Injective hulls for S-posets

Xia Zhang
South China Normal University
Joint work with Valdis Laan

International Workshop on Graphs, Semigroups, and Semigroup Acts
Berlin, October 11 2017
Contents

1 Introduction
 1 Backgrounds: injective hulls for posets
 2 Backgrounds: injective hulls for semilattices
 3 Backgrounds: injective hulls for certain S-systems over semilattices
 4 Backgrounds: injective hulls for po-monoids
 5 Basic definitions

2 Injective hulls of posemigroups
 1 Injective objects in Pos_{\leq}
 2 Construction of a special closure operator
 3 Injective hulls for posemigroups

3 Injective hulls for S-posets
 1 Injective objects in $\text{Pos}_{S\leq}$
 2 Construction of a special closure operator
 3 Injective hulls for S-posets

4 Injective hulls for ordered algebras

5 Work to be continued

6 References
1. Introduction: Results of injective hulls on posets

Theorem 1 (Banaschewski B., Bruns G.) For a partially ordered set P, T.A.E.:

1. P is complete;
2. P is strictly injective;
3. P is a retract of every extension;
4. P has no essential extensions.
1. Introduction: Results of injective hulls on posets

Theorem 2 (Banaschewski B., Bruns G.) For a partially ordered set P, T.A.E.:

1. E is a MacNeille completion of P;
2. E is an essential, strictly injective extension of P;
3. E is a strictly injective extension of P not containing any properly smaller such extension of P;
4. E is an essential extension of P not containing in any properly larger such extension of P.
1. Introduction: Results of injective hulls on semilattices

Theorem 3 (Burns G., Lakser H.)
A semilattice S is injective iff it is complete and satisfying

$$a \bigwedge \bigvee M = \bigvee (a \bigwedge m \mid m \in M),$$ \hspace{1cm} (1)

for all $a \in S$, $M \subseteq S$.
1. Introduction: Results of injective hulls on semilattices

\[I_D(S) = \{ A \subseteq S \mid A = A \downarrow; M \subseteq A \text{ with } \bigvee M \text{ exists and satisfying (1)} \Rightarrow \bigvee M \in A \}. \]

Theorem 4 (Burns G., Lakser H.)

Injective hulls of a semilattice S is $I_D(S)$.
1. Introduction: Results of injective hulls on certain S-systems over a semilattice

Theorem 5 (Johnson C.S., J.R., McMorris F.R.)

Injective hulls of an S-system M_S is $I_D(M_S)$.
1. Introduction: backgrounds and motivations

Theorem 6. (1974 Schein) The category of semigroups has only trivial injectives.
The category of po-monoids

Partially ordered monoids (po-monoid) with submultiplicative order-preserving mappings, i.e., an order-preserving mapping \(\phi : A \rightarrow B \) of po-monoids satisfying

\[
\phi(1) = 1, \\
\phi(a)\phi(b) \leq \phi(ab),
\]

for all \(a, b \in A \).
1. Introduction: Results of injective hulls on posemigroups

2012, Lambek J., Barr M., Kennison J.F. and Raphael R.,

Theorem 7 (2012 Lambek, Barr, Kennison and Raphael)
A po-monoid is injective iff it is a quantale.
1. Introduction: Quantales and quantale-like structures

Definitions

Definition 1 (Mulvey C.J., 1986)

A quantale is a complete lattice \(Q \) equipped with an associative binary operation satisfying

\[
a(\bigvee M) = \bigvee \{am \mid m \in M\}, \quad (\bigvee M)a = \bigvee \{ma \mid m \in M\}
\]

for any \(a \in Q, \ M \subseteq Q \).

A frame(locale) \(L \) is a complete lattice such that

\[
a \wedge (\bigvee M) = \bigvee \{a \wedge m \mid m \in M\},
\]

for any \(a \in L, \ M \subseteq L \).
1. Introduction: Quantale modules

Definitions

Definition 2 (Cf. [5, 9])

Given a quantale Q, a left quantale module is a pair (A, \ast), where A is a \bigvee-lattice and $Q \times A \rightarrow$ such that:

1. $q \ast (\bigvee S) = \bigvee_{s \in S}(q \ast s)$ for every $q \in Q$, $S \subseteq A$;
2. $(\bigvee T) \ast a = \bigvee_{t \in T}(t \ast a)$ for every $a \in A$, $T \subseteq Q$;
3. $q_1 \ast (q_2 \ast a) = (q_1 q_2) \ast a$ for every $a \in A$, $q_1, q_2 \in Q$.

