27 / 38
Introduction

Example of Generalized Partially Composed Vertex Properties

Let I denote the class of all vertex-disjoint graphs. If $I_1 = I_2 = I$ and $P_1 = P_2 = \cup_{\mathcal{G}_2I_1} f\ S(\mathcal{G}) : S$ is a dominating set of \mathcal{G}, then $P = \cup_{\mathcal{G}_2I_1} \circ I_2 f S(\mathcal{G}) : S$ is a dominating set of \mathcal{G} is generalized partially composed by P_1 and P_2.
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs.
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^*$ and
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^*$ and $\mathcal{P}_1 = \mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_1} \{S \subseteq V(G) : S$ is a dominating set of $G\}$,
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^*$ and $\mathcal{P}_1 = \mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_1} \{S \subseteq V(G) : S \text{ is a dominating set of } G\}$, then $\mathcal{P} = \bigcup_{G \in \mathcal{I}_1 \circ \mathcal{I}_2} \{S \subseteq V(G) : S \text{ is a dominating set of } G\}$ is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2.
Example of Generalized Partially Composed Vertex Properties

Let \(I \) denote the class of all vertex-disjoint graphs. If \(I_1 = I_2 = \{ G \in \mathcal{I} : G \) has no isolated vertices \(\} \) and \(P_1 = \bigcup_{G \in I_1} G \) and \(P_2 = \bigcup_{G \in I_2} S(G) \), then \(P = \bigcup_{G \in I_1 \circ I_2} S(G) \) is generalized partially composed by \(P_1 \) and \(P_2 \).
Example of Generalized Partially Composed Vertex Properties
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs.
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \{ G \in \mathcal{I}^* : G$ has no isolated vertices $\}$ and
Example of Generalized Partially Composed Vertex Properties

Let \(\mathcal{I}^* \) denote the class of all vertex-disjoint graphs. If \(\mathcal{I}_1 = \mathcal{I}_2 = \{G \in \mathcal{I}^* : G \) has no isolated vertices \(\} \) and \(\mathcal{P}_1 = \bigcup_{G \in \mathcal{I}_1} \{S \subseteq V(G) : S \) is a total dominating set of \(G \}\) and \(\mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_2} S(G) \),
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \{ G \in \mathcal{I}^* : G \text{ has no isolated vertices} \}$ and $P_1 = \bigcup_{G \in \mathcal{I}_1} \{ S \subseteq V(G) : S \text{ is a total dominating set of } G \}$ and $P_2 = \bigcup_{G \in \mathcal{I}_2} S(G)$, then $P = \bigcup_{G \in \mathcal{I}_1 \circ \mathcal{I}_2} \{ S \subseteq V(G) : S \text{ is a total dominating set of } G \}$ is generalized partially composed by P_1 and P_2.
Example of Generalized Partially Composed Vertex Properties
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs.
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs.
If $\mathcal{I}_1 = \{ G \in \mathcal{I}^* : G \text{ is connected} \}$, $\mathcal{I}_2 = \mathcal{I}^*$ and
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs.
If $\mathcal{I}_1 = \{ G \in \mathcal{I}^* : G$ is connected $\}$, $\mathcal{I}_2 = \mathcal{I}^*$ and
$\mathcal{P}_1 = \bigcup_{G \in \mathcal{I}_1} \{ S \subseteq V(G) : S$ is a connected dominating set of $G \}$ and
$\mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_2} S(G)$,
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \{G \in \mathcal{I}^* : G$ is connected $\}$, $\mathcal{I}_2 = \mathcal{I}^*$ and
$\mathcal{P}_1 = \bigcup_{G \in \mathcal{I}_1} \{S \subseteq V(G) : S$ is a connected dominating set of $G\}$ and
$\mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_2} S(G)$, then $\mathcal{P} = \bigcup_{G \in \mathcal{I}_1 \circ \mathcal{I}_2} \{S \subseteq V(G) : S$ is a connected dominating set of $G\}$ is
generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2.
Introduction Example of Generalized Partially Composed Vertex Properties

Example of Generalized Partially Composed Vertex Properties

Let I denote the class of all vertex-disjoint graphs. If $I_1 = I_2 = I$ and $P_1 = P_2 = \bigcup_{G \in I} f(S \subseteq V(G)) : S$ is an independent dominating set of G then $P = \bigcup_{G \in I} f(S \subseteq V(G)) : S$ is independent dominating set of G is generalized partially composed by P_1 and P_2.

