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Abstract. A connected covering is a design system in which the corresponding block
graph is connected. The minimum size of such coverings are called connected coverings
numbers. In this paper, we present various formulas and bounds for several parameter
settings for these numbers. We also investigate results in connection with Turán systems.
Finally, a new general upper bound, improving an earlier result, is given. The latter is
used to improve upper bounds on a question concerning oriented matroid due to Las
Vergnas.

1. Introduction

Let n, k, r be positive integers such that n > k > r > 1. A (n, k, r)-covering is a family B
of k-subsets of {1, . . . , n}, called blocks, such that each r-subset of {1, . . . , n} is contained
in at least one of the blocks. The number of blocks is the covering’s size. The minimum
size of such a covering is called the covering number and is denoted by C(n, k, r). Given
a (n, k, r)-covering B, its graph G(B) has B as vertices and two vertices are joined if
they have one r-subset in common. We say that a (n, k, r)-covering is connected if the
graph G(B) is connected. The minimum size of a connected (n, k, r)-covering is called
the connected covering number and is denoted by CC(n, k, r).
The graph corresponding to a connected (7, 4, 3)-covering can be nicely illustrated as
shown in Figure 1.
In this paper, we mainly pay our attention to coverings when k = r + 1 and thus, we
will denote C(n, r + 1, r) (resp. CC(n, r + 1, r)) by C(n, r) (resp. by CC(n, r)) for short.
The original motivation to study CC(n, r) comes from the following question posed by
Las Vergnas.

Question 1.1. Let Ur,n be the rank r uniform matroid on n elements. What is the
smallest number s(n, r) of circuits of Ur,n, that uniquely determines all orientations of
Ur,n? That is, whenever two uniform oriented matroids coincide on these circuits they
must be equal.

In [2], Forge and Ramı́rez Alfonśın introduced the notion of connected coverings and
proved that

(1) s(n, r) 6 CC(n, r).

The latter was then used to improve the best upper bound, s(n, r) 6
(
n−1
r

)
, known at

that time due to Hamidoune and Las Vergnas [6]; see also [3] for related results.
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Figure 1. A connected (7, 4, 3)-covering with 12 blocks.

It turns out that s(n, r) is also closely related to C(n, r). Indeed, by using results in [2, 3]
it can be proved that

(2) C(n, r) 6 s(n, r).

A proof (needing some oriented matroid notions and thus lying slightly out of scope of
this paper) of a more general version of the above inequality can be found in [9].
Covering designs have been the subject of an enormous amount of research papers (see [5]
for many upper bounds and [17] for a survey in the dual setting of Turán-systems).
Although the construction of block design is often very elusive and the proof of their
existence is sometimes tough, here, we will be able to present explicit constructions
yielding exact values and bounds for,C(n, r) and CC(n, r) for infinitely many cases. The
study of C(n, r) and CC(n, r) seems to be interesting not only for Design Theory but
also, in view of Equations (2) and (1), for the implications on the behavior of s(n, r) in
Oriented Matroid Theory. This relationship was already remarked in [2, Theorem 4.1]
where it was proved that CC(n, r) 6 2C(n, r). The latter can be slightly improved as
follows

(3) CC(n, r) 6 2C(n, r)− 1,

since the graph G associated to a covering with C(n, r) blocks (and thus with |V (G)| =
C(n, r)) can be made connected by adding at most C(n, r)−1 extra vertices (blocks), ob-
taining a graph corresponding to a (n, r+1, r)-connected covering with at most 2C(n, r)−1
blocks.

Many interesting variants of Question 1.1 can be investigated. For instance, for non-
uniform (oriented) matroids (graphic, representable, etc.) and by varying the notion of
what determine means (up to orientations, bijections, etc.). These (and other) variants
are treated in another paper (see [9]).

This paper is organized as follows. In the next section, we recall some basic definitions and
results concerning (connected) coverings and its connection with Turán systems needed
for the rest of the paper. In Section 3, we investigate connected covering numbers when
the value r is either small or close to n. Among other results, we give the exact value
for CC(n, 2) (Theorem 3.2), for CC(n, 3) for n 6 12 (Theorem 3.3) and for CC(n, n− 3)
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(Theorem 3.6). A famous conjecture of Turán and its connection with our results is also
discussed. In Section 4, we present a general upper bound for CC(n, r) (Theorem 4.8)
allowing us to improve the best known upper bound for s(n, r). We end the paper by
discussing some asymptotic results in Section 5.

