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Abstract

We study the minimum size f of a feedback vertex set in directed and undirected n-vertex graphs of given
degeneracy or treewidth. In the undirected setting the bound k−1

k+1
n is known to be tight for graphs with bounded

treewidth k or bounded odd degeneracy k. We show that neither of the easy upper and lower bounds k−1
k+1

n and
k

k+2
n can be exact for the case of even degeneracy. More precisely, for even degeneracy k we prove that f < k

k+2
n

and for every ε > 0, there exists a k-degenerate graph for which f ≥ 3k−2
3k+4

n− ε.

For directed graphs of bounded degeneracy k, we prove that f ≤ k−1
k+1

n and that this inequality is strict when k

is odd. For directed graphs of bounded treewidth k ≥ 2, we show that f ≤ k
k+3

n and for every ε > 0, there exists

a k-degenerate graph for which f ≥ k−2blog2(k)c
k+1

n− ε. Further, we provide several constructions of low degeneracy
or treewidth and large f .

1 Introduction

We consider only simple graphs and oriented directed graphs, i.e, our graphs do not have loops or multiple edges or
arcs, not even anti-parallel arcs. A set F ⊆ V of vertices of a (directed) graph, is a feedback vertex set if deleting F
results in a (directed) graph without (directed) cycles. The complement of a feedback vertex set is called acyclic set,
and some results in the literature are formulated in terms of acyclic sets. Deciding whether a graph has a feedback
vertex set of a given size is among the 21 original NP-complete problems of Karp [7]. Thus finding the minimum
size of a feedback vertex set or equivalently, the largest acyclic set, is a challenging algorithmic problem and was
extensively studied in the literature.

Because of its hardness, a natural class to study the minimum size of a feedback vertex set are sparse (directed)
graphs. A particular example are planar graphs. The size of a minimum feedback vertex set in a planar graph is
(famously) conjectured to be at most half the vertices by Albertson and Berman [1]. Up to date the best-known
upper bound is 3

5n achieved through acyclic colorings with Borodin’s result [2]. The size of a minimum feedback
vertex set in planar directed graphs has also been studied by several authors. Using results of Esperet, Lemoine
and Maffray [5] and Li and Mohar [10] one can infer different upper bounds depending on the length of a shortest
directed cycle. However, a question of Albertson [12, 18] asking whether any planar directed graphs has a feedback
vertex set on at most half its vertices, remains open. Note that this latter question is a weakening of the undirected
setting as well as of famous Neumann-Lara conjecture [14]. Further, it is known that if true this bound is best-
possible [8]. Moreover, it is noteworthy that the best known upper bound coincides with the above mentioned 3

5n
from the undirected setting [2].

Another class that has received attention in the directed setting are tournaments. Already Stearns [17] and Erdős
and Moser [4] have shown that any tournament on n vertices admits a feedback vertex set of size n− blog2(n)c − 1,
while there are tournaments where no feedback vertex set on less than n−2blog2(n)c−1 vertices exists. More precise
bounds for small values of n have been obtained by Sanchez-Flores [15, 16] and recently more work has been done
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into that direction by Neiman, Mackey and Heule [13] and by Lidický and Pfender [11]. Improving the asymptotic
upper and lower bounds remains an open problem.

In this paper we focus on the class of (directed) graphs of bounded treewidth or degeneracy. Here, the treewidth
or degeneracy of a directed graph is simply the treewidth or degeneracy of its underlying undirected graph. Recall
that every graph of treewidth k also has degeneracy k. In the undirected setting, the minimum feedback vertex set
of graphs of bounded treewidth has been determined by Fertin, Godard and Raspaud [6]: for a graph of order n,
treewidth k, the size of a minimum feedback vertex set is at most k−1

k+1n and this bound is best-possible. Moreover, for
odd degeneracy k it is easy to achieve the same upper bound, see Proposition 12. However, for even degeneracy the
same argument only yields an upper bound of k

k+2n, and a lower bound of k−1
k+1n. Indeed, in [3] Borowiecki, Drgas-

Burchardt, and Sidorowicz show that the true value for k = 2 is 2
5n which lies strictly between the above bounds.

Our main contribution here is to construct for any even k a family of graphs of degeneracy k, whose members of large
order n have minimum feedback vertex sets whose size comes arbitrarily close to 3k−2

3k+4n (see Theorem 14). On the
other hand we know that there exists no graph of order n and even degeneracy k whose minimum feedback vertex
set is of size k

k+2n, see Proposition 15.
In the directed setting to our knowledge, apart from the above mentioned results in planar digraph and tourna-

ments no classes of given degeneracy or treewidth have been studied previously. We give an upper bound for the
smallest feedback vertex sets of n-vertex graphs of degeneracy k, namely k−1

k+1n (Theorem 17), which is for k = 2 and

k = 3 yields tight bounds 1
3n and 1

2n, respectively. For k = 2, the directed triangle is a simple example reaching
the upper bound and for k = 3, the construction from [8] yields 1

2n for degeneracy 3. Unlike the undirected setting,
we know that there exists no graph of order n and odd degeneracy k whose minimum feedback vertex set is of size
k−1
k+1n (see Proposition 18). We present constructions for digraphs with large minimum feedback vertex set and given
small degeneracy (resp. treewidth) in Table 1 (resp. Table 2), that improve on the bounds obtained from using just
tournaments from [13, 15, 16]. For general treewidth, taking disjoint unions of the tournaments of [4] on can find

n-vertex digraphs of treewidth k and f ≥ k−2blog2(k+1)c
k+1 n. However, in Theorem 25 we show that on general directed

graphs of treewidth k one can force slightly larger minimum feedback vertex sets. On the other hand, in Theorem 23
we show that every n-vertex digraph of treewidth k has a feedback vertex set of size at most k

k+3n.
Many of our constructions are based on two general ideas, that can be applied in the directed and undirected

setting alike and may be of independent interest. See Propositions 8 and 9.

2 Preliminaries

Definitions and notations: Let G = (V,E) be a (directed) graph. For a vertex u ∈ V , let NG(u) be the set of
vertices (neighbors) adjacent to u. Let N−G (u) (resp. N+

G (u)) be the set of in-neighbors (resp. out-neighbors) of u
when G is directed. We denote by NG[u] := N(u) ∪ {u} the closed neighborhood of u. The closed neighborhood of
a set of vertices S ⊆ V is NG[S] =

⋃
{v∈S}NG[v]. We define the neighborhood NG(S) of S as NG(S) = NG[S] \ S.

We define the degree dG(u) := |NG(u)|, the in-degree d−G(u) := |N−G (u)|, and out-degree d+G(u) := |N+
G (u)|. We

denote δ(G) := min{dG(v)|v ∈ V } the minimum degree of G. We also define the minimum in-degree δ−(G) and
out-degree δ+(G) of G similarly. We will drop the subscript G when the graph is clear from the context. A k-vertex
(resp. k−-vertex, k+-vertex) is a vertex of degree k (resp. at most k, at least k). A set S of vertices form a clique
when every two distinct vertices of S are adjacent. For every set S ⊆ V , we denote by G− S the graph G where we
removed the vertices of S along with their incident edges. We denote the set of integers {i, i+ 1, . . . , j} by [i; j] and
we simplify this notation to [j] when i = 1.

Definition 1 (k-elimination ordering). Let G = (V,E) be a graph, and φ : V ↪→ [|V |] be an ordering of V . We say
that u precedes v in φ if and only if φ(u) < φ(v). For every vertex v, we define dp(v) = |{u ∈ V | φ(u) < φ(v), uv ∈
E(G)}| and ds(v) = |{w ∈ V |φ(v) < φ(w), vw ∈ E(G)}|. We say that φ is a k-elimination ordering of V if dp(v) ≤ k
for all v ∈ V . We call a k-elimination ordering chordal if {u ∈ V | φ(u) < φ(v), uv ∈ E(G)} is a clique for every
v ∈ V .

