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Abstract

We study isometric subgraphs found in hypercubes, called partial cubes. We focus
on three aspects: understanding the cycle space of such subgraphs, exploring established
subfamilies and properties, and finding symmetric ones.

As we show, convex cycles in partial cubes have many intriguing properties, from
spanning a simply connected connected space to forming complex substructures such as
intertwinings and traverses. We analyze partial cubes with high girth to obtain results on
structure and degree of such graphs. This knowledge is transferred to symmetric partial
cubes to obtain a complete classification of cubic, vertex-transitive ones and to find a
connection between partial cubes having mirror automorphisms and finite Coxeter groups.
We study various subfamilies of partial cubes to expose a connection between (pseudo-)
hyperplane arrangements, antipodal subgraphs, oriented matroids, median graphs, and
many other structures found in partial cubes. With our main tool, the concept of partial
cube minors, we create a map of partial cubes determining the hierarchical structure of
subfamilies of partial cubes, and classifying many purely in the language of partial cubes.
Lastly, computational and enumerative properties of partial cubes bounded by their isometric
dimension are discussed, together with a result showing that finding isomorphisms of graphs
is GI-complete already for one of the simplest classes of partial cubes: median graphs.
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1

Introduction

Hypercubes are basic mathematical objects widely known in different disciplines of mathe-
matics, other sciences, and even found their way to popular culture1 and general discussions.
Their attractiveness comes from their high dimensional, sometimes non-intuitive properties,
making them a mystical object for general public, but a playground for mathematicians.

This thesis explores substructures found in hypercube graphs. In particular, it focuses on
isometric subgraphs called partial cubes. These subgraphs inherit their metric properties from
hypercubes and exhibit the richness of hypercube substructures. Besides pure curiosity there
are various motivations for exploring such graphs. Numerous subfamilies of partial cubes
have naturally and independently emerged from diverse areas of mathematics but also other
areas of research, such as chemistry, theory of social choices, genetics, etc [6, 34, 35, 58, 60].
Partial cubes are capable of capturing the complexity of vector arrangements in an Euclidean
space having intimate connections with linear algebra and geometry. Moreover, high
dimensional properties of hypercubes are reflected in partial cubes making them an essential
tool for understanding such phenomena.

In the thesis we present our contributions to the topic, together with some resent
developments in the area. The topics chosen to be presented here are the one that are
directly connected to our studies, or we find important and interesting to understand. Hence
the choice is heavily biased and by no means we claim that it covers all the knowledge about
partial cubes. Nevertheless, we like to see this thesis as a survey of the topics in partial cubes
that are of interest in the resent years and a good starting point for future research. The
thesis is mostly compiled from various published results that we cite on the go rather than
reproving them, but includes also many new (unpublished) results for which we provide
proofs. To distinguish our contributions to the topic we use bold font for citing our papers.
We build the thesis on papers [22, 61, 65, 66, 67]. Paper [22] was written together with
V. Chepoi and K. Knauer, while [61] is is a result of cooperation with K. Knauer. We are
grateful to the coauthors for their contributions.

The layout of the thesis is the following. In Chapter 2 we define partial cubes and some
necessary toolbox for their analysis. We present some basic characterizations of them and
focus on the properties of subgraphs useful for the analysis in the further chapters. The
most important concept given in this chapter is the definition of a partial cube minor, that

1see film Cube, 1997
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2 CHAPTER 1. INTRODUCTION

we introduced in [22]. The partial cube minor relation gives a new view of the structure of
partial cubes since it allows characterizations of its families and properties through forbidden
minor characterizations. It offers a unification of many results on partial cubes and gives
algorithmic recognizability of the classes defined by finitely many forbidden minors.

In Chapter 3, we focus on the cycle space of partial cubes. We find the understanding
of the cycles one of the crucial insights into understanding the structure of partial cubes.
The latter is one of the reasons for the title of this thesis besides suggesting that it includes
various results about hypercubes structure. We analyze substructures that cycles can form
and use this knowledge on partial cubes with high girth. The topic was motivated as a
toolbox to prove results from Chapter 5, but outgrew in a research of its own and found
application also in other topics. The main result of this chapter states that there is no finite
partial cube with girth greater than six and minimal degree at least three. Moreover, partial
cubes with girth greater than six are analyzed to show that such graphs have tree-like
structure. Similar results hold if the girth of a partial cube is greater than four, provided
that a particular isometric subgraph is not in it.