2. Basic results

Let n,m, p be positive integers such that n > m > p. A (n,m, p)-Turán-system is a
family D of p-subsets of {1, . . . , n}, called blocks, such that each m-subset of {1, . . . , n}
contains at least one of the blocks. The number of blocks is the size of the Turán-system.
The minimum size of such a covering is called the Turán Number and is denoted by
T(n,m, p). Given a (n,m, p)-Turán-system D, with 0 6 2p−m 6 p, its graph G(D) has
as vertices D and two vertices are joined if they have one 2p−m-subset in common. We
say that a (n,m, p)-Turán-system with 0 6 2p−m 6 p is connected if G(D) is connected.

The minimum size of a connected (n,m, p)-Turán-system is the connected Turán Number
and is denoted by CT(n,m, p). By applying set complement to blocks, it can be obtained
that

(4) C(n, k, r) = T(n, n− r, n− k).

Moreover, if 0 6 n− 2k + r 6 n− k then

(5) CC(n, k, r) = CT(n, n− r, n− k).

Note that the precondition for (5) is fulfilled if k = r + 1.
Most of the papers on coverings consider n large compared with k and r, while for Turán
numbers it has frequently been considered n large compared with m and p, and often
focusing on the quantity limn→∞T(n,m, p)/

(
n
p

)
for fixed m and p. Thus, for Turán-type

problems, the value C(n, k, r) has usually been studied in the case when k and r are not
too far from n.

Forge and Ramı́rez Alfonśın [2] proved that

(6) CC(n, r) >

(
n
r

)
− 1

r
=: CC∗1(n, r).

Moreover, Sidorenko [18] proved that T(n, r+ 1, r) >
(

n−r
n−r+1

) (n
r)
r

. Together with (4), we
obtain that

(7) CC(n, r) > C(n, r) = T(n, n− r, n− r − 1) >

(
r + 1

r + 2

) (
n

r+1

)
n− r − 1

=: CC∗2(n, r).

Combining (6) and (7), together with a straight forward computation we have

(8) CC(n, r) > max{CC∗1(n, r),CC∗2(n, r)},
where the maximum is attained by the second term if and only if r > 2

3
(n− 1).

The following recursive lower bound for covering numbers was obtained by Schönheim [16]
and, independently, by Katona, Nemetz and Simonovits [8]

(9) C(n, r) >

⌈
n

r + 1
C(n− 1, r − 1)

⌉
which can be iterated yielding to

(10) C(n, r) >

⌈
n

r + 1

⌈
n− 1

r

⌈
. . .

⌈
n− r + 1

2

⌉
. . .

⌉⌉⌉
=: L(n, r).
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Forge and Ramı́rez Alfonśın [2, Theorem 4.2] proved that CC(n, r) 6
∑n−1

i=r+1 C(i, r− 1).
In this proof, they used the following recursive upper bound that will be useful for us
later,

(11) CC(n, r) 6 CC(n− 1, r) + C(n− 1, r − 1).

3. Results for small and large r

In this section, we investigate connected covering numbers for small and large r, that is,
when r is very close to either 1 or n. Let us start with the following observations.

Remarks 3.1.
a) CC(n, 0) = 1 since any 1-element set contains the empty set.
b) CC(n, 1) = n− 1 by taking the edges of a spanning tree of Kn.
c) CC(n, n− 2) = n− 1 by taking all but one (n− 1)-sets.
d) CC(n, n− 1) = 1 by taking the entire set.

All these values coincide with the corresponding covering numbers except in the case
r = 1, where C(n, 1) = dn

2
e.

3.1. Results when r is small.
For ordinary covering numbers, Fort and Hedlund [4] have shown that C(n, 2) := dn

3
dn
2
ee

that coincides with the lower bounds given in (10) when the case r = 2.

We also have the precise value for the connected case when r = 2.

Theorem 3.2. Let n be a positive integer with n > 3. Then, we have

CC(n, 2) =

⌈(
n
2

)
− 1

2

⌉
.

Proof. Note that the claimed value coincides with the lower bound CC∗1(n, 2). This lower
bound comes from the fact that every connected covering has a construction sequence,
where every new triangle shares at least one edge with an already constructed triangle.
We present a construction sequence where indeed every new triangle (except possibly the
last one) shares exactly one edge with the already constructed ones. Therefore, we attain
the lower bound. Part of the construction is shown in Figure 2. We start presenting the

5

6 8

7

n− 1

nn− 2

2 4

1 3

Figure 2. Part of the construction proving CC(n, 2) 6 CC∗1(n, 2).

black triangles from left to right. Then we present all triangles of the form (2i− 1, 2i, j)
for 1 6 i 6 n

2
and j > 2i + 3. (These are not depicted in the figure.) Now we present

the gray triangles from left to right. A gray triangle of the form (2i, 2i + 1, 2i + 4) is
connected to the already presented ones via (2i − 1, 2i, 2i + 4). Note (as in the figure)
the last triangle may indeed share two edges of already presented triangles, depending
on the parity of n. This accounts for the ceiling in the formula. It is easy to check that
all edges are covered. �
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Figure 3. An example proving CC(9, 3) 6 28. The circle-vertices are a covering.