We visualize an elimination ordering often as ordering the vertices from left to right, and eliminating them from
right to left.

Definition 2. Let G be a (undirected) graph:

• G is k-degenerate if and only if G has a k-elimination ordering.
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• G is a maximal k-degenerate graph if and only if G has a k-elimination ordering where dp(v) = min(k, φ(v)−1)
for every v ∈ V (G).

• G is chordal if and only if G has a chordal k-elimination ordering.

• G is a k-tree if and only if G has a chordal k-elimination ordering where dp(v) = min(k, φ(v) − 1) for every
v ∈ V (G).

• G has treewidth k if and only if G is a subgraph of a k-tree.

Observation 3. Let G be a (undirected) graph:

• For every v ∈ V (G), d(v) = dp(v) + ds(v) for every ordering φ.

• If G is a k-degenerate graph, then every subgraph of G is a k-degenerate graph.

• If G is a k-tree, then G is a maximal k-degenerate graph.

• If G is a k-tree and u is a k-vertex, then G− {u} is a k-tree.

Given a graph G we denote by deg(G) the degeneracy of G and by tw(G) its treewidth. If D is a directed graph,
then deg(D) and tw(D) are the degeneracy and the treewidth of the underlying undirected graph D, respectively.

We denote by n(G) (or simply n when there is no ambiguity) the number of vertices of a graph G. We denote
by f(G) (or simply f when there is no ambiguity) the minimum size of a feedback vertex set in a (directed) graph
G. Clearly, f(D) ≤ f(D) for any directed graph D. We recall below the best known results on acyclic sets in
tournaments.

Theorem 4 ([13, 16]). Denote by a(n) the minimum size of a maximum acyclic set among all tournaments (or
equivalently all digraphs) on n vertices. Then:

• a(n) = 3 for 4 ≤ n ≤ 7,

• a(n) = 4 for 8 ≤ n ≤ 13,

• a(n) = 5 for 14 ≤ n ≤ 27,

• a(n) = 6 for 28 ≤ n ≤ 34,

• 6 ≤ a(n) ≤ 7 for 34 ≤ n ≤ 46,

• a(n) = 7 for n = 47.

Theorem 5 ([4]). There exists a tournament on n vertices where every acyclic subset has size at most 2blog(n)c+1.

These results for acyclic sets translate directly to lower bounds on minimum feedback vertex sets of graphs with
bounded treewidth as tournaments of size k + 1 are k-trees.

Corollary 6 ([13, 16]). For all tournaments on k + 1 vertices (of treewidth k), there exists a feedback vertex set of
size at most fk where:

• fk = k − 2 for 3 ≤ k ≤ 6,

• fk = k − 3 for 7 ≤ k ≤ 12,

• fk = k − 4 for 13 ≤ k ≤ 26,

• fk = k − 5 for 27 ≤ k ≤ 33,

• fk ≤ k − 6 for k ≥ 34.

For every 3 ≤ k ≤ 33, there exists a tournament on k + 1 vertices for which the minimum feedback vertex set has
size exactly fk.

Corollary 7 ([4]). There exists a tournament on k + 1 vertices where every feedback vertex set has size at least
k − 2blog(k + 1)c.
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3 General constructions

Here we present two constructions that work for both directed and undirected graphs. They yield families of (directed)
graphs with a controllable degeneracy or treewidth and sometimes an interesting ratio f

n . In both constructions the
following definition is important: Given a (directed) graph G = (V,E), a set of vertices R ⊆ V is called bad if it is
not contained in any minimum feedback vertex set. Also, for a graph and a subset S ⊂ V a (chordal) k-elimination
ordering φ is called S-last if it satisfies φ(u) < φ(v) for all u ∈ S and v ∈ V \ S.

Proposition 8. Let D0 be a (directed) graph on k vertices, D1, . . . , Dk be (directed) graphs with minimum feedback
vertex sets of size f0, f1, . . . , fk, respectively and let Ri be a (nonempty) bad set of Di for all 0 ≤ i ≤ k. Let D be
the (directed) graph built as follows:

• replace vertex vi of D0 by Di, for 1 ≤ i ≤ k;

• for every arc (edge) vivj of D0 add to D all arcs (edges) going from vertices of Ri ⊆ Di towards vertices of
Rj ⊆ Dj.

Then D has order n1 + . . . + nk, minimum feedback vertex set of size at least f0 + f1 + . . . + fk. If Ri is minimal
(inclusion-wise) for 1 ≤ i ≤ k, then f(D) =

∑
0≤i≤k fi and R =

⋃
vi∈R0

Ri is a bad set of D.
Moreover, if R1, . . . , Rk cliques of size at most c, D1, . . . , Dk are chordal, have treewidth at most t, and D0 has

treewidth at most t0, then D has treewidth at most max(t, (c+ 1)t0 − 1).

R1 R2

R3

D1 D2

D3

Figure 1: The construction of D in Proposition 8 where D0 is a directed triangle.

Proof. Clearly, D has order n1 + . . .+ nk. Let F be an optimal feedback vertex set of D and let Fi = F ∩ V (Di) for
i ∈ [k]. Suppose (after relabeling) that |Fi| = fi for i ≤ ` ≤ k and |Fi| > fi otherwise. Since we glued on bad sets
Ri, the (di)graph D − F has an induced acyclic sub(di)graph isomorphic to an `-vertex acyclic sub(di)graph of D0.
A maximum acyclic set in D0 has size at most k − f0 by definition of f0. So, we have ` ≤ k − f0. Finally, we get
f(D) =

∑
i∈[k] |Fi| ≥

∑
i∈[k] fi + k − ` ≥

∑
i∈[k] fi + k − (k − f0) = f0 + f1 + · · ·+ fk.

We claim that f(D) =
∑

0≤i≤k fi if Ri is minimal (inclusion-wise) for 1 ≤ i ≤ k. Indeed, for each i, there exists
an optimal feedback vertex set F ′i of Di such that |Ri\F ′i | = 1 by minimality of Ri. So,

⋃
1≤i≤k(Ri\F ′i ) is isomorphic

to D0 and has a feedback vertex set F ′0 of size f0. Therefore, F ′ =
⋃

0≤i≤k F
′
0 is a feedback vertex set of D of size∑

0≤i≤k fi.
Observe that, if F is a feedback vertex set of D, then F0 = {vi ∈ V (D0) : Ri ⊂ F} is a feedback vertex set of D0.

Moreover, |F | ≥ |F0|+ f1 + · · ·+ fk. As a result, if R0 is a bad set of D0 and a feedback vertex set F of D contains⋃
{i:vi∈R0}Ri, then F0 is not a minimum feedback vertex set and |F0| > f0. This yields |F | > f0+f1+· · ·+fk = f(D)

when Ri is minimal for 1 ≤ i ≤ k. Hence,
⋃
{i:vi∈R0}Ri is a bad set of D.

The bound on the treewidth comes simply from eliminating in each graph Di all vertices different from Ri first.
Afterwards, we are left with the graph obtained from D by replacing each vertex vi by a clique of size Ri. It is
straight-forward to check that its treewidth is at most ct0+(c−1), where t0 = tw(D0) and c = max{|Ri| | i ∈ [k]}.
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For the next construction we consider a triple (D,R, r′) of a (directed) graph D = (V,A), with a bad set R ⊆ V
and a vertex r′ ∈ V \ R. Denote by Dr′×|R| = (V ′, A) the (directed) graph obtained from D by replacing r′ by
a stable set S of size |R| each of whose vertices is connected to D the same way as r′. The right-left-degeneracy
degRL(D,R, r′) of (D,R, r′) is the minimum k such that Dr′×|R| has a S-last k-elimination ordering.