Sayan Panma (CMU) October 10, 2017 30 / 38
Example of Generalized Partially Composed Vertex
Properties

Let \(\mathcal{I}^* \) denote the class of all vertex-disjoint graphs.
Example of Generalized Partially Composed Vertex Properties

Let \(\mathcal{I}^* \) denote the class of all vertex-disjoint graphs. If \(\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^* \) and
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^*$ and $\mathcal{P}_1 = \mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_1} \{ S \subseteq V(G) : S \text{ is an independent dominating set of } G \}$.
Example of Generalized Partially Composed Vertex Properties

Let \mathcal{I}^* denote the class of all vertex-disjoint graphs. If $\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{I}^*$ and $\mathcal{P}_1 = \mathcal{P}_2 = \bigcup_{G \in \mathcal{I}_1} \{S \subseteq V(G) : S \text{ is an independent dominating set of } G\}$ then $\mathcal{P} = \bigcup_{G \in \mathcal{I}_1 \circ \mathcal{I}_2} \{S \subseteq V(G) : S \text{ is an independent dominating set of } G\}$ is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2.
Main Results
Theorem
\textbf{Main Results} \quad m_\mathcal{P} \quad \text{and} \quad M_\mathcal{P} \\

$m_\mathcal{P}$ and $M_\mathcal{P}$

\textbf{Theorem}

For graphical properties \mathcal{I}_1 and \mathcal{I}_2,

$$
\begin{align*}
m_\mathcal{P}(G \circ (H \times 2 V(G))) &= \min \left\{ j_{\mathcal{G}}(S_j) + \sum a_2 I_{\mathcal{G}}(S_j) m_\mathcal{P}(H a_j) : S_j \text{ is a } \mathcal{P}_1 \text{-set of } G \right\}, \\
M_\mathcal{P}(G \circ (H \times 2 V(G))) &= \max \left\{ \sum a_2 J_{\mathcal{G}}(S_j) V(H a_j) + \sum a_2 I_{\mathcal{G}}(S_j) M_\mathcal{P}(H a_j) : S_j \text{ is a } \mathcal{P}_1 \text{-set of } G \right\}.
\end{align*}
$$
Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2, let \mathcal{P}_1 be a vertex property appearing in \mathcal{I}_1,

$m_{\mathcal{P}}(\mathcal{P}_1 \circ \mathcal{P}_2) = \min \{ j_{\mathcal{G}}(S) + \sum a_{\mathcal{H}}(S) : S \text{ is a } \mathcal{P}_1\text{-set of } \mathcal{G} \}$

$M_{\mathcal{P}}(\mathcal{P}_1 \circ \mathcal{P}_2) = \max \{ \sum a_{\mathcal{H}}(S) : S \text{ is a } \mathcal{P}_1\text{-set of } \mathcal{G} \}$
Main Results

m_P and M_P

Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2, let \mathcal{P}_1 be a vertex property appearing in \mathcal{I}_1, \mathcal{P}_2 be a vertex property appearing in \mathcal{I}_2 and
Main Results

m_P and M_P

Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2,
let P_1 be a vertex property appearing in \mathcal{I}_1,
P_2 be a vertex property appearing in \mathcal{I}_2 and
P a vertex property appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$
Theorem

For graphical properties I_1 and I_2, let P_1 be a vertex property appearing in I_1, P_2 be a vertex property appearing in I_2 and P a vertex property appearing in $I_1 \circ I_2$ such that P is generalized partially composed by P_1 and P_2.
m_P and M_P

Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2, let \mathcal{P}_1 be a vertex property appearing in \mathcal{I}_1, \mathcal{P}_2 be a vertex property appearing in \mathcal{I}_2 and \mathcal{P} a vertex property appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$ such that \mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2. Further, let $G \in \mathcal{I}_1$ and $H \in \mathcal{I}_2$. Then
Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2,
let \mathcal{P}_1 be a vertex property appearing in \mathcal{I}_1,
\mathcal{P}_2 be a vertex property appearing in \mathcal{I}_2 and
\mathcal{P} a vertex property appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$
such that \mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2.
Further, let $G \in \mathcal{I}_1$ and $H \in \mathcal{I}_2$. Then

1. $m_\mathcal{P}(G \circ (H_x)_{x \in V(G)}) =$
 $\min \{ |J_G(S)| + \sum_{a \in I_G(S)} m_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \}$
$m_\mathcal{P}$ and $M_\mathcal{P}$

Theorem

For graphical properties \mathcal{I}_1 and \mathcal{I}_2, let \mathcal{P}_1 be a vertex property appearing in \mathcal{I}_1, \mathcal{P}_2 be a vertex property appearing in \mathcal{I}_2 and \mathcal{P} a vertex property appearing in $\mathcal{I}_1 \circ \mathcal{I}_2$ such that \mathcal{P} is generalized partially composed by \mathcal{P}_1 and \mathcal{P}_2. Further, let $G \in \mathcal{I}_1$ and $H \in \mathcal{I}_2$. Then

1. $m_\mathcal{P}(G \circ (H_x)_{x \in V(G)}) = \min \{ |J_G(S)| + \sum_{a \in I_G(S)} m_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \}$

2. $M_\mathcal{P}(G \circ (H_x)_{x \in V(G)}) = \max \{ \sum_{a \in J_G(S)} |V(H_a)| + \sum_{a \in I_G(S)} M_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \}.$
Main Results