The precise value of C(n, 3) remains unknown only for finitely many n, see [13, 14, 7].
The situation for connected coverings is worse.

Theorem 3.3. Let n be a positive integer with 4 6 n 6 12. Then, we have

CC(n, 3) =

⌈(
n
3

)
− 1

3

⌉
.

Proof. Note that the claimed value coincides with the lower bound CC∗1(n, 3). For n 6 6
this is already checked in [2]. Figure 1 proves CC(7, 3) 6 12 = CC∗1(7, 3). By using (11),
C(7, 2) = 7, and CC(7, 3) = 12, we obtain that CC(8, 3) 6 19 = CC∗1(8, 3). Figure 3
proves CC(9, 3) 6 28 = CC∗1(9, 3). From equation (11) and the fact that CC(9, 3) = 28
and C(9, 2) = 12, we conclude that CC(10, 3) 6 40 = CC∗1(10, 3). Now, Figure 4 proves
that CC(11, 3) 6 55 = CC∗1(11, 3). Finally, to construct a connected covering witnessing
CC∗1(12, 3) we delete the block {2, 4, 6, 8} from the covering in Figure 4. One can check
that this still leaves a covering B, whose graph now has three components. Now, we take
the following (disconnected) (11, 3, 2)-covering: {1, 3, 11}, {1, 4, 6}, {1, 2, 8}, {1, 5, 9}, {1, 7, 10}, {3, 4, 9}, {2, 3, 10}, {3, 5, 6},

{3, 7, 8}, {2, 4, 6}, {4, 5, 7}, {4, 10, 11}, {4, 6, 8}, {2, 5, 11}, {2, 7, 9}, {5, 8, 10},
{6, 7, 11}, {8, 9, 11}, {6, 9, 10}

 .

We add to each of these block the element 12 and thus together with B obtain a (12, 4, 3)-
covering B′. To see that B′ is connected, note that each of the blocks containing 12 is
connected to a block from B. Moreover, the blocks {1, 4, 6, 12}, {2, 4, 6, 12}, {4, 6, 8, 12}
form a triangle and each of them has a neighbor in a different component of G(B). Thus,
G(B′) is connected and B′ has 73 blocks which coincides with CC∗1(12, 3). �

Theorem 3.3 supports the following

Conjecture 3.4. For every positive integer n > 4, we have

CC(n, 3) = CC∗1(n, 3).

Even, more ambitious,

Question 3.5. Let n and r be two positive integers such that n > r + 1 > 4. Is it true
that if CC(n, r) = CC∗1(n, r) then CC(n′, r) = CC∗1(n

′, r) for every integer n′ > n ?
5



12611

1268

2468

12411

24811 2458

16711

46810

681011

68911

5689

2467

36711 3678

1679

17811

1578

1581012510

18910

1249

13411

1348

13101135101135811

13610

571011 56710

25711

2579

2357

2356

3457

1237

14710

471011479114789

45911

45611

1456

45910

159111359

36910

26910291011

23911 3469

37910

238923810

27810

23410

Figure 4. An example proving CC(11, 3) 6 55. The circle-vertices are a covering.

3.2. Results when r is large.

Theorem 3.6. Let n be a positive integer with n > 3. Then, we have

CC(n, n− 3) =

(⌈
n
2

⌉
2

)
+

(⌊
n
2

⌋
2

)
+ 1.

Proof. The parameter C(n, n − 3) = T(n, 3, 2) was determined already by Mantel in

1907 [12] and is
(dn

2
e

2

)
+
(bn

2
c

2

)
. Turán proved that the unique minimal configuration of

sets of size 2 hitting all sets of size 3 of an n-set are the edges of two vertex-disjoint
complete graphs Kdn

2
e and Kbn

2
c, see [19].

Now, by (4) and (5), the covering corresponding to the Turán-system is connected if and
only if the graph whose edges correspond to the blocks of the Turán-system is connected.
Thus, since the unique optimal construction by Turán is not connected but can be made
connected by adding a single edge connecting the two complete graphs, this is optimal
with respect to connectivity. Therefore, CC(n, n−3) = T(n, 3, 2)+1, giving the result. �

Proposition 3.7. Let n 6= 5, 6, 8, 9 be a positive integer with n > 4. Then, we have

CC(n, n− 4) 6


m(m− 1)(2m− 1) if n = 3m,

m2(2m− 1) if n = 3m+ 1,

m2(2m+ 1) if n = 3m+ 2.