If D is chordal and R is a clique, denote by D′r′×|R| = (V ′, A) the (directed) graph obtained from D by replacing

r′ by a clique S (oriented arbitrarily) of size |R| each of whose vertices is connected to D the same way as r′, then
the D′r′×|R| has an N [S]-last chordal k-elimination ordering.

Proposition 9. Let (D,R, r′) be a building block such, such that D has n vertices, minimum feedback vertex set of
size f , and R is bad. Then there is a family (Di)i∈N of (directed) graphs such that:

• n(Di) = n+ i(n− 1),

• f(Di) ≥ f + if (with equality when R is minimal inclusion-wise),

• deg(Di) ≤ degRL(D,R, r′),

r′

D

r′
R

D

R

Di−1

Ri−1

Figure 2: The construction of Di from Di−1 and D in Proposition 9.

Proof. The first member of the family is D0 = D. We will construct Di by gluing a copy of D to Di−1 in a special
way. We call Ri−1 the set of vertices corresponding to the vertices of R in the last copy of D in Di−1. Formally, the
graph Di is built from Di−1 as follows:

1. Take Di−1 and a copy of D, and r′ ∈ V (D) as in the statement of the lemma,

2. add an arc from (r, v) (resp. (v, r)) for all r ∈ Ri−1 ⊆ V (Di−1) and v ∈ V (D) if (r′, v) ∈ A(D) (resp.
(v, r′) ∈ A(D))

3. Delete r′ ∈ V (D) from the newly created graph.

See Figure 2 for an illustration.
Using the induction hypothesis we have n(Di) = n(Di−1) + (n− 1) = n+ (i− 1)(n− 1) + (n− 1) = n+ i(n− 1).
Now, suppose that F is a minimum feedback vertex set of Di. Let F ′ = F ∩Di−1 and F ′′ = F \F ′. Observe that

F ′ must be a feedback vertex set of Di−1. If |F ′| = f(Di−1), then, since Ri−1 is a bad set of Di−1, there is a vertex r ∈
Ri−1\F ′. We denote by (D−{r′})∪{r} the copy of D where we removed r′ and added r with all of the corresponding
arcs as in the second item from the description above. So, F ′′ must be a feedback vertex set of (D−{r′})∪{r} which
is isomorphic to D and |F ′′| ≥ f . Thus, |F | = |F ′|+|F ′′| ≥ f(Di−1)+f = f+(i−1)f+f = f+if . If |F ′| > f(Di−1),
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then F ′′ is a feedback vertex set of D−{r′} and |F ′′| ≥ f−1. Thus, |F | = |F ′|+ |F ′′| ≥ f(Di−1)+1+f−1 = f+ if .
Finally, note that if the bad set R of D is contained in F ′′, then |F ′′| > f and F cannot be optimal. Thus, Ri = R
is a bad set for Di.

When R is minimal (inclusion-wise), then taking a minimum feedback vertex set F ′ (of size f(Di−1)) of Di−1
and a minimum feedback vertex set F ′′ (of size f) disjoint from F ′ of (D − {r′}) ∪ {r} where r is the unique vertex
in R \ F ′ results in F = F ′ ∪ F ′′, a feedback vertex set of size f(Di−1) + f = f + if of Di.

Let k = degRL(D,R, r′). Since Dr′×|R| has a S-last k-elimination ordering, where Dr′×|R| = (V ′, A) is the
(directed) graph obtained from D by replacing r′ by a stable set S of size |R| each of whose vertices is connected
to D the same way as r′. This means that in Di we can eliminate the vertices from right to left, i.e, starting with
the vertices of last added copy D − {r′}. The fact that every neighbor of r′ in D now instead has |R| neighbors in
Di−1 is accounted by replacing r′ by a stable set S of size |R| in Dr′×|R|. After eliminating D− {r′}, we iterate the
argument with Di−1.

The same argument, works for the claim on the treewidth. The fact that R is a clique of D, is propagated
through the construction, i.e., Ri−1 is a clique of Di−1. Now, if we have the chordal N [S]-last k-elimination ordering
of D′r′×|R|, this yields a k-chordal elimination ordering of Di, where we start with D − {r′}. In particular, since

the ordering is N [S]-last and S is a clique that is contained in the neighborhood of all v ∈ N [S] we can assume,
that an optimal N [S]-last elimination ordering first removes N [S] \ S and then S. This allows to create the chordal
elimination ordering for Di.

This construction with R an edge and D being a directed triangle led to the examples in [8].

Observation 10. By Proposition 9, if we have a building block (D,R, r′) with right-left-degeneracy k = degRL(D,R, r′),

then we obtain directly the lower bound f ≥ f(D)
n(D)−1 for the class of graphs of degeneracy k.

4 Undirected graphs

In this section we only consider undirected graphs. We begin by giving the known and the easy results in a bit more
detail. The acyclic chromatic number of a graph G is the smallest ` such that G has a proper `-coloring such that
every cycle has at least 3 colors. In [6] it is shown that the acyclic chromatic number of a graph of treewidth k is at
most k + 1, and this is used to show that:

Proposition 11 ([6]). Let G be a graph of treewidth k. Then f(G) ≤ k−1
k+1n(G). Moreover, for every k there are

graphs of treewidth k with f(G) = k−1
k+1n(G).

Thus, the case of bounded treewidth is solved for undirected graphs. However, in [9] it is shown that the acyclic
chromatic number is unbounded on the class of graphs of bounded degeneracy. Hence, the strategy of [6] cannot
work on this larger class. However, the same upper bound as in Proposition 11 is tight for odd degeneracy:

Proposition 12. Let G be a graph of degeneracy k. Then f(G) ≤ k−1
k+1n(G) if k is odd and f(G) ≤ k

k+2n(G) if k is
even.

Proof. Along a k-elimination ordering φ of G one can inductively construct a coloring of V into dk+1
2 e induced forests.

Indeed, remove the right-most vertex v in the ordering, color by induction, re-introduce v. Since dp(v) ≤ k, one color
c is used at most once in the neighborhood of v, and v can be coloured c to extend the forest of color c. Now, the
union of any dk+1

2 e − 1 of the constructed forests is a feedback vertex set. Distinguishing the parity of k, we get the
claimed upper bounds.

So, the remainder of this section is about the highest ratio of minimum feedback vertex set and order on graphs
of even degeneracy k. From Propositions 11 and 12 we know that this value lies between k−1

k+1 and k
k+2 .

A reason to believe that none of both bounds is tight, is the case k = 2. It is shown in [3] that any graph G
of degeneracy 2 has f(G) ≤ 2

5n(G) and there are infinitely many 2-degenerate graphs attaining this bound. The

following presents a first construction showing, that the lower bound of k−1
k+1 is not tight. Note that for k = 2, the

construction coincides with the 2-degenerate graph given in [3].

Proposition 13. For every even k ≥ 2 there is a graph G with deg(G) ≤ k, n(G) = (k+2)k
2 + 1 and f(G) = k2

2 .
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Kk+1 K2k+1 K2k+1 K2k+1

K k
2+1

Kk+1 Kk+1 Kk+1

Figure 3: Constructing graphs of even degeneracy k, order (k+2)k
2 + 1, and minimum feedback vertex set k2

2 .