Xia Zhang, Valdis Laan (SCNU)
Definition 3 (Cf. [9]) Given a commutative quantale Q, a quantale algebra is a quantale module (A, \ast) such that:

1. (A, \leq, \otimes) is a quantale;
2. $q \ast (a \otimes b) = (q \ast a) \otimes b$ for every $a, b \in A, q \in Q$.

1. Introduction: Quatale algebras

Definitions
2. Injective hulls for posemigroups

Category Pos_\leq

Objects: posemigroups;

Morphisms: order-preserving submultiplicative mappings;

$\varepsilon_\leq :$ a morphism $f : S \to T$ in Pos_\leq belongs to ε_\leq if it satisfies:

$$f(a_1) \cdots f(a_n) \leq f(a) \implies a_1 \cdots a_n \leq a,$$

for each $a_1, \cdots, a_n, a \in S.$
Theorem 8 (2014, Zhang, Laan)

ε_{\leq}-injective objects in the category Pos_{\leq} are exactly quantales.

Example: quantale $(P(S), \cdot, \subseteq)$

S: a posemigroup,
$P(S)$: the set of all downsets of S,

$$X \cdot Y = (XY) \downarrow = \{x \in S \mid s \leq xy \text{ for some } x \in X, \ y \in Y\},$$

for $X, Y \in P(S)$.

Definition 4: Nucleus

A nucleus on a quantale Q is a submultiplicative closure operator on Q.

The nucleus cl:

For any down-set I of a posemigroup S we define its closure by

$$\text{cl}(I) := \{ x \in S \mid alc \subseteq b \downarrow \text{ implies } axc \leq b \text{ for all } a, b, c \in S \}.$$

Then $\text{cl} : \mathcal{P}(S) \to \mathcal{P}(S)$ is a nucleus.

2. Injective hulls for posemigroups

Constructions

Construction: \(\mathcal{Q}(S) \)

\[
\mathcal{Q}(S) := \{ I \in \mathcal{P}(S) \mid I = \text{cl}(I) \}
\]

define a multiplication \(\circ \) on \(\mathcal{Q}(S) \) by

\[
I \circ J := \text{cl}(I \cdot J).
\] (1)

Theorem 9 (2014 Zhang, Laan)[Cf. Theorem 5.8 in [6]]

Let \(S \) be a posemigroup such that \(\text{cl}(s \downarrow) = s \downarrow \) for every \(s \in S \). Then \(\mathcal{Q}(S) \) is an \(\varepsilon_{\leq} \)-injective hull of \(S \) in \(\text{Pos}_{\leq} \).
3. Injective hulls for S-posets

Definitions

In this work, S is always a *pomonoid*.

S-posets

A poset (A, \leq) together with a mapping $A \times S \rightarrow A$ (under which a pair (a, s) maps to an element of A denoted by as) is called a *right S-poset*, denoted by A_S, if for any $a, b \in A$, $s, t \in S$,

1. $a(st) = (as)t$,
2. $a1 = a$,
3. $a \leq b$, $s \leq t$ imply that $as \leq bt$.

A left S-poset can be defined similarly.
3. Injective hulls for S-posets

S: a pomonoid

Result 1:

Each injective S-poset is **“complete”** if it is a complete lattice and satisfying the distributions of arbitrary joins with S-actions.

Result 2:

Let G be a pogroup. Then a complete G-poset is injective.
3. Injective hulls for S-posets

Definitions

Definition 5 (2015, Zhang, Laan)

We call a right S-poset A_S a *right S-quantale* if

1. the poset A is a complete lattice;
2. $(\bigvee M)s = \bigvee \{ms \mid m \in M\}$ for each subset M of A and each $s \in S$.