If n = 5, 6, 9 the value of CC(n, n−4) is one larger than claimed in the formula. Further,
CC(8, 4) ∈ {20, 21}, i.e., it remains open if the above formula has to be increased by one
or not in order to give the precise value.

Proof. We will show that a Turán-system D verifying the claimed bounds due to Kos-
tochka [10] is connected. Indeed the construction of [10] is a parametrized family of
Turán-systems, each of whose members attains the claimed bound. Our construction
results from picking special parameters:
Assume that n > 12 and n is divisible by 3. Split [n] into three sets A1, A2, A3 of equal
size. Pick special elements xi, yi ∈ Ai and denote Bi := Ai \ {xi, yi} for i = 0, 1, 2. The
blocks of D consist of 3-element sets {a, b, c} of the following forms:

Li: a, b, c ∈ Ai,
T1i: a = xi and b, c ∈ Ai+1,
T2i: a = yi and b, c ∈ Bi−1 ∪ {xi+1, yi+1},
T3i: a ∈ Bi and b, c ∈ Bi−1 ∪ {xi+1, yi−1}

6



where i = 0, 1, 2, and addition of indices is understood modulo 3.
Let us now show that D is connected. Clearly, all blocks in a given Ai are connected
and all 2-element subsets in each Ai are covered by a block in this Ai. Thus, it suffices
to verify that there are two 2-element sets {e, f} ⊆ A0 and {e′, f ′} ⊆ A2 which can be
connected by a sequence of blocks of D, because then any block in A0 containing {e, f}
is connected to any block in A2 containing {e′, f ′}. The connectivity of D then follows
by the symmetry of the construction. Let {e, f} ⊆ B0. Take {e, f, y1} ∈ T21, then
{e, y1, y2} ∈ T21, and then {e, f ′, y2} ∈ T30, where f ′ ∈ B2, i.e, {y2, f ′} ⊆ B2.
Now, following [10] deleting any element of such a system yields a Turán-system D′ of
the claimed size for n′ = n − 1. We can just delete any xi, since these are not used for
connectivity. Following [10], two elements can be removed from D to obtain a Turán-
system D′′ of the claimed size for n′′ = n − 2, if the set formed by these two elements
belongs to exactly n

3
− 1 blocks. This is the case for {xi, xi+1}, which belongs to exactly

n
3
− 1 blocks from T1i. Again, this preserves connectivity.

We are left with the cases n 6 9. In [18] it is shown that the Turán-systems of the
claimed size for n = 9 are exactly the members of the family constructed in [10]. There
are exactly two such systems:
In both cases [9] is split into three sets A1, A2, A3 of size 3. In the first system we pick a
xi ∈ Ai and denote Ai \ {xi} by Bi. The blocks then are the 3-element sets {a, b, c} of
the following forms:

Li: a, b, c ∈ Ai,
T1i: a = xi and b, c ∈ Ai+1,
T2i: a ∈ Bi and b, c ∈ Bi−1 ∪ {xi+1}.

The second system coincides with an instance of a construction due to Turán [20]. It
consists of the following 3-element sets:

Li: a, b, c ∈ Ai,
T1i: a ∈ Ai and b, c ∈ Ai+1.

It is easy to check that both systems are not connected. On the other hand, the second
one can be made connected adding a single block taking one element from each Ai. This
proves the claim for n = 9. Further, removing any vertex not contained in the added
block, one obtains a connected Turán-system for n = 8 with 21 blocks. While there are
Turán-systems showing T(8, 4, 3) = 20 we do not know if there is any such connected
system.
See Figure 1 for proving our statement for n = 7, Theorem 3.2 for n = 6, and Remark 3.1
for n = 4, 5. �

A famous conjecture of Turán [20] states that the bounds in Proposition 3.7 are best
possible for C(n, n− 4). By combining (1) and Proposition 3.7, for n > 10 we have

(12) C(n, n− 4) 6 CC(n, n− 4) 6


m(m− 1)(2m− 1) if n = 3m,

m2(2m− 1) if n = 3m+ 1,

m2(2m+ 1) if n = 3m+ 2.

Turán’s conjecture has been verified for all n 6 13 by [18] and so, by (12), the connected
covering number can also be determined for these same values.