Proof. See Figure 3 for a construction of G. We take ` = k
2 disjoint copies of complete graph Kk+1 on vertex set

[k + 1] × [`], and one K`+1 on vertex set [` + 1]. Add all edges from [k] × [i] to i for all i ∈ [`] – these are the grey
edges in Figure 3. Further, add all edges from (k + 1, i) to j for all 1 ≤ i < j ≤ ` + 1 – these are the blue edges in
Figure 3.

First, note that n(G) = `(k+1)+`+1 = (k+2)k
2 +1. Second, let us show that one cannot build an optimal feedback

vertex set of G by choosing an optimal feedback vertex set in each of the cliques. Indeed, note that for any edge
ij ∈ K`+1 there is one of the (k+ 1)-cliques that is entirely contained in N({i, j}). Thus, if we are optimum in K`+1,
then an edge ij still remains after removing a feedback vertex. But then, if also an edge remains in the (k+ 1)-clique
contained in N({i, j}), the remaining graph contains a C3 or a C4. Hence, we need at least one vertex more than

choosing an optimum feedback vertex set for each of the cliques. This yields that f(G) ≥ `(k− 1) + (`− 1) + 1 = k2

2

as ` = k
2 .

Third, let us prove deg(G) ≤ k. Note that vertex `+ 1 has ` neighbors in its clique and one neighbor in each of
the ` cliques of order k + 1. We thus can remove `+ 1. Now, the vertex (k + 1, `) has degree k and can be removed.
Now, all remaining vertices of [k + 1]× {`} have degree k and can be removed one after the other. Now, we remove
vertex ` and continue similarly to remove all vertices.

We now present a construction, that for large enough n improves on the one from Proposition 13.

Theorem 14. For every even k there exists a family of k-degenerate graphs (Gi)i∈N such that n(Gi) = 3k+6
2 + i 3k+4

2

and f(Gi) = 3k−2
2 + i 3k−22 .

R

Kk+1

r′

K k
2
+2

k
2
vertices

k
2
+ 1 vertices

Figure 4: Graph G0 of even degeneracy k, order 3k+6
2 , and minimum feedback vertex set 3k−2

2 .

Proof. See Figure 4 for a construction of G0. We take two disjoint complete graphs: Kk+1 and K k
2+2 on vertex set

[ 3k+6
2 ]. Let [k+ 1] be the vertex set of the first clique and [k+ 2; 3k+6

2 ] be the vertex set of the second. Add all edges

from [k+2
2 ] to k+ 2 and from [k+4

2 ; k+ 1] to k+ 3. Since G0 can be partitioned into two disjoint cliques, a minimum
feedback vertex set of G0 must contain two disjoint optimal feedback vertex sets, one for each clique: the first F ′ of
size k − 1 for Kk+1 and the second F ′′ of size k

2 for K k
2+2. Thus, f(G0) ≥ k − 1 + k

2 = 3k−2
2 . Observe that, if F ′′
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contains k + 2 (resp. k + 3) and F ′ contains all of the neighbors of k + 3 (resp. k + 2), then F ′ ∪ F ′′ is a minimum
feedback vertex set of G0, so f(G0) = 3k−2

2 .

Let R = [k + 4; 3k+6
2 ] and observe that R is bad. Indeed, R does not contain k + 2 nor k + 3, R is contained in

the clique of order k
2 + 2 and |R| = k

2 . Similar to the construction in Figure 3, N({k + 2, k + 3}) contains the whole
clique of order k + 1 so an optimal feedback vertex set for Kk+1 of size k − 1 would leave a triangle or a 4-cycle
behind. Thus, a feedback vertex set of G0 containing R would have size at least k

2 + k − 1 + 1 = 3k
2 > f(G0).

As observed previously, a minimum feedback vertex set F ′′ of K k
2+2 that contains k + 2 or k + 3 along with a

corresponding minimum feedback vertex set F ′ of Kk+1 form a minimum feedback vertex set of G0. Therefore, for
every v ∈ R, the set F ′′ = (R \ {v}) ∪ {k + 2} has size k

2 and is such a minimum feedback vertex set. Thus, R is
minimal (inclusion-wise).

Let r′ = k+ 2 and apply Proposition 9 on the triplet (G0, R, r
′). We obtain a family of graphs (Gi)i∈N such that

n(Gi) = 3k+6
2 +i 3k+4

2 and f(Gi) = 3k−2
2 +i 3k−22 since R is minimal. Now, it suffices to prove that degRL(G0, R, r

′) ≤ k
to show that graphs of this family are k-degenerate. Consider the following elimination ordering of (G0)r′×|R| where
we replace r′ with a stable set S of size |R| where every vertex of S is connected to every vertex of N(r′):

• Start by removing vertices of R - each has degree k
2 + 1 + |R| − 1 = k

2 + 1 + k
2 − 1 = k.

• Then, remove k + 3 which now has degree k
2 + 1 + |R| − 1 = k.

• Afterwards, remove vertices of N(k + 3), each being of degree at most k at this step.

• Now, remove the vertices of N(S), each of them being of degree k at this step.

• Finally, remove the independent set S.

The above is an S-last k-elimination ordering of (G0)r′×|R|, which concludes our proof.

Theorem 14 shows that, for every ε > 0, there exists a k-degenerate graph on nε vertices for which f ≥ 3k−2
3k+4nε−ε.

We are not able to prove an asymptotically stronger upper bound than what is provided by Proposition 12. However,
we know that this bound cannot be attained with equality:

Proposition 15. Let G be a graph of even degeneracy k. Then f(G) < k
k+2n(G).

Proof. Suppose to the contrary that G with f(G) = k
k+2n(G) exists. Note that the graph G+ obtained from G by

adding an apex has odd degeneracy k + 1 and therefore by Proposition 12, we have f(G+)
n(G+) = f(G+)

n(G)+1 ≤
k
k+2 . This

implies f(G+) = f(G). Thus, in G there must be a minimum feedback vertex set F such that G+ − F has no cycle,
in other words every cycle involving the apex in G+ must intersect F . This means V (G− F ) is an independent set.
But then F was not minimum for G since G − (F \ {v}) is a star forest for any v ∈ F , i.e., F \ {v} is a smaller
feedback vertex set of G.

5 Directed graphs

In this section, we consider only directed graphs. The first part will be dedicated to the class of graphs with bounded
degeneracy k. We start by showing that a minimum feedback vertex set f of a directed graph of order n is at most
k−1
k+1n. Then we show some constructions with low degeneracy and high f

n ratio. In the second part, we concentrate
on the subclass of graphs with bounded treewidth k where the additional structure allows an improvement on the
upper bound of f to k

k+3n. We will also show a general construction that improves previously known lower bounds
for f for any value of k.

5.1 Degeneracy

We start with a simple property on maximal k-degenerate graphs.

Lemma 16. There are no two adjacent k-vertices in a maximal k-degenerate graph with at least k + 2 vertices.
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Proof. Suppose by contradiction that u and v are two adjacent k-vertices in G, a maximal k-degenerate graph with
at least k+ 2 vertices. Observe that, by definition, dp(v) = min(k, φ(v)− 1) for every v ∈ V (G) in any ordering of a
maximal k-degenerate graph, so the first k+ 1 vertices always form a clique. Moreover, for a k-vertex x ∈ V (G), we
can always take an ordering and move x to the last position to obtain another valid ordering.

Thus, we can assume w.l.o.g. that there exists φ a k-elimination ordering of G such that φ(u) < φ(v) and
φ(v) = |V (G)|. We have d(u) = dp(u) + ds(u) ≥ dp(u) + 1, so dp(u) ≤ k − 1. Since dp(u) = min(k, φ(u)− 1), we get
φ(u) ≤ k. So, u has k neighbors in the first k+ 1 vertices which form a clique. These neighbors are all different from
v since G has at least k + 2 vertices and v is the last vertex in φ. This is a contradiction as u is a k-vertex.