Xia Zhang, Valdis Laan (SCNU)
Let A_S and B_S be S-posets. We say that a mapping $f : A \to B$ is **S-submultiplicative** if $f(a)s \leq f(as)$ for any $a \in A$, $s \in S$.

Definitions

\[Pos_S^{\leq} \]

We denote by Pos_S^{\leq} the category where objects are right S-posets and morphisms are S-submultiplicative order-preserving mappings.

Definitions

\[\mathcal{E}_S^{\leq} \]

Let \mathcal{E}_S^{\leq} be the class of morphisms $e : A_S \to B_S$ in the category Pos_S^{\leq} which satisfy the following condition:

\[e(a)s \leq e(a') \implies as \leq a', \quad \forall \ a, a' \in A, \ s \in S. \]
3. Injective hulls for S-posets

Theorem 10 (2015, Zhang, Laan)

Let A_S be an S-poset. Then A_S is ε_\leq-injective in Pos_S^{\leq} if and only if A_S is a right S-quantale.

An S-quantale

Let A_S be an S-poset, and let $\mathcal{P}(A)$ be the set of all down-sets of the poset A. Define a right S-action \cdot on $\mathcal{P}(A)$ by

$$D \cdot s = (Ds) \downarrow = \{x \in A \mid x \leq ds \text{ for some } d \in D\},$$

for any $s \in S$, $D \in \mathcal{P}(A)$. Then $(\mathcal{P}(A), \cdot, \subseteq)$ is a right S-quantale.
A nucleus

For any down-set D of an S-poset A_S we define its closure by

$$\text{cl}(D) := \{ x \in A \mid D_s \subseteq a \downarrow \text{ implies } xs \leq a \text{ for all } a \in A, \ s \in S \}.$$

Then cl is a nucleus on $\mathcal{P}(A)_S$.
Another S-quantale

For any S-poset A_S, we put

$$\mathcal{Q}(A) := \mathcal{P}(A)_{\text{cl}} = \{ D \in \mathcal{P}(A) \mid \text{cl}(D) = D \}$$

and define a right S-action \circ on $\mathcal{Q}(A)$ by

$$D \circ s := \text{cl}(D \cdot s),$$

for any $s \in S$.
Theorem 11 (2015 Zhang, Laan)

For every S-poset A_S, $Q(A)_S$ is the ε_\leq-injective hull of A_S in the category Pos_S^\wedge.
Definition 6

Let Ω be a type. An ordered Ω-algebra is a triplet $A = (A, \Omega_A, \leq_A)$ comprising a poset (A, \leq_A) and a set Ω_A of operations on A (for every k-ary operation symbol $\omega \in \Omega_k$ there is a k-ary operation $\omega_A \in \Omega_A$ on A) such that all the operations ω_A are monotone mappings, where monotonicity of ω_A ($\omega \in \Omega_k$) means that

$$a_1 \leq_A a'_1 \land \ldots \land a_k \leq_A a'_k \implies \omega_A(a_1, \ldots, a_k) \leq_A \omega_A(a'_1, \ldots, a'_k)$$

for all $a_1, \ldots, a_k, a'_1, \ldots, a'_k \in A$.
An ordered Ω-algebra $\mathcal{A} = (A, \Omega_A, \leq_A)$ is called a **sup-algebra** if the poset (A, \leq) is a complete lattice and

$$\omega_A(a_1, \ldots, a_{i-1}, \bigvee M, a_{i+1}, \ldots, a_n)$$

$$= \bigvee \{\omega_A(a_1, \ldots, a_{i-1}, m, a_{i+1}, \ldots, a_n) \mid m \in M\}$$

for every $n \in \mathbb{N}$, $\omega \in \Omega_n$, $i \in \{1, \ldots, n\}$, $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$, and $M \subseteq A$.