Towards proving Turán’s conjecture, it would be of interest to investigate the following.

Question 3.8. Is it true that one of the inequalities in (12) is actually an equality ?
7



Bounds and precise values for all CC(n, r) with n 6 14 are given in Table 1. All the
exact values previously given in [2] for the same range have been improved by using our
above results.

r \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 5e,t 7e 10e 14e 18e 22e 27e 33e 39e 45e

3 1 4 7p,t 12p,u 19p 28p 40p 55p 73p [95l, 97r] [121l, 123r]
4 1 5 10t [20, 21u] [32l, 35r] [53l, 59r] [83l, 89r] [124l, 136r] [179l, 193r] [250l, 271r]
5 1 6 13t 31u [51l, 61r] [96a, 111r] [159l, 177r] [258l, 290r] [401l, 447r]
6 1 7 17t 45u [84a, 95r] [165a, 195r] [286l, 327r] [501l, 572r]
7 1 8 21t 63u [126a, 147r] [269a, 323r] [491l, 587r]
8 1 9 26t 84u [185a, 210r] [419a, 505r]
9 1 10 31t 112u [259s, 297r]
10 1 11 37t [143s, 144u]
11 1 12 43t

12 1 13
13 1

Table 1. Bounds and values of CC(n, r) for n 6 14.

Key of Table 1 :

r — Upper bound for CC(n, r)(from Equation (11))
e — Exact values for CC(n, 2) (Theorem 3.2)
t — Exact values for CC(n, n− 3) (Theorem 3.6)
l — Lower bound CC∗1(n, r)
p — Some exact values for CC(n, 3) (Theorem 3.3)
u — Upper bound for CC(n, n− 4) (Proposition 3.7)
s — Lower bound for C(n, r) (from Equation (9))
a — Lower bounds for C(n, r) (from [1])

Table 1 led us to consider the following.

Question 3.9. Is the sequence (CC(n, i))06i6n−1 unimodal for every n ? or perhaps

logarithmically concave1 ?

4. A general upper bound

Let n and r be positive integers such that n > r + 1 > 3. Forge and Ramı́rez Alfonśın
[2] obtained the following general upper bound

(13) S(n, r) :=

bn−r+1
2 c∑

i=1

(
n− 2i

r − 1

)
+

⌊
n− r

2

⌋
> CC(n, r).

1A finite sequence of real numbers {a1, a2, . . . , an} is said to be unimodal (resp. logarithmically concave
or log-concave) if there exists a t such that s1 6 s2 6 · · · 6 st and st > st+1 > · · · > sn (resp. if
a2i > ai−1ai+1 holds for every ai with 1 6 i 6 n− 1). Notice that a log-concave sequence is unimodal.
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Let us notice that the upper bounds obtained by applying the recursive equation (11),
that were used in Table 1, are better than the one given by (13). Moreover, by iterat-
ing (11) it can be obtained

(14) CC(n, r) 6
n−1∑
i=r

C(i, r − 1).

Although (14) might be used to get an explicit upper bound for s(n, r), it is not clear
how good it would be since that would depend on the known exact values and the upper
bounds of C(n, r) used in the recurrence (and thus intrinsically difficult to compute). On
the contrary, in [2] Equation (13) was used to give the best known (to our knowledge)
explicit upper bound for s(n, r).

In this section, we will construct a connected (n, r+1, r)-covering giving an upper bound
for CC(n, r) better than S(n, r) and so, yielding a better upper bound for s(n, r) than
that given in [2].

Theorem 4.1. Let n and r be positive integers such that n > r+1 > 3. Then CC(n, r) 6
N(n, r), where

(15) N(n, r) :=

dn−r
2 e−1∑
i=0

(n− r − 2i)

(
r − 2 + 2i

r − 2

)
+

⌈
n− r

2

⌉
− 1 + δ0C(n− 2, r − 2),

and δ0 is the parity function of n− r, that is, δ0 =

{
0 if n− r is odd,
1 otherwise.

Proof. From this point on, for any positive integer s, we will denote [s] := {1, . . . , s} and

by
(
[s]
t

)
the set of all t-subsets of [s]. Moreover, for any subset of integers {b1, . . . , bs}, we

may suppose that bi < bj for all 1 6 i < j 6 s.

Case 1. Suppose that n− r is odd and let m such that n− r = 2m+ 1. We will construct
a connected (r + 2m+ 1, r + 1, r)-covering of size

m+
m∑
i=0

(
r − 2 + 2i

r − 2

)
(2m+ 1− 2i).