Theorem 17. Let D be a k-degenerate directed graph, we have f(D) ≤ k−1
k+1n(D).

Proof. Observe that we already have this bound for k odd from the undirected case (see Proposition 12). So, we
will prove Theorem 17 for k even. Suppose that D is a counter-example minimizing the number of vertices and
maximizing the number of edges. If n(D) ≤ k+1, then any set of vertices of size n(D)−2 (≤ k−1

k+1n(D)) is a feedback
vertex set of D. If n(D) ≥ k + 2, then D contains a k-vertex since it is edge-maximal.

First, we show that δ−(D) ≥ k
2 and δ+(D) ≥ k

2 . W.l.o.g. suppose by contradiction that there exists u for which

d−(u) ≤ k
2 − 1 since k is even. Let D′ = D− (N−(u)∪ {u}), we have f(D′) ≤ k−1

k+1n(D′) = k−1
k+1 (n(D)− (d−(u) + 1))

by minimality of D. Take an optimal feedback vertex set F of D′. Then F ∪ N−(u) is a feedback vertex set of D

while |F ∪N−(u)| = f(D′) + d−(u) ≤ k−1
k+1 (n(D)− (d−(u) + 1)) + d−(u) = k−1

k+1n(D) + −(k−1)(d−(u)+1)+(k+1)d−(u)
k+1 =

k−1
k+1n(D) + 2d−(u)+1−k

k+1 . As 2d−(u)+1−k
k+1 < 0 (since d−(u) ≤ k

2 − 1), we know that |F ∪ N−(u)| < k−1
k+1n(D), which

is a contradiction. As a result, for every k-vertex u, we have k = d−(u) + d+(u) ≥ δ−(D) + δ+(D) ≥ k. Therefore,
d−(u) = d+(u) = k

2 .
Now, we proceed as follows:
Case 1: D contains two k-vertices sharing at least one neighbor. Let u and v be the two k-vertices and w be

adjacent to u and v. If w ∈ N−(u) (resp. N+(u)), then we remove N−(u) (resp. N+(u)) from D. We do the
same if w ∈ N−(v) (resp. N+(v)), we also remove u and v from D and call the resulting graph D′. Since N−(u),
N+(u), N−(v), and N+(v) all have size k

2 , we have n(D′) ≥ n(D)− 2 · k2 + 1− 2 = n(D)− (k+ 1). Take an optimal
feedback vertex set F ′ of D′ to which we add every vertex removed from D except for u and v. We call the resulting
set F . The set F is a feedback vertex set of D as each of u and v has become a source or a sink in D − F and
|F | = f(D′)+n(D)−n(D′)−2 ≤ k−1

k+1n(D′)+n(D)−n(D′)−2 = n(D)− 2
k+1n(D′)−2. Since n(D′) ≥ n(D)−(k+1),

we get |F | ≤ n(D)− 2
k+1n(D′)− 2 ≤ k−1

k+1n(D), which is a contradiction.

Case 2: D contains a k-vertex adjacent to a (k + 1)−-vertex. Let u be the k-vertex and v be its (k + 1)−-
neighbor. Observe that since D is edge-maximal, v must be a (k + 1)-vertex by Lemma 16. W.l.o.g. we assume
that the arc between u and v is (v, u). Since δ−(D) ≥ k

2 , δ+(D) ≥ k
2 , and d(v) = k + 1, we must have either

d−(v) = k
2 or d+(v) = k

2 . If d−(v) = k
2 (resp. d+(v) = k

2 ), then let D′ = D − (N−(v) ∪ N−(u) ∪ {u}) (resp.

D′ = D − (N+(v) ∪N+(u) ∪ {v})). We have n(D′) ≥ n(D)− 2 · k2 − 1 = n(D)− (k + 1). Take an optimal feedback
vertex set F ′ of D′ to which we add every vertex removed from D except for u and v. The resulting set F is a
feedback vertex set of D since the arcs between {u, v} and the rest of D − F form a directed cut. Moreover, the
same calculations as in Case 1 yield |F | ≤ k−1

k+1n(D), which is a contradiction.
Since by Lemma 16, no two k-vertices in D are adjacent, this covers all cases. Indeed, otherwise after removing all

k-vertices from D, we obtain a graph with minimum degree at least k+ 1, contradicting that D is k-degenerate.

The bound in Theorem 17 is tight for k = 2 e.g. a directed triangle. However, for greater values of k, we show
that this bound is never reached when k is odd.

Proposition 18. Let D be a directed graph of odd degeneracy k ≥ 3, we have f(D) < k−1
k+1n(D).

Proof. Take a counter-example D to Proposition 18 minimizing the number of vertices and maximizing the number
of edges. In other words, we have an odd integer k such that D is k-degenerate and f(D) ≥ k−1

k+1n(D). Observe that

n(D) ≥ k+ 1, as otherwise for any set of vertices of size n(D)− 2 (< k−1
k+1n(D) as n(D) < k+ 1) is a feedback vertex

set of D.
Since D is an edge-maximal k-degenerate graph of order at least k+1, there exists a vertex u of degree k. Consider

the integer l = k−1
2 . W.l.o.g. we can assume that d−(u) ≤ d+(u). Since d−(u) + d+(u) = k = 2l + 1, we have

d−(u) ≤ l. Let D′ = D−(N−(u)∪{u}), we have f(D′) < k−1
k+1n(D′) = l

l+1n(D′) by minimality of D. Take an optimal
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feedback vertex set F of D′. Then, F ∪N−(u) is a feedback vertex set of D while |F ∪N−(u)| = f(D′) + d−(u) <
l
l+1n(D′) + d−(u) = l

l+1 (n(D)− (d−(u) + 1)) + d−(u) = l
l+1n(D) + −l(d−(u)+1)+(l+1)d−(u)

l+1 = l
l+1n(D) + d−(u)−l

l+1 . As
d−(u)−l
l+1 ≤ 0 (since d−(u) ≤ l), we get |F ∪N−(u)| < f(D), which is a contradiction.

Proposition 18 is optimal for k = 3 since the construction from [8] shows that for every n, there exists a 3-
degenerate graph with a feedback vertex set of size at least bn−12 c.

In the following table, we present some constructions, most of which use Proposition 9 to obtain good ratios for
the minimum feedback vertex sets over number of vertices for graphs with low degeneracy.

degeneracy building blocks for the lower bound using Proposition 9 lower bound upper bound (Theorem 17)

3 directed triangle on 1, 2, 3, R = {1, 2}, r′ = 3 (as in [8]) 1
3 −→

1
2

1
2

4 Figure 5a, R = {0, 1}, r′ = 2 5
10 −→

5
9

3
5

5 Figure 5b, R = {0, 1, 6}, r′ = 7 4
8 −→

4
7

2
3

6 Figure 5c, R = {1, 6, 8}, r′ = 10 7
12 −→

7
11

5
7

8 Figure 5d, R = {6, 7, 8}, r′ = 0 6
10 −→

6
9

7
9

11 Figure 5e, R = {0, 1, 4, 8}, r′ = 2 7
11 −→

7
10

5
6

Table 1: Lower and upper bounds for largest ratio f
n in digraphs with low degeneracy.

5.2 Treewidth

Before showing the upper bound in Theorem 23, we give some simple lemmas and observations. First, by Theorem 4,
we know that

Observation 19. Any set of four vertices of a directed graph contains an acyclic subset of size 3.

Lemma 20. If G is a k-tree with at least k + 4 vertices, then there are no two adjacent (k + 1)-vertices such that
each of them is adjacent to a k−-vertex.