Chapter 4 is intended to give a layout of families of partial cubes. Besides being one
of the motivations for the research of partial cubes, the families give an insight in the
structure of partial cubes and their complexity. The chapter aims to give a bigger picture
(or a bigger figure, see Figure 4.1) of how the families are placed in the setting of partial
cubes. Partial cube minors are heavily used in this chapter by determining the forbidden
minor characterizations of various families: median graphs, almost-median graphs, cellular
bipartite graphs, hypercellular graphs, Pasch graphs, Polat graphs, tree-zone graphs, tope
graphs of lopsided sets, tope graphs of complexes of oriented matroids, and partial cubes
with well-embedded zone graphs. The salient result of this chapter is a characterization of
tope graphs of complexes of oriented matroids not only in terms of forbidden minors but
also as exactly partial cubes whose antipodal subgraphs are gated. This places the latter
family as one of the covering families of partial cubes analyzed here and gives a geometric
interpretation of many properties seen in various partial cubes. Another topic from this
chapter that we find of great importance the analysis of hypercellular graphs. Results about
them present a generalization of many well-known properties of median graphs but also
cellular and Polat graphs. We characterize them as gated amalgams obtained from the
Cartesian products of even cycles and edges, and derive properties abou them such as the
presence of a fixed cell of endomorphisms, median cell properties, and other.

The second last Chapter 5 deals with highly symmetric partial cubes. Since hypercubes
are themselves symmetric graphs it is intriguing to consider how this property is translated
to their subgraphs. Regular and vertex-transitive partial cubes are discussed while the
main results of the chapter are classification of cubic, vertex transitive partial cubes, and
a classification of mirror graphs through a connection with hyperplane arrangements and
Coxeter groups.

Finally, Chapter 6 considers generating and enumerating partial cubes together with
methods and problems occurring with it. The numbers of small partial cubes and their
subfamilies are given.



2

Graphs in hypercubes

We start with a chapter providing technical background and a toolbox for understanding
the topic of this thesis.

2.1 Hypercubes

The basic structure considered in this thesis is a graph. By a graph G = (V, E) we consider a
set V of vertices and a set E of unordered pairs of vertices called edges. With few exceptions
considered graphs will be finite and connected, hence if not stated otherwise we assume
such a structure. Now we start with a simple definition of hypercube graphs.

Definition 2.1.1. A hypercube Qn of dimension n is the graph whose vertices are the vectors
in {1,0}n and two vertices are adjacent if they differ in exactly one coordinate.

If the names of the coordinates are needed, we will sometimes denote hypercube Qn by
QE , where E is the ground set of coordinates with |E |= n.

This seemingly simple family of graphs present a basic example of non-trivial, highly
symmetric, relatively sparse graphs. To unveil their structure we first define the following
product structure.

Definition 2.1.2. The Cartesian product G�H of graphs G and H is the graph with the vertex
set V (G)× V (H) and the edge set consisting of all pairs {(g1, h1), (g2, h2)} of vertices with
{g1, g2} ∈ E(G) and h1 = h2, or g1 = g2 and {h1, h2} ∈ E(H).

It is straightforward to see that Qn
∼= Kn

2 , where Km denotes the complete graph on
m vertices and the exponent n in the equation refers to the n-th power in regards to the
Cartesian product. In this sense, the structure of hypercubes can be seen as the pure essence
of the Cartesian product structure.

Despite the simply describable structure, there are many difficult (open) questions
regarding the hypercubes. We point out a few classic ones to convince the reader that the
structure of a hypercube is far from understood:

• Domination number of Qn. Problem of domination in hypercubes refers to finding a
smallest set D of vertices in Qn such that each vertex is in D or adjacent to it. Exact
sizes of such sets are known up to dimension nine [73] and for dimensions of the form

3



4 CHAPTER 2. GRAPHS IN HYPERCUBES

n = 2k − 1 or n = 2k, for some k ∈ N [48]. The domination problem is also known
as the problem of covering codes since the vertices of the hypercube can be seen as
strings of 0s and 1s, i.e. bits. Thus, the topic is intimately connected to the theory of
coding and error correcting codes. It is interesting to notice that the famous Vizing
conjecture regarding domination of the product graphs is still wide open, pointing
out the difficulty of understanding domination in a product structure.

• Turán problem in hypercubes. Let ex(Qn, H) denotes the maximum number of edges in
a hypercube Qn, such that they induce a graph without H being its subgraph. Only
for certain graphs H the values are known with some open famous conjectures about
others [24, 36].