We consider a particular (r+2m+1, r+1, r)-covering, which is constituted by a large num-
ber of blocks but whose associated graph has a small number of connected components.
For any i = 0, · · · ,m, let Ni be the following subset of (r + 1)-subsets of [r + 2m+ 1]:

Ni :=

{b1, . . . , br+1}

∣∣∣∣∣∣
{b1, . . . , br−2} ∈

(
[r+2i−2]

r−2

)
br−1 = r + 2i− 1, br = r + 2i
br+1 ∈ {r + 2i+ 1, . . . , r + 2m+ 1}

 .

Claim 4.2. The set
m⋃
i=0

Ni is a (r + 2m+ 1, r + 1, r)-covering.

Let b = {b1, . . . , br} ∈
(
[r+2m+1]

r

)
. If br−1 = r − 1 + 2i for some i = 0, · · · ,m, then b ⊂ B

for some B ∈ Ni. The same occurs if br−1 = r + 2i.

Claim 4.3. The graph G (Ni) is connected, for any i = 0, · · · ,m.

LetB = {b1, . . . , br+1} and C = {c1, . . . , cr+1} inNi. Clearly, B is adjacent to {b1, . . . , br, cr+1}
in G(Ni). Since br−1 = cr−1, br = cr and {d1, . . . , dr−2, cr−1, cr, cr+1} ∈ Ni for all
{d1, . . . , dr−2} ⊂ [r − 2 + 2i], then there exists a path from B to C.
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Claim 4.4. There exists a (r+ 1)-subset Ci such that G(Ni ∪Ci ∪Ni+1) is connected for
any i = 0, · · · ,m− 1.

Let Bi = {1, . . . , r− 2, r− 1 + 2i, r+ 2i, r+ 1 + 2i} ∈ Ni and Bi+1 = {1, . . . , r− 2, r+ 1 +
2i, r + 2 + 2i, r + 3 + 2i} ∈ Ni+1. Then, the (r + 1)-subset Ci = {1, . . . , r − 2, r + 2i, r +
1 + 2i, r + 2 + 2i} is adjacent to Bi and Bi+1 in G(Ni ∪ Ci ∪ Ni+1). This concludes the
proof of Claim 3.
By Claims 4.2, 4.3 and 4.4, we obtain that (

⋃m
i=0Ni)

⋃(⋃m−1
i=0 Ci

)
is a connected (r +

2m+1, r+1, r)-covering. Finally, since |Ni| =
(
r−2+2i
r−2

)
(2m+1−2i) for any i = 0, · · · ,m,

the theorem holds in this case.

Case 2. Suppose n − r is even and let m be such that n − r = 2m. We are going to
construct a (r + 2m, r + 1, r)-connected covering of size

m− 1 + C(r − 2 + 2m, r − 2)+
m−1∑
i=0

(
r − 2 + 2i

r − 2

)
(2m− 2i).

As already defined in Case 1, we consider the collection Ni of (r+ 1)-subsets of [r+ 2m]

defined by Ni :=
(
[r+2i−2]

r−2

)
× {r + 2i − 1} × {r + 2i} × {r + 2i + 1, . . . , r + 2m} for any

i = 0, · · · ,m−1. Let C be a (r+2m−2, r−1, r−2)-covering of size C(r+2m−2, r−2) and
consider the set Nm := {B ∪ {r + 2m− 1, r + 2m} | B ∈ C}. Then, one can check that
m⋃
i=0

Ni is a (r + 2m, r + 1, r)-covering. Similarly as in the proofs of Claims 4.3 and 4.4, it

follows that G(Ni) is connected for any i = 0, · · · ,m− 1 and there exists a (r+ 1)-subset
Ci such that G(Ni ∪ Ci ∪Ni+1) is connected for any i = 0, · · · ,m− 2.

Claim 4.5. . For any B ∈ Nm, there exist i ∈ {0, . . . ,m − 1} and C ∈ Ni such that B
is adjacent to C in the graph G(Ni ∪Nm).

LetB = {b1, . . . , br−1, r+2m−1, r+2m} ∈ Nm. If br−1 = r+2i−1 for some i ∈ {0, . . . ,m−
1}, then {b1, . . . , br−2} ∈