Proof. Suppose there exist two such vertices v and w and call their respective k−-neighbors v′ and w′. Observe that
G − {v′, w′} is a k-tree with at least k + 2 vertices and two adjacent k−-vertices v and w, which is a contradiction
due to Lemma 16.

Lemma 21. In a k-degenerate graph G there exists an integer l ≥ 1 and a (k + l)-vertex v, such that v has at least
l k−-neighbors. Moreover, if G is a k-tree, then v has exactly l k-neighbors.

Proof. Let G be a k-degenerate graph and consider H = G − {u|d(u) ≤ k}. Suppose by contradiction that for all
l ≥ 1, every (k + l)-vertex v ∈ V (G) has at most l − 1 k−-neighbors. As a result, every vertex in H has degree at
least k + l − (l − 1) = k + 1, which is a contradiction since H is a k-degenerate graph. Now if G is a k-tree, then
so is H. Thus, if v has more than l k-neighbors in G, then v would be of degree at most k − 1 in H, which is a
contradiction.

Lemma 22. Let G be a k-tree. If u is a k-vertex, then N(u) ⊆ N [v] for every v neighbor of u.

Proof. Let u be a k-vertex and v ∈ N(u). Since G is a k-tree, N(u) is a k-clique. As a result, every neighbor of u is
a neighbor of v. In other words, N(u) ⊆ N [v].

Theorem 23. If G is a directed graph of treewidth k, then f(G) ≤ k
k+3n(G).

Proof. First, observe that for k = 1, G is a tree so f(G) = 0. As for k = 2 (resp. 3), we have proven that
f(G) ≤ 1

3n ≤
2
5n (resp. f(G) ≤ 2

4n = 3
6n) in Theorem 17 as G is also k-degenerate. Therefore, we only need to

prove Theorem 23 for k ≥ 4.
We proceed by induction on n = n(G).
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(a) deg = 4, f = 5, n = 10, R = {0, 1}, r′ = 2, degRL = 4.
digraph6 encoding string: IWWc?gbBAGET?W @‘O

(b) deg = 4, f = 4, n = 8, R = {0, 1, 6}, r′ = 7, degRL = 5.
digraph6 encoding string: GDgJDW]@OI?o

(c) deg = 6, f = 7, n = 12, R = {1, 6, 8}, r′ = 10, degRL = 6.
digraph6 encoding string: K]OL@DhAtH[ccOGGMtCw‘B? Q

(d) deg = 7, f = 6, n = 10, R = {6, 7, 8}, r′ = 0, degRL = 8.
digraph6 encoding string: IQ lhcpGUiM[OWy@\\?

(e) deg = 9, f = 7, n = 11, R = {0, 1, 4, 8}, r′ = 2, degRL = 11.
digraph6 encoding string: JTc\\c\\ \\g\\g\\G\\G^GRGZG?

Figure 5: Building blocks for Proposition 9 with low degeneracy and large minimum feedback vertex set.
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Base case: We are going to prove that for every 0 ≤ n ≤ k+ 6, there exists a minimum feedback vertex set F such
that |F | ≤ k

k+3n.
For 0 ≤ n ≤ 3, we always have |F | ≤ 1 with equality if and only if G is a directed triangle. As a result, we always

have |F | ≤ k
k+3n for k ≥ 4.

For 4 ≤ n ≤ k+ 3, by Observation 19 we have |F | ≤ n− 3. Since n− 3− k
k+3n = 3 n

k+3 − 3 = 3( n
k+3 − 1) ≤ 0, we

get |F | ≤ k
k+3n.

For bigger tournaments, by Corollary 6 we get the following:

• For n = k + 4, |F | ≤ n− 4 = k
k+4n ≤

k
k+3n since k ≥ 4.

• For n = k + 5, |F | ≤ n− 4 = k+1
k+5n ≤

k
k+3n since k ≥ 4.

• For n = k + 6, if 4 ≤ k ≤ 5, then we checked by computer that directed k-trees on 10 (resp. 11) vertices have
minimum feedback vertex sets of size at most 5 (resp. 6) which gives |F | ≤ n− 5 = k+1

k+6 ≤
k
k+3 .

If k ≥ 6, then |F | ≤ n− 4 = k+2
k+6n ≤

k
k+3n.

Induction: Suppose that n ≥ k + 7.
For each case, we will define a subgraph H of G to which we will apply our induction hypothesis. Observe that in
the following, we will never remove more than k + 7 vertices at a time, thus, our base case along with the induction
hypothesis will suffice to prove our theorem.

Observe that when G is a partial k-tree, we can add edges to G to obtain a k-tree G′ and f(G) ≤ f(G′) because
a feedback vertex set of G′ is also a feedback vertex set of G. Thus, from now on, we can assume that G is a k-tree.

By Lemma 21, there exists an integer l ≥ 1 and a (k+l)-vertex v such that v has exactly l k-neighbors u1, u2, . . . , ul
since G is a k-tree. In the following cases, F will always denote a minimum feedback vertex set.

Case 1: l ≥ 2
Consider H = G−(NG[v]\{u3, . . . , ul}). Now, let F (G) = F (H)∪(NG[v]\{v, u1, . . . , ul}). Observe that G−F (G) =
(H − F (H)) ∪ {v, u1, u2} so we have an acyclic set and a path on three vertices remaining due to Lemma 22 and
Lemma 16. Moreover, |F (G)| = |F (H)|+k+l+1−(l+1) = k

k+3 (n−(k+l+1−(l−2)))+k = k
k+3 (n−(k+3))+k = k

k+3n.

NG[v] \
⋃

1≤i≤l{ui} ⊇
⋃

1≤i≤lNG(ui)

v

u1 u2 ul

Case 2: l = 1
Let Ik(G) = {x|dG(x) = k, xy ∈ E(G), dG(y) = k+1}. Observe that Ik(G) 6= ∅ since l = 1. We define G′ = G−Ik(G).
By applying Lemma 21 to G′, there exists an integer l′ ≥ 1 and a (k + l′)-vertex v′ such that v′ has exactly l′ k-
neighbors u′1, u

′
2, . . . , u

′
l′ in G′ since G′ is a k-tree. Observe that there exists 1 ≤ j ≤ l′ such that u′j has a neighbor

in Ik(G). Otherwise dG(u′j) = k and u′j /∈ Ik(G) for every 1 ≤ j ≤ l′ and thus we get Case 1 with l = l′ and v = v′.
Let uj be the neighbor of u′j in Ik(G) when it exists. Suppose w.l.o.g. that u1 exists.
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Case 2.1: l′ ≥ 3
Consider H = G−(NG[v′]\{u′4, . . . , u′l′ , u4, . . . , ul′}). Now, let F (G) = F (H)∪(NG′ [v

′]\{u′1, . . . , u′l′}). Observe that
G−F (G) = (H −F (H))∪{u′1, u′2, u′3, u1, u2, u3} so we have an acyclic set and a forest remaining due to Lemma 22,
Lemma 16, and Lemma 20. Moreover, |F (G)| = |F (H)| + k + 1 ≤ k

k+3 (n − (k + 1 + 4)) + k + 1 = kn+3−k
k+3 ≤ k

k+3n
for k ≥ 4.