Applications

Definitions

The minimum cardinality of a dominating set in a graph G is called the **domination number** of G and is denoted by $\gamma(G)$. The minimum cardinality of a total dominating set in G is called the **total domination number** of G and is denoted by $\gamma_t(G)$. The minimum cardinality of an independent dominating set in G is called the **independent domination number** of G and is denoted by $\gamma_i(G)$. The minimum cardinality of a connected dominating set in G is called the **connected domination number** of G and is denoted by $\gamma_c(G)$.
Applications

Definitions

- The minimum cardinality of a dominating set in G is called the \textit{domination number} of G and is denoted by $\gamma(G)$.
Applications

Definitions

- The minimum cardinality of a dominating set in G is called the *domination number* of G and is denoted by $\gamma(G)$.
- The minimum cardinality of a total dominating set in G is called the *total domination number* of G and is denoted by $\gamma_t(G)$.
Applications

Definitions

- The minimum cardinality of a dominating set in G is called the *domination number* of G and is denoted by $\gamma(G)$.
- The minimum cardinality of a total dominating set in G is called the *total domination number* of G and is denoted by $\gamma_t(G)$.
- The minimum cardinality of an independent dominating set in G is called the *independent domination number* of G and is denoted by $\gamma_i(G)$.
Main Results

Applications

Definitions

- The minimum cardinality of a dominating set in G is called the \textit{domination number} of G and is denoted by $\gamma(G)$.
- The minimum cardinality of a total dominating set in G is called the \textit{total domination number} of G and is denoted by $\gamma_t(G)$.
- The minimum cardinality of an independent dominating set in G is called the \textit{independent domination number} of G and is denoted by $\gamma_i(G)$.
- The minimum cardinality of a connected dominating set in G is called the \textit{connected domination number} of G and is denoted by $\gamma_c(G)$.
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \{ |J_G(S)| + \sum_{a \in I_G(S)} m_P(H_a) : S \text{ is a } P_1\text{-set of } G \} \]
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- Domination Number
Applications

Theorem

$$m_P(G \circ (H_x)_{x \in V(G)}) =$$
$$\min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G \right\}$$

Applications

For simple graph G and H we have

- **Domination Number**
 - $$\gamma(G \circ (H_x)_{x \in V(G)}) =$$
 $$\min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} \gamma(H_a) : S \text{ is a dominating set of } G \right\}.$$
Main Results

Applications

Theorem

\[m_\mathcal{P}(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- **Domination Number**
 \[\gamma(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} \gamma(H_a) : S \text{ is a dominating set of } G \right\}. \]

- **Total Domination Number**
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_P(H_a) : S \text{ is a } P_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- **Domination Number**
 \[
 \gamma(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} \gamma(H_a) : S \text{ is a dominating set of } G \right\}.
 \]

- **Total Domination Number**
 \[
 \gamma_t(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} \gamma_t(H_a) : S \text{ is a total dominating set of } G \right\}.
 \]
Applications

Theorem

\[
m_{\mathcal{P}}(G \circ (H_x)_{x \in V(G)}) = \\
\min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \right\}
\]

Applications

For simple graph \(G \) and \(H \) we have
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- Independent Domination Number
Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \{|J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G\} \]

Applications

For simple graph \(G \) and \(H \) we have

- Independent Domination Number

\[\gamma_i(G \circ (H_x)_{x \in V(G)}) = \min \left\{ \sum_{a \in I_G(S)} \gamma_i(H_a) : S \text{ is an independent dominating set of } G \right\}. \]
Applications

Theorem

\[m_P(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{P_2}(H_a) : S \text{ is a } P_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- Independent Domination Number
 \[\gamma_i(G \circ (H_x)_{x \in V(G)}) = \min \left\{ \sum_{a \in I_G(S)} \gamma_i(H_a) : S \text{ is an independent dominating set of } G \right\} \]

- Connected Domination Number
Applications

Theorem

\[m_{\mathcal{P}}(G \circ (H_x)_{x \in V(G)}) = \min \left\{ |J_G(S)| + \sum_{a \in I_G(S)} m_{\mathcal{P}_2}(H_a) : S \text{ is a } \mathcal{P}_1\text{-set of } G \right\} \]

Applications

For simple graph \(G \) and \(H \) we have

- **Independent Domination Number**
 \[\gamma_i(G \circ (H_x)_{x \in V(G)}) = \min \left\{ \sum_{a \in I_G(S)} \gamma_i(H_a) : S \text{ is an independent dominating set of } G \right\}. \]

- **Connected Domination Number**
 \[\gamma_c(G \circ (H_x)_{x \in V(G)}) = \gamma_c(G) \text{ if } \gamma_c(G) \geq 2. \]
Main Results

Applications

THANK YOU
References

References 1

References

References 2