(
[r+2i−2]

r−2

)
. Let C = {b1, . . . , br−2, r + 2i − 1, r + 2i, r + 2m},

by definition C ∈ Ni and moreover, since {b1, . . . , br−2, r + 2i − 1, r + 2m} ⊂ B and
{b1, . . . , br−2, r + 2i − 1, r + 2m} ⊂ C, we deduce that B and C are adjacent in the
graph G(Ni ∪ Nm). Either, if br−1 = r + 2i for some i ∈ {0, . . . ,m − 1}, we have

that {b1, . . . , br−2} ∈
(
[r+2i−1]

r−2

)
. We distinguish two cases on the value of br−2. First, if

br−2 < r+2i−1, then {b1, . . . , br−2} ∈
(
[r+2i−2]

r−2

)
. Consider now C = {b1, . . . , br−2, r+2i−

1, r+ 2i, r+ 2m}. As above, since {b1, . . . , br−2, r+ 2i, r+ 2m} ⊂ B and {b1, . . . , br−2, r+
2i, r + 2m} ⊂ C, we deduce that B and C are adjacent in the graph G(Ni ∪ Nm).
Finally, suppose that br−2 = r + 2i − 1 and let α ∈ [r + 2i − 2] \ {b1, . . . , br−3} and

C = {b1, . . . , br−3, r+ 2i− 1, r+ 2i, r+ 2m}∪ {α} ∈
(
[r+2m]
r+1

)
. Since {b1, . . . , br−3, r+ 2i−

1, r + 2i, r + 2m} ⊂ B and {b1, . . . , br−3, r + 2i− 1, r + 2i, r + 2m} ⊂ C, we deduce that
B and C are adjacent in the graph G(Ni ∪Nm). This concludes the proof of Claim 4.5.

Hence, (
⋃m

i=0Ni)
⋃

(
⋃m−2

i=0 Ci) is a connected (r + 2m, r + 1, r)-covering. Since |Ni| =(
r−2+2i
r−2

)
(2m − 2i) for any i = 0, . . . ,m − 1 and |Nm| = C(n − 2, r − 2), the theorem

holds. �

Let us illustrate the construction given in the above theorem.

Example 4.6. N(7, 4) = 10. We consider

N0 = {12345, 12346, 12347} and N1 = {12567, 13567, 14567, 23567, 24567, 34567}.
10



It can be checked that N0∪N1 is a (7, 5, 4)-covering and G(N0) and G(N1) are connected.
Now, by taking C0 = 12456, it follows that G(N0 ∪ C0 ∪N1) is connected.

We may now show that S(n, r) > N(n, r). For this we need first the following Theorem
and Proposition.

Theorem 4.7. Let r and n be positive integers such that n > r + 1 > 3. Then,

S(n, r) = N(n, r) +

bn−r
2 c−1∑
i=0

(⌊
n− r

2

⌋
− i
)(

r − 2 + 2i

r − 3

)
+ δ0 (1− C(n− 2, r − 2)) ,

where δ0 is the parity function of n− r.
Proof. By induction on n > r. From (13) and (15), the identity is verified for n = r + 1
and n = r + 2. Suppose now that the identity is verified for a certain value of n and let
D be the difference

D := (S(n+ 2, r)− N(n+ 2, r))− (S(n, r)− N(n, r)) .

Then

S(n+ 2, r) = N(n+ 2, r) + (S(n, r)− N(n, r)) +D.

By using (13), we obtain

S(n+2, r)−S(n, r) =

bn−r+1
2 c+1∑
i=1

(
n+ 2− 2i

r − 1

)
+

⌊
n− r

2

⌋
+ 1−

bn−r+1
2 c∑

i=1

(
n− 2i

r − 1

)
−
⌊
n− r

2

⌋

=

(
n

r − 1

)
+ 1.

By using (15), we have

N(n+2, r)−N(n, r) =

dn−r
2 e∑

i=0

(n+ 2− r − 2i)

(
r − 2 + 2i

r − 2

)
+

⌈
n− r

2

⌉
+ δ0C(n, r − 2)

−
dn−r

2 e−1∑
i=0

(n− r − 2i)

(
r − 2 + 2i

r − 2

)
−
⌈
n− r

2

⌉
+ 1− δ0C(n− 2, r − 2)

=

dn−r
2 e−1∑
i=0

2

(
r − 2 + 2i

r − 2

)
+

(
n+ 2− r − 2

⌈
n− r

2

⌉)(
r − 2 + 2

⌈
n−r
2

⌉
r − 2

)
+δ0 (C(n, r − 2)− C(n− 2, r − 2)) + 1.

Moreover, for n− r odd, it follows that

N(n+ 2, r)− N(n, r) =

dn−r
2 e∑

i=0

2

(
r − 2 + 2i

r − 2

)
+ (δ0 − 1)

(
n− 1

r − 2

)
+δ0 (C(n, r − 2)− C(n− 2, r − 2)) + 1.
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Therefore

D =

(
n

r − 1

)
−
dn−r

2 e∑
i=0

2

(
r − 2 + 2i

r − 2

)
+(1−δ0)

(
n− 1

r − 2

)
+δ0 (C(n− 2, r − 2)− C(n, r − 2)) .