• Extending a matching in a hypercube to a Hamiltonian cycle (or path). In [38], Fink
proved a long standing question that every perfect matching in a hypercube can be
extended to a Hamiltonian cycle. It is not known if the same holds for every matching.
Moreover, a similar question of the existence of a Hamiltonian cycle in the induced
subgraph of Qn, n odd, on all the vertices with bn/2c or dn/2e coordinates equal to 1,
called the middle level graph, was only recently answered positively in [71].

2.2 Partial cubes

By far the most productive approach in the resent years in understanding the structure
of a hypercube is in understanding its subgraphs. To see that the variety of subgraphs in
hypercubes is extremely high, consider the following construction. Let G be and arbitrary
graph, and, without loss of generality, let its vertices be denoted by integers in {1, . . . , n}.
Let Qn be a hypercube of dimension n and for each vertex i of G let vi be the vertex in
Qn with i-th coordinate equal to 1 and all the other coordinates equal to 0. Moreover,
for each edge i j of G let vi j be the vertex of Qn with precisely i-th and j-th coordinate
equal to 1, all the other coordinates equal to 0. Then the graph G′, induced on all the
vertices {vi , vi j | i ∈ V (G), i j ∈ E(G)} is an induced subgraph of Qn, isomorphic to the graph
obtained from G by subdividing all its edges. Since G was arbitrary, we have proved that the
subdivision of every graph can be embedded in a hypercube. Thus subgraphs of hypercubes
have surprisingly rich structure. For example, since every group can be realized as the group
of symmetries of some graph [39], it follows that every group in fact can be realized as the
group of symmetries of a subgraph of a hypercube.

To limit the space of subgraphs of hypercubes to graphs that have more similarities with
the hypercubes, the following definition is given. The distance in graphs is defined as the
length of the shortest path connecting two vertices.

Definition 2.2.1. A partial cube is a graph G that can be isometrically embedded in a hypercube
Qn, i.e., dG(u, v) = dQn

(u, v) for all u, v vertices of G, where d denotes the distance function of
the respective graphs.

Since the metric of a partial cube is inherited from a hypercube, such graphs imitate the
properties of hypercubes. Nevertheless, the motivation for studying them by far exceeds the
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sole fact that they resemble hypercubes. They were introduced by Graham and Pollak [43]
in the study of interconnection networks. They form an important graph class in media
theory [35], frequently appear in chemical graph theory [34], and quoting [58] present one
of the central and most studied classes in metric graph theory. As we will see in Chapter
4, they include many important graph families initially arising in completely different
areas of research. Among them are benzenoid graphs, the graphs of regions of hyperplane
arrangements in Rd [13], and, more generally, tope graphs of oriented matroids (OMs) [14],
median graphs (alias 1-skeleta of CAT(0) cube complexes) [9, 45], netlike graphs [76, 77,
78, 79, 80], bipartite cellular graphs [7], hypercellular graphs [22], bipartite graphs with
S4 convexity (or Pasch graphs) [21], Peano graphs [75], graphs of lopsided sets [10, 62],
1-skeleta of CAT(0) Coxeter zonotopal complexes [44], and tope graphs of complexes of
oriented matroids (COMs) [11].

A key insight in the structure of partial cubes is the following definition. For an edge
e = uv of arbitrary graph G, define the sets Wuv = {x ∈ V : d(x , u) < d(x , v)} and
Wvu = {x ∈ V : d(x , v)< d(x , u)}. Recall that we call a subgraph (or subset) S convex in G
if for any two vertices u, v ∈ S all the shortest u, v-paths in G lie in S. The following is due
to Djoković:

Theorem 2.2.2 ([30]). A graph G is a partial cube if and only if G is bipartite and for any
edge e = uv the sets Wuv and Wvu are convex.

In the case that G is a partial cube, the sets of the form Wuv and Wv,u are called com-
plementary halfspaces of G. To establish an isometric embedding of G into a hypercube,
Djoković [30] introduces the following binary relation Θ – called Djokovíc-Winkler relation –
on the edges of G: for two edges e = uv and e′ = u′v′ we set eΘe′ iff u′ ∈Wuv and v′ ∈Wvu.

Under the conditions of the theorem, it can be shown that eΘe′ iff Wuv = Wu′v′ and
Wvu =Wv′u′ , whence Θ is an equivalence relation in partial cubes. Now we point out the
following equivalence that follows from the above theorem and was independently proved
by Winkler.