NG′ [v
′] \

⋃
1≤j≤l′{u′j} ⊇

⋃
1≤j≤l′ NG({u′j , uj})

v′

u′1 u′2 u′3 u′l′

u1 u2 u3 ul′

Case 2.2: l′ = 2
If u2 exists, then observe that by defining H and F (G) the same way as previously, the upper bound on |F (G)| still
holds and we have the same desired properties. So, suppose that u2 does not exists. Since |NG′ [v′]\{u′1, u′2}| = k+ 1
and dG′(u

′
1) = k, there exists w′ ∈ (NG′ [v

′] \ {u′1, u′2}) \ NG′(u′1). Now, consider H = G − (NG[v′] \ {w′}) and let
F (G) = F (H) ∪ (NG[v′] \ {w′, u′1, u′2, u1}). Observe that G − F (G) = (H − F (H)) ∪ {u′1, u′2, u1} so we have an
acyclic set to which we might attach a 1-vertex u′2 and a path due to Lemma 16. Moreover, |F (G)| = |F (H)|+ k =
k
k+3 (n− (k + 3)) + k = k

k+3n.

NG′ [v
′] \ {u′1, u′2} ⊇ NG({u′1, u′2, u1})

v′ w′ (u′1w
′, u1w

′ /∈ E(G))

u′1 u′2

u1

Case 2.3: l′ = 1
Let Ik(G′) = {x′|dG′(x′) = k, x′y′ ∈ E(G′), dG′(y

′) = k + 1}. Observe that Ik(G′) 6= ∅ since l′ = 1. We define
G′′ = G′− Ik(G′). By applying Lemma 21 to G′′, there exists an integer l′′ ≥ 1 and a (k+ l′′)-vertex v′′ such that v′′

has exactly l′′ k-neighbors u′′1 , u
′′
2 , . . . , u

′′
l′′ in G′′ since G′′ is a k-tree. Observe that there exists 1 ≤ j ≤ l′′ such that

u′′j has a neighbor u′j in Ik(G′) and u′j has a neighbor uj in Ik(G). Otherwise, we would get Case 2.1 or Case 2.2.
Suppose w.l.o.g. that u′1 and u1 exists. For each 1 ≤ j ≤ l′′ such that u′j and uj exists, we define vj ∈ {v′′, u′′j , u′j , uj}
as the vertex, such that {v′′, u′′j , u′j , uj}\{vj} do not form a directed triangle, which exists thanks to Observation 19.
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Case 2.3.1: l′′ ≥ 2
Consider H = G− (NG[v′′] \ {u′′3 , . . . , u′′l′′ , u′3, . . . , u′l′′ , u3, . . . , ul′′}). Now, let F (G) = F (H) ∪ {v1, v2} ∪ (NG′′(v

′′) \
{u′′1 , . . . , u′′l′′}). Observe that G − F (G) = (H − F (H)) ∪ (

⋃2
j=1{v′′, u′′j , u′j , uj} \ {vj}) so we have two acyclic sets

remaining due to Lemma 22, Lemma 16, Lemma 20 and the choices of the vj ’s. Let i (= 1 or 2) be the number of vj ’s

that exists for 1 ≤ j ≤ 2. We have |F (G)| = |F (H)|+ k + i ≤ k
k+3 (n− (k + 1 + 2i+ 2)) + k + i = kn+(3−k)i

k+3 ≤ k
k+3n

for k ≥ 4.

NG′′ [v
′′] \

⋃
1≤j≤l′′{u′′j } ⊇

⋃
1≤j≤l′′ NG({u′′j , u′j , uj})

v′′

u′′1 u′′2 u′′l′′

u′1 u′2 u′l′′

u1 u2 ul′′

Case 2.3.2: l′′ = 1
Since |NG′′ [v′′] \ {u′′1}| = k + 1 and dG′′(u

′′
1) = k, there exists w′′ ∈ (NG[v′′] \ {u′′1}) \ NG(u′′1). Recall that v1 ∈

{v′′, u′′1 , u′1, u1} is such that {v′′, u′′1 , u′1, u1} \ {v1} does not form a directed triangle.
Now, consider H = G − (NG[v′′] \ {w′′}). Let F (G) = F (H) ∪ {v1} ∪ (NG′′(v

′′) \ {w′′, u′′1}). Observe that
G−F (G) = (H −F (H))∪ ({v′′, u′′1 , u′1, u1} \ {v1}) so we have an acyclic set by definition of v1. Moreover, |F (G)| =
|F (H)|+ k = k

k+3 (n− (k + 3)) + k = k
k+3n.

NG′′ [v
′′] \ {u′′1} ⊇ NG({u′′1 , u′1, u1})

v′′

u′′1

w′′ (u′′1w
′, u′1w

′′, u1w
′′ /∈ E(G))

u′1

u1

This upper bound is tight for graphs of treewidth 3 as shown by the construction in [8].
Now, let us show some constructions improving the currently known lower bounds for directed graphs with

bounded treewidth k from Corollary 6 and Corollary 7.
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Lemma 24. Let D = (V,A) be a directed graph and RD be a (inclusion-wise) minimal bad set of D. Let D′ =
(V ′, A′), where V ′ = V ∪ {r1, r2} and A′ = A ∪ {(r1, r2)} ∪ {(v, r1), (r2, v)|v ∈ RD}, then n(D′) = n(D) + 2,
f(D′) = f(D) + 1, and {r1, r2} is a minimal bad set of D′.

Proof. We build D′ by applying Proposition 8, where D0 is a directed triangle, D1 = D, R1 = RD, D2 and D3 are
isolated vertices, R2 = D2 and R3 = D3. According to Proposition 8 R = {r1, r2} is a minimal bad set of D′ since
any couple of vertices of D0 is a minimal bad set of D0.

Theorem 25. For every k, there exists a family of directed graphs (Di)i∈N of treewidth k, such that n(Di) =
k + 2 + i(k + 1) and f(Di) ≥ (i+ 1)(k − 2blog(k)c).

Proof. See Figure 6. Let D be a tournament of order k with f(D) ≥ k − 2blog(k)c − 1 from Corollary 7. We build
D′ by Lemma 24 and we know that R = {r1, r2} is a bad set in D′ and N(R) is a minimal bad set in D. By
Lemma 24 we also know that |N(R)| ≤ k− 1, n(D′) = k+ 2 and f(D′) ≥ k− 2blog(k)c. Take r′ to be any vertex of
D′−N [R] (which exists since |V (D′−N [R])| ≥ k+ 2− (k+ 1) = 1) and apply Proposition 9 to (D′, R, r′) to obtain
the family of graphs (Di)i with the desired n(Di) and f(Di). As for its treewidth, first observe that D′ is chordal
and {r1, r2} is a clique. Now the digraph D′r′×|R|, obtained from D′ by replacing r′ with a clique S of order |R| = 2,

has an N [S]-last chordal k-elimination ordering. This is because {r1, r2} has degree at most k − 1 in D′r′×|R| and

|N [S]| = k − 1 + 2 = k + 1.

N(R)
D

r1

r2

Figure 6: Building block for Theorem 25 where D is a tournament on k vertices with f(D) ≥ k − 2blog2(k)c − 1.

Theorem 25 shows that, for every ε > 0, there exists a graph of treewidth k on nε vertices for which f ≥
k−2blog2(k)c

k+1 nε−ε. This lower bound compared to f ≥ k−2blog2(k+1)c
k+1 n from Corollary 7, differs by 2

k2n asymptotically

for large values of k. Observe that this bound also holds for 2 ≤ k ≤ 3 as it gives f ≥ 0 for k = 2 and f ≥ 1
4n for

k = 3.

Proposition 26. Given an integer k, a tournament D of order k+1, two integers l and m ≥ 1 such that 2m+l = k+1,
and a tournament D0 of size l +m, there exists a family of directed graphs (Di)i∈N∗ of treewidth k such that

• n(Di) = (i+ 1)(k + 1) and f(Di) ≥ f(D) + i(f(D0) + 1) for m = 1,

• n(Di) = mi(k + 1 + 2m+l
m−1 )− 2m+l

m−1 and f(Di) ≥ mi(f(D) + m+f(D0)
m−1 )− m+f(D0)

m−1 for m ≥ 2.