From the identity
(
r−2+2i
r−2

)
=
(
r−1+2i
r−2

)
−
(
r−2+2i
r−3

)
, we obtain that

dn−r
2 e∑

i=0

2

(
r − 2 + 2i

r − 2

)
=

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 2

)
+

dn−r
2 e∑

i=0

(
r − 1 + 2i

r − 2

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)

=

r−1+2dn−r
2 e∑

i=r−2

(
i

r − 2

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)

=

(
r + 2

⌈
n−r
2

⌉
r − 1

)
−
dn−r

2 e∑
i=0

(
r − 2 + 2i

r − 3

)
.

Thus,

D =

(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
+

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 3

)
+δ0 (C(n− 2, r − 2)− C(n, r − 2)) .

If n− r is even, then δ0 = 1 and(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
=

(
n

r − 1

)
−
(

n

r − 1

)
= 0.

Either, if n− r is odd, then δ0 = 0 and(
n

r − 1

)
−
(
r + 2

⌈
n−r
2

⌉
r − 1

)
+ (1− δ0)

(
n− 1

r − 2

)
=

(
n

r − 1

)
−
(
n+ 1

r − 1

)
+

(
n− 1

r − 2

)

= −
(

n

r − 2

)
+

(
n− 1

r − 2

)

= −
(
n− 1

r − 3

)
.

It follows that

D =

dn−r
2 e∑

i=0

(
r − 2 + 2i

r − 3

)
+ (δ0 − 1)

(
n− 1

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2))

=

bn−r
2 c∑

i=0

(
r − 2 + 2i

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2)) .
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Now, with the induction hypothesis, we obtain

S(n+2, r)−N(n+2, r) = (S(n, r)− N(n, r)) +D

=

bn−r
2 c−1∑
i=0

(⌊
n− r

2

⌋
− i
)(

r − 2 + 2i

r − 3

)
+ δ0 (1− C(n− 2, r − 2))

+

bn−r
2 c∑

i=0

(
r − 2 + 2i

r − 3

)
+ δ0 (C(n− 2, r − 2)− C(n, r − 2))

=

bn−r
2 c∑

i=0

(⌊
n− r

2

⌋
+ 1− i

)(
r − 2 + 2i

r − 3

)
+ δ0 (1− C(n, r − 2)) .

�

Theorem 4.8. Let r and n be positive integers such that n−r is an even number. Then,

S(n, r) > N(n, r) +

n−r
2
−2∑

i=0

(
n− r

2
− i− 1

)(
r − 2 + 2i

r − 3

)
.

Proof. It is known [5, page 7] that C(n, r) 6
(
n−2
r−1

)
+C(n−2, r). By applying this inequality

repeatedly we have

C(n− 2, r − 2) 6

n−r
2
−1∑

i=0

(
r − 2 + 2i

r − 3

)
+ 1.

Then, we deduce from Theorem 4.7 that

S(n, r) = N(n, r) +

n−r
2
−1∑

i=0

(
n− r

2
− i
)(

r − 2 + 2i

r − 3

)
+ 1− C(n− 2, r − 2)

> N(n, r) +

n−r
2
−1∑

i=0

(
n− r

2
− i
)(

r − 2 + 2i

r − 3

)
−

n−r
2
−1∑

i=0

(
r − 2 + 2i

r − 3

)

= N(n, r) +

n−r
2
−2∑

i=0

(
n− r

2
− i− 1

)(
r − 2 + 2i

r − 3

)
.

�

5. Asymptotics

In [15] Rödl uses the probabilistic method to show the existence of asymptotically good
coverings. Restricted to our case this means that

C(n, r)(
n
r

) → 1

r + 1
as n→∞.
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Since CC(n, r) 6 2C(n, r) (see [2]) we immediately obtain:

CC(n, r)(
n
r

) → a 6
2

r + 1
as n→∞.

In [2] it was shown that

S(n, r)(
n
r

) → 1

2
as n→∞

and since by Theorem 4.8 the difference N(n, r)− S(n, r) is in O(nr−1) we have the same
asymptotic behavior for N(n, r).
It is however still a topic of research to find explicit constructions witnessing the bound
of Rödl, see [11].

Acknowledgments. Much of this work in particular for the construction of the connected
covering designs in Figures 1, 3, 4 strongly benefited from the La Jolla Covering Reposi-
tory (http://www.ccrwest.org/cover.html) maintained by Dan Gordon.
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