Theorem 2.2.3 ([87]). A graph G is a partial cube if and only if G is bipartite and the relation
Θ is transitive.

Let E = {Ei | 1≤ i ≤ n} be the equivalence classes of Θ and let b be an arbitrary fixed
vertex taken as the basepoint of partial cube G. For an equivalence class Ei ∈ E , let {H−i , H+i }
be the pair of complementary convex halfspaces of G defined by setting H−i := Wuv and
H+i :=Wvu for an arbitrary edge uv ∈ Ei with b ∈Wuv . The embedding of G in a hypercube
QE is defined by mapping vertex v ∈ G to vertex of QE with coordinate i equal 1 iff v ∈ H+i .

Conversely, given G isometrically embedded into a hypercube, the Θ-classes simply are
the edges corresponding to the change in a given coordinate. Note that we will denote
the elements of E sometimes by their index f or by the corresponding edge-set E f . The
dimension of the minimal hypercube that G is embedded into or equivalently the number of
Θ-classes of G (i.e. |E |) is called the isometric dimension of G. One simple corollary of this
is a characterization of shortest paths (also called geodesics) in a partial cube. Since shortest
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paths in hypercubes are such that no coordinate is changed more than once, shortest paths
in partial cubes correspond to paths having edges in pairwise different Θ-classes.

It is important to notice that the relation Θ is also essential in the recognition of the
factors of the Cartesian product of graphs, exposing the interplay between the structure of
hypercubes (or partial cubes) and the structure of the Cartesian product of graphs.

From the results above it immediately follows that partial cubes can be recognized in
polynomial time. In fact, Eppstein showed that it can be done better that just following the
above theorems.

Proposition 2.2.4 ([33]). Partial cubes can be recognized and embedded in quadratic time
with respect to the number of their vertices.

Finally, we notice that by an infinite partial cube we understand a graph isometrically
embeddable into an infinite hypercube, i.e. a graph whose vertices are infinite strings of
zeros and ones with finitely many ones, and two vertices adjacent if they differ in exactly
one coordinate. All results about partial cubes in this section besides the recogizability hold
also for such graphs.

2.3 Contractions, restrictions, expansions, and amalgamations

For the rest of this chapter, let G be a partial cube. For E f ∈ E , we say that the graph G/E f

obtained from G by contracting the edges of the equivalence class E f is an ( f -)contraction
of G. For a vertex v of G, we will denote by π f (v) the image of v under the f -contraction
in G/E f , i.e., if uv is an edge of E f , then π f (u) = π f (v), otherwise π f (u) 6= π f (v). We will
apply π f to subsets S ⊂ V , by setting π f (S) := {π f (v) : v ∈ S}. In particular, we denote the
f -contraction of G by π f (G), see Figure 2.1.

It is well-known, easy to prove and in particular follows from the proof of the first
part of [23, Theorem 3] that π f (G) is an isometric subgraph of QE\{E f }. Moreover, edge
contractions in graphs commute, i.e., the resulting graph does not depend on the order in
which a set of edges is contracted. Together we have

Lemma 2.3.1. Let G be a partial cube and E f ∈ E its Θ-class. Then π f (G) is a partial cube.
Moreover if Eg ∈ E and E f 6= Eg , then πg(π f (G)) = π f (πg(G)).

Figure 2.1: Partial cubes with colored Θ-classes. The second is obtained from the first by
contracting the orange Θ-class
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Given E f ∈ E , an (elementary) restriction consists in taking one of the subgraphs G(E−f )
or G(E+f ) induced by the complementary halfspaces E−f and E+f , which we will denote by
ρ f −(G) and ρ f +(G), respectively. These graphs are isometric subgraphs of the hypercube
QE\{E f }. Now applying two elementary restriction with respect to different coordinates f , g,
independently of the order of f and g, we will obtain one of the four (possibly empty)
subgraphs induced by E−f ∩ E−g , E−f ∩ E+g , E+f ∩ E−g , and E+f ∩ E+g . Since the intersection of
convex subsets is convex, each of these four sets is convex in G and consequently induces
an isometric subgraph of the hypercube QE\{ f ,g}. More generally, a restriction is a subgraph
of G induced by the intersection of a set of (non-complementary) halfspaces of G.