Proof. Let k, l,m,D,D0 be defined as in the statement. Let T1, . . . , Tm be copies of D and Im+1, . . . , Im+l be isolated
vertices. For each Ti, we build Di by Lemma 24 to obtain a minimal bad set Ri of size 2. For m+ 1 ≤ i ≤ m+ l, let
Di = Ri = Ii. It is easy to see that f(Di) = 0, and that Ri is bad and minimal. By Proposition 8, we get a graph
of size m(k+ 3) + l with a feedback vertex set of size m(f(D) + 1) + f(D0). We call this graph D1. See Figure 7 for
an example with k = 4, D a tournament on 5 vertices and f(D) = 2 (by Corollary 6), D0 a directed triangle, l = 1,
and m = 2.

We can repeat this construction by adding two vertices to D1 by Lemma 24 to obtain D′1. By taking the same
D0, m copies of D′1, and l isolated vertices. We can apply Proposition 8 once again. By doing these operations
iteratively, we get a family of directed graphs (Di)i∈N with order n(Di) = m · (n(Di−1)+2)+ l and a feedback vertex
set of size f(Di) = m · (f(Di−1) + 1) + f(D0). We get

• n(Di) = (i+ 1)(k + 1) and f(Di) ≥ f(D) + i(f(D0) + 1) for m = 1,
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• n(Di) = mi(k + 1 + 2m+l
m−1 )− 2m+l

m−1 and f(Di) ≥ mi(f(D) + m+f(D0)
m−1 )− m+f(D0)

m−1 for m ≥ 2.

We claim that the constraint 2m+ l = k+ 1 ensures that there exists a chordal k-elimination ordering of any Di.
Indeed, it suffices to observe that there exists an R-last chordal k-elimination ordering of a tournament of size k+ 1
with with two added vertices by Lemma 24. This means that we can start by removing every tournament glued to
D0. Then, since m vertices of D0, the tournament of size m+ l, is replaced by R1, . . . , Rm which are cliques of size
2, and the other l vertices remain single vertices, we also obtain a tournament of size 2m+ l = k + 1. Thus, we can
continue this chordal k-elimination ordering.

D1 = T1 ∪R1

D3 = R3 = I3

D2 = T2 ∪R2

Figure 7: Construction from Proposition 26 for treewidth 4, where D is a tournament on 5 vertices and D0 is a
directed triangle (the white vertices form a bad set of the tournament).

Proposition 26 shows that, for every ε > 0, there exists a directed graph of treewidth k on nε vertices with
minimum feedback vertex set f such that:

f ≥
f(D) + m+f(D0)

m−1

k + 1 + 2m+l
m−1

nε − ε.

Recall that D has size k + 1 = 2m + l and D0 has size m + l. So,
m+f(D0)

m−1
2m+l
m−1

= m+f(D0)
k+1 ≥ f(D)

k+1 since the

minimum feedback vertex set increases by at most 1 when n increases by 1. As a result, we always get a greater

ratio than f(D)
k+1 since

m+f(D0)
m−1
2m+l
m−1

≥ f(D)
k+1 ⇔

f(D)+
m+f(D0)

m−1

k+1+ 2m+l
m−1

≥ f(D)
k+1 . The same also holds when we consider the case

m = 1 of Proposition 26. Moreover, taking tournaments from Corollary 7 of size k+ 1 and m = k
2 , one can compute

that Proposition 26 yields a slightly better result than Theorem 25 with a difference of 4
k2n instead of 2

k2n. The
calculations are however tedious and we omit them here.

For smaller values of k, where we have the exact values of f(D) and f(D0), the difference between the ra-
tio given by tournaments and this construction for graphs with bounded treewidth is much more noticeable. In
Table 2, for each treewidth k, we provide n(D), f(D), n(D0), f(D0), l, and m, as well as the lower bound on

max{ f(H)
n(H) : H is a digraph of treewidth k} obtained by Proposition 26. We also include the lower bound obtained

from tournaments by Corollary 6. Finally, in the last column, we indicate the upper bound k
k+3 given by Theorem 23.
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k n(D) f(D) n(D0) f(D0) l m
lower bound

by Corollary 6
lower bound

by Proposition 26
upper bound

by Theorem 23

4 5 2 3 1 1 2 2
5

1
2

4
7

5 6 3 3 1 0 3 1
2

5
9

5
8

6 7 4 3 1 0 3 4
7

3
5

6
9

7 7 4 7 4 6 1 4
7

5
8

7
10

8 7 4 7 4 5 2 4
7

5
8

8
11

9 10 6 7 4 4 3 6
10

19
30

9
12

10 11 7 7 4 3 4 7
11

29
44

10
13

11 12 8 7 4 2 5 8
12

41
60

11
14

12 13 9 7 4 1 6 9
13

55
78

12
15

13 13 9 13 9 12 1 9
13

5
7

13
16

14 13 9 13 9 11 2 9
13

5
7

14
17

15 13 9 13 9 10 3 9
13

5
7

15
18

16 17 12 13 9 9 4 12
17

49
68

16
19

17 18 13 13 9 8 5 13
18

11
15

17
20

18 19 14 13 9 7 6 14
19

85
114

18
21

19 20 15 13 9 6 7 15
20

53
70

19
22

20 21 16 13 9 5 8 16
21

43
56

20
23

21 22 17 13 9 4 9 17
22

7
9

21
24

22 23 18 13 9 3 10 18
23

181
230

22
25

23 24 19 13 9 2 11 19
24

35
44

23
26

24 25 20 13 9 1 12 20
25

241
300

24
27

25 26 21 13 9 0 13 21
26

137
169

25
28

26 27 22 13 9 0 13 22
27

143
175

26
29

27 27 22 27 22 26 1 22
27

23
28

27
30

28 27 22 27 22 25 2 22
27

23
28

28
31

29 27 22 27 22 24 3 22
27

23
28

29
32

30 27 22 27 22 23 4 22
27

23
28

30
33

31 27 22 27 22 22 5 22
27

23
28

31
34

32 33 27 27 22 21 6 27
33

163
198

32
35

33 34 28 27 22 20 7 28
34

197
238

33
36

Table 2: Lower and upper bounds for largest ratio f
n in digraphs with low treewidth.

The directed Ramsey number R(l) is the smallest integer such that all tournaments of order R(l) contain a
transitive subtournament (acyclic set) of order l, see [11]. We have seen through computational experiments that
for small values of k (k being the treewidth), taking n(D0) to be the largest R(l) ≤ k yields the best result with
Proposition 26. However, it is not clear that it is the best candidate in general.
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6 Conclusion

We have presented upper and lower bounds for the minimum feedback vertex set in directed and undirected graphs
of bounded degeneracy or treewidth. In the undirected setting, while constructing non-trivial lower bounds, we were
not able to essentially improve the easy upper bound for graphs of even degeneracy k. We suspect however that this
is possible.

Conjecture 27. There is an ε > 0 such that the size f of a minimum feedback vertex of every n-vertex graph of
even degeneracy k satisfies f ≤ ( k

k+2 − ε)n.

In the directed setting, we obtained upper bounds for digraphs of bounded treewidth and for digraphs of bounded
degeneracy. We could however, not construct lower bounds that significantly improve over the probabilistic arguments
for tournaments due to [4]. We think that our results can be improved.

Conjecture 28. There is an ε > 0 such that for every n there exists an n-vertex digraph of degeneracy k and

minimum feedback vertex of size f satisfying f ≥ k−(2−ε) log2(k+1)
k+1 n.
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