Sup-algebras are a generalization of quantale-like structures.
Definition 7

Let A, B be ordered Ω-algebras of type Ω. A monotone mapping $f : A \to B$ is called a *subhomomorphism* if

$$\omega_B(f(a_1), \ldots, f(a_n)) \leq f(\omega_A(a_1, \ldots, a_n))$$

for every $n \in \mathbb{N}$, $\omega \in \Omega_n$, $a_1, \ldots, a_n \in A$, and

$$\omega_B \leq f(\omega_A)$$

for every $\omega \in \Omega_0$. All ordered Ω-algebras together with their subhomomorphisms form a category which we denote by $\mathbf{OALg}^{\leq}_\Omega$.
4. Injective hulls for ordered algebras

We will study injectivity in classes of ordered \(\Omega \)-algebras with respect to two classes of order-embeddings. The first of them is the class \(\mathcal{M}_1 \) of order-embeddings that are homomorphisms. The other class has a more complicated definition.

Let us denote by \(T^n_\Omega \) the set of all \(n \)-ary \(\Omega \)-terms. Let \(\mathcal{M}_2 \) be the class of mappings \(h : \mathcal{A} \rightarrow \mathcal{B} \) between ordered \(\Omega \)-algebras that satisfy the following conditions:

1. \(h \) is monotone,
2. \(\omega_B(h(a_1), \ldots, h(a_n)) \leq h(\omega_A(a_1, \ldots, a_n)) \) for every \(n \in \mathbb{N} \), \(\omega \in \Omega_n \), \(a_1, \ldots, a_n \in \mathcal{A} \),
3. \(h(\omega_A) = \omega_B \) for all \(\omega \in \Omega_0 \),
4. for all \(n \in \mathbb{N} \), \(t \in T^n_\Omega \), \(a_1, \ldots, a_n, a \in \mathcal{A} \),

\[
t_B(h(a_1), \ldots, h(a_n)) \leq h(a) \implies t_A(a_1, \ldots, a_n) \leq a.
\]
4. Injective hulls for ordered algebras

Lemma 2
For a class of ordered Ω-algebras, $\mathcal{M}_1 \subseteq \mathcal{M}_2$.

Theorem 12 (2016, Zhang, Laan)
Every sup-algebra $\mathcal{D} = (Q, \Omega_Q, \leq_Q)$ of type Ω is \mathcal{M}_2-injective and therefore, \mathcal{M}_1-injective in the category OALg_{Ω}.
Proof.
Let $h: A \to B$ be a morphism in \mathcal{M}_2 and let $f: A \to Q$ be a morphism in $\text{OALg}_{\Omega}^{\leq}$. Define a mapping $g: B \to Q$ by

$$g(b) = \bigvee \{ t(f(a_1), \ldots, f(a_m)) \mid m \in \mathbb{N}, a_1, \ldots, a_m \in A, \ t \in T^m_\Omega, \ t(h(a_1), \ldots, h(a_m)) \leq b \},$$

for any $b \in B$. We write the last join shortly as

$$\bigvee_{t(h(a_1), \ldots, h(a_m)) \leq b} t(f(a_1), \ldots, f(a_m)).$$
\[
\omega_Q(g(b_1), \ldots, g(b_n))
\]
\[
= \omega_Q \left(\bigvee \left\{ t_1(f(a_{11}), \ldots, f(a_{1m_1})) \mid t_1(h(a_{11}), \ldots, h(a_{1m_1})) \leq b_1 \right\}, \ldots, \\
\bigvee \left\{ t_n(f(a_{n1}), \ldots, f(a_{nm_n})) \mid t_n(h(a_{n1}), \ldots, h(a_{nm_n})) \leq b_n \right\} \right)
\]
\[
= \bigvee \left\{ \omega_Q(t_1(f(a_{11}), \ldots, f(a_{1m_1})), \ldots, t_n(f(a_{n1}), \ldots, f(a_{nm_n}))) \mid \\
\quad t_1(h(a_{11}), \ldots, h(a_{1m_1})) \leq b_1, \ldots, t_n(h(a_{n1}), \ldots, h(a_{nm_n})) \leq b_n \right\}
\]
\[
\leq \bigvee \left\{ t(f(a_1), \ldots, f(a_m)) \mid t(h(a_1), \ldots, h(a_m)) \leq \omega_B(b_1, \ldots, b_n) \right\}
\]
\[
= g(\omega_B(b_1, \ldots, b_n)),
\]
Theorem 6 (2016, Zhang, Laan[12])

For an ordered Ω-algebra $\mathcal{A} = (A, \Omega_A, \leq_A)$, the following assertions are equivalent:

1. \mathcal{A} is \mathcal{M}_2-injective in $OALg^{<}_\Omega$;
2. \mathcal{A} is \mathcal{M}_1-injective in $OALg^{<}_\Omega$;
3. \mathcal{A} is a sup-algebra.
4. Injective hulls for ordered algebras Constructions of injective hulls in $\text{OALg}_{\Omega}^{\leq}$

Step 1

Let $\mathcal{A} = (A, \Omega_A, \leq_A)$ be an ordered Ω-algebra, and let $\mathcal{P}(A)$ be the set of all down-sets of the poset (A, \leq_A). For any $n \in \mathbb{N}, \omega \in \Omega_n$ and $D_1, \ldots, D_n \in \mathcal{P}(A)$ we denote

$$\omega_A(D_1, \ldots, D_n) = \{\omega_A(d_1, \ldots, d_n) | d_1 \in D_1, \ldots, d_n \in D_n\}$$

and define an operation $\omega_{\mathcal{P}(A)}$ on $\mathcal{P}(A)$ by

$$\omega_{\mathcal{P}(A)}(D_1, \ldots, D_n) := \omega_A(D_1, \ldots, D_n) \downarrow.$$

For each $\omega \in \Omega_0$ we put

$$\omega_{\mathcal{P}(A)} := \omega_A \downarrow.$$

Then that $(\mathcal{P}(A), \Omega_{\mathcal{P}(A)}, \subseteq)$ is a sup-algebra.
Let $\mathcal{A} = (A, \Omega_A, \leq_A)$ be an ordered Ω-algebra. We denote by P_A^1 the set of all unary polynomial functions on \mathcal{A}. Recall that a \textit{unary polynomial function} on \mathcal{A} is a mapping $p : A \rightarrow A$ such that $p = t_\mathcal{A}(a_1, \ldots, a_{n-1}, -)$ for some $n \in \mathbb{N}$ and $a_1, \ldots, a_{n-1} \in A$. Clearly, every unary polynomial function is monotone.

Step 2

For any $D \in \mathcal{P}(A)$ denote

$$cl(D) := \{ u \in A \mid p(D) \subseteq a \Downarrow \Rightarrow p(u) \leq a \text{ for all } a \in A, p \in P_A^1 \},$$

where $p(D) = \{ p(d) \mid d \in D \}$.
4. Injective hulls for ordered algebras Constructions of injective hulls in $\text{OALg}_{\leq}^\Omega$

Step 3

For any ordered Ω-algebra $\mathcal{A} = (A, \Omega_A, \leq_A)$, we denote

$$\mathcal{Q}(A) := \mathcal{P}(A)_{cl} = \{D \in \mathcal{P}(A) | cl(D) = D\}.$$

Theorem 13 (2016, Zhang, Laan)

Let $\mathcal{A} = (A, \Omega_A, \leq_A)$ be an ordered Ω-algebra such that $cl(a \downarrow) = a \downarrow$ for every $a \in A$. Then $\mathcal{Q}(A)$ is the \mathcal{M}_2-injective hull of \mathcal{A} in the category $\text{OALg}_{\leq}^\Omega$.
Let \((S, \cdot)\) be a posemigroup, \(D \subseteq S\). Define

\[
D^* \triangleq D^{ul} \cap D^L \cap D^R \cap D^T,
\]

where

\[
D^{ul} \triangleq \{x \in A \mid (\forall b \in A) \ D \subseteq b \downarrow \implies x \leq b\},
\]

\[
D^L \triangleq \{x \in A \mid (\forall a, b \in A) \ D a \subseteq b \downarrow \implies xa \leq b\},
\]

\[
D^R \triangleq \{x \in A \mid (\forall a, b \in A) \ a D \subseteq b \downarrow \implies ax \leq b\},
\]

\[
D^T \triangleq \{x \in A \mid (\forall a, b, c \in A) \ a D c \subseteq b \downarrow \implies axc \leq b\},
\]

\[
\mathcal{S}^* = \{D \subseteq S \mid D^* = D\}
\]

is the \(\varepsilon_{\leq}\)-injective hull for a posemigroup \(S\).
References

Thank you!