For subset S of the vertices of G and f ∈ E , we denote ρ f +(S) := ρ f +(G) ∩ S and
ρ f −(S) := ρ f −(G)∩S. The smallest convex subgraph of G containing V ′ is called the convex
hull of V ′ and denoted by conv(V ′). The following is well-known:

Lemma 2.3.2 ([1, 5, 19]). The set of restrictions of a partial cube G coincides with its set of
convex subgraphs. Indeed, for any subset of vertices V ′ we have that conv(V ′) is the intersection
of all halfspaces containing V ′. In particular, the class of partial cubes is closed under taking
restrictions. Moreover, in a bipartite graph G restrictions and convex subgraphs coincide if and
only if G is a partial cube.

It follows easily from Lemma 2.3.2 that halfspaces (elementary restrictions) can be
characterized in a partial cube as precisely those convex sets whose complement is also
convex. Now we consider the inverse operation of contraction: a partial cube G is an
expansion of a partial cube G′ if G′ = π f (G) for some Θ-class E f of G. In fact, expansions
can be described within the smaller graph. Let G′ be a partial cube containing two isometric
subgraphs G′1 and G′2 such that G′ = G′1∪G′2, there are no edges from G′1 \G′2 to G′2 \G′1, and
denote G′0 := G′1 ∩ G′2. A graph G is an expansion of G′ with respect to G0 if G is obtained
from G′ by replacing each vertex v of G′1 by a vertex v1 and each vertex v of G′2 by a vertex
v2 such that ui and vi , i = 1, 2 are adjacent in G if and only if u and v are adjacent vertices
of G′i , and v1v2 is an edge of G if and only if v is a vertex of G′0. Another well-known result
is the following:

Lemma 2.3.3 ([19, 23]). A graph G is a partial cube if and only if G can be obtained by a
sequence of expansions from a single vertex.

Let E f ∈ E be one of Θ-classes of G. Assume that a halfspace E+f (or E−f ) is such that all
its vertices are incident with edges from E f . Then we call E+f (or E−f ) peripheral. In such a
case we will also call E f a peripheral Θ-class, and call G a peripheral expansion of π f (G).
Note that an expansion along sets G1, G2 is peripheral if and only if one of the sets G1, G2 is
the whole graph and the other one an isometric subgraph.

We have to consider how operations of contraction, restriction, and expansion interact
with each other. By definition, expansion and contraction are inverse operations. On the
other hand it is not hard to see the following.

Lemma 2.3.4 ([22]). Contractions and restrictions commute in partial cubes, i.e., if f , g ∈
mathcalE and f 6= g, then ρg+(π f (G)) = π f (ρg+(G)).
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Additionally it holds:

Lemma 2.3.5 ([61]). Assume that we have the following commutative diagram of contractions:

G π f1(G)

π f2(G) π f1(π f2(G))

π f1

π f2 π f2

π f1

Assume that G is expanded from π f1(G) along sets G1, G2 ⊆ π f1(G). Then π f2(G) is expanded
from π f1(π f2(G)) along sets π f2(G1) and π f2(G2).

While expansions provide a way of building bigger partial cubes, there exist another
method to do so that is not limited to partial cubes. Let G1 and G2 be graphs with a non empty
intersection, i.e. there exists an induced subgraph H of G1 and G2 such that H = G1 ∩ G2.
Then the union G1 ∪ G2 of the graphs is called the amalgamation of G1 and G2 along H.

The amalgamation can be seen gluing together two graphs along an induced subgraph.
In case of the two graphs being partial cubes the obtained graphs is not necessarily a partial
cube. In the Chapter 4, we will deal with different kinds of amalgamations, in particular if
H is so called gated amalgamation of partial cubes G1 and G2, then the resulting graph is
always a partial cube.

2.4 Minors in partial cubes

A useful tool for understanding the structure of a graph is the concept of a graph minor.
A graph H is a minor of G if H can be obtained from G by two operations: contracting
arbitrary edges and restricting to an arbitrary subgraph. Using this operations on partial
cubes we encounter several problems. A subgraph of a partial cube needs not to be a partial
cube and, moreover, a contraction of an edge might not even result in a bipartite graph.
This calls for a different definition of the operations.

A geometrical way to avoid contracting even cycles to odd cycles is to define “parallel”
edges along which the contraction can be made. Motivated by an example of an even cycle,
where we would like to only allow contracting simultaneously both antipodal edges, one
can define two edges uv, wz to be parallel if and only if d(u, w) = d(v, z) = d(u, z)− 1 =
d(v, w) − 1. It is easy to check that this definition in bipartite graphs coincide with the
definition of the relation Θ. Moreover, by Theorem 2.2.3, relation Θ is an equivalence
relation in a bipartite graph if and only if the graph is a partial cube. Thus the class of partial
cubes is a natural class to consider such contraction operations.

