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1 Introduction

A k-tree is a graph that can be constructed starting with a (k+1)-clique and
in every step attaching a new vertex to a k-clique of the already constructed
graph. The treewidth tw(G) of a graph G is the minimum k such that G is
a partial k-tree, i.e., G is a subgraph of some k-tree [7].

We consider a variation of treewidth, called simple treewidth. A simple
k-tree is a k-tree with the extra requirement that there is a construction
sequence in which no two vertices are attached to the same k-clique. (Equiv-
alently, a k-tree is simple if it has a tree representation of width k in which
every (k − 1)-set of subtrees intersects at most 2 tree-vertices.) Now, the
simple treewidth stw(G) of G is the minimum k such that G is a partial
simple k-tree, i.e., G is a subgraph of some simple k-tree.

We have encountered simple treewidth as a natural parameter in ques-
tions concerning geometric representations of graphs, i.e., representing graphs
as intersection graphs of geometrical objects where the quality of the repre-
sentation is measured by the complexity of the objects. E.g., we have shown
that the maximal interval-number([3]) of the class of treewidth k graphs is
k + 1, whereas for the class of simple treewidth k graphs it is k, see [6].
Another example is the bend-number([4]), which for treewidth 3 graphs is 4
and for simple treewidth 3 graphs is 3, see [5] and a corresponding statement
for higher values is conjectured in [4].

The aim of this note is to compare these two parameters and to motivate
simple treewidth by indicating that it endows treewidth with a topological
flavor. We pose several interesting open problems.
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2 Properties of simple treewidth

Let us first observe, that both parameters cannot differ too much.

Observation 2.1. For every G we have tw(G) ≤ stw(G) ≤ tw(G) + 1.

Proof. The first inequality is clear. For the second inequality we show that
every k-tree G is a subgraph of a simple (k + 1)-tree H. Whenever in the
construction sequence of G several vertices {v1, . . . , vn} are attached to the
same k-clique C we consider C ∪{v1} as a (k+ 1)-clique in the construction
sequence for H. Attaching vi to C can be interpreted as attaching vi to
C∪{vi−1} and omitting the edge {vi−1, vi}. This way we avoid that several
vertices are attached to the same k-clique by considering (k+1)-cliques.

Simple treewidth endows the notion of treewidth with a more topological
flavor, as indicated for small k in the table below:

≤ 1 ≤ 2 ≤ 3
stw paths outerplanar planar & tw ≤ 3, [2]
tw forest series-parallel tw ≤ 3

A linkless embedding of G is an embedding into R3 with the property
that no two cycles of G form a link, see [9].

Observation 2.2. If stw(G) ≤ 4 then G has a linkless embedding.

Proof. It suffices to show that simple 4-trees have linkless embeddings, since
edge-deletion does not destroy the linkless embedding. Therefore consider
K5 embedded in R3 as a tetrahedron plus a vertex in its interior. In each
step of the construction sequence every available 4-clique is represented by
a tetrahedron with empty interior, where we insert the new vertex. It is
easy to see that the resulting embedding is linkless.

Non-simple 4-trees do not have linkless embeddings, which is easy to see
using the forbidden-minor chracterization of linkless embeddable graphs [8].

Problem 2.3. stw(G) ≤ 4⇔ G is linkless embeddable and tw(G) ≤ 4.

Simple treewidth also has connections to discrete geometry. In [1] a
stacked polytope is defined to be a polytope admitting a triangulation whose
dual graph is a tree. In that paper it is proved that a full-dimensional
polytope P ⊂ Rd is stacked if and only if tw(G(P )) ≤ d, were G(P ) denotes
the 1-skeleton of P . Indeed, we strongly suspect:
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Problem 2.4. A graph G is the 1-skeleton of a stacked d-polytope if and
only if stw(G) = d and G is d-connected.

One can show that the class of simple treewidth at most k graphs is
minor-closed. A proof of the following statement would imply that for
planar graphs with treewidth at least 3 treewidth and simple treewidth
coincide.

Problem 2.5. If G has no K3,k-minor and tw(G) = k then stw(G) = k.
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