Since not all subgraphs of partial cubes are in the class of partial cubes, also the definition
of restriction to the arbitrary subgraph must be modified. Allowing only restrictions to
convex subgraphs is a natural choice that works well with existing families of partial cubes.

By Lemma 2.3.2, restrictions and contractions defined in this way coincide with restric-
tions and contractions in partial cubes defined in the previous section. Moreover, the lemmas
from the previous section show that any set of restrictions and any set of contractions of a
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partial cube G provide the same result, independently of the order in which we perform the
restrictions and contractions. The resulting graph G′ is also a partial cube, and we will call
G′ a partial cube-minor (abbreviated, pc-minor) of G (see Figure 2.2).

�

(a) G

�

(b) ρ f +(G) (c) πg(ρ f +(G))

Figure 2.2: Minor Q−3 obtained from a partial cube G.

We will say that a class of partial cubes C is pc-minor-closed if we have that G ∈ C and
G′ is a minor of G imply that G′ ∈ C . A major part of this thesis is devoted to the study
of classes of partial cubes that are pc-minor-closed. Clearly, any such class has a (possibly
infinite) set X of partial cubes that are not in the class, but every minor of them is. These
are the forbidden pc-minors. Vice versa, if X = {T1, T2, . . .} is a set of partial cubes, then
let F (X ) be the set of all partial cubes G such that no Ti , i = 1,2, . . ., can be obtained as
a pc-minor of G. Clearly, such a class is pc-minor-closed. If the list of excluded minors is
finite, the following gives the algorithmic recognition of the class.

Proposition 2.4.1 ([61]). Let X be a finite set of partial cubes. It is decidable in polynomial
time if a partial cube G is in F (X ).

In comparison to the “usual” minor relation in graphs, where we have a similar theorem
but the constants in the polynomial time complexity are extremely big and algorithms
practically not-implementable, the algorithm here is not too complicated. Moreover, for
some fixed X corresponding to an established pc-minor closed family (such as median
graphs,. . . ) faster algorithms (in comparison to the general one) have been developed. For
an infinite X , the hardness of the recognition can be either polynomial or not, as we will see
in Chapter 4. Also notice that, by definition of pc-minors, each class of minor closed partial
cubes is also pc-minor closed.

We close the section with some simple examples of minor closed families of partial cubes,
all of them having only one forbidden minor. Having in mind that every partial cube can
be contracted to a vertex (K1), and every partial cube with an edge can be restricted to an
edge (K2), the first non trivial families are the following (Cn denotes the cycle on n vertices
and Pn denotes the path on n vertices):

• F (C4) corresponds to the class of trees. While no tree can be contracted and restricted
to C4, if G has a cycle then contracting all the Θ-classes besides two classes crossing
the chosen cycle gives a minor C4.



10 CHAPTER 2. GRAPHS IN HYPERCUBES

• F (P3) corresponds to precisely all the hypercubes. This follows from many classical
results on hypercubes one of them being the characterization that hypercubes are
precisely the partial cubes with any two incident edges being on a 4-cycle, see [47].

• F (K2� P3) corresponds to all the partial cubes whose blocks are isomorphic to even
cycles. This is proved similarly as previous cases.

• The first case generalizes to F (Cn) corresponding to all the partial cubes having all
its convex cycles of length less than n, as it will follow from results in the following
chapters.

In Chapter 4 we will deal with less trivial families, which were originally motivated by
some other property or structure.

2.5 Subgraphs of partial cubes

Antipodality

For a graph G we say that G is even if for every vertex v of G there exists a unique vertex v̄
such that d(v, v̄) = diam(G), where diam(G) denotes the diameter of G. Such graphs have
been studied in [42, 70], for basic examples consider even cycles or hypercubes. Additionally,
G is harmonic-even if for every adjacent u, v ∈ V (G) also their diametrical vertices ū, v̄ are
adjacent. G is symmetric-even if for every u, v ∈ V (G) holds d(u, v) + d(v, ū) = diam(G). In
the case G is a partial cube, it is embedded in a hypercube, thus we can talk of vertices at
the maximal distance in another way:

Definition 2.5.1. A partial cube G embedded in a hypercube Qn is antipodal if for every v ∈ G
embedded as v = (i1, i2, . . . , in) there exists −v ∈ V (G), called the antipode of v, embedded as
−v = (ī1, ī2, . . . , īn), where ī j = 1− i j .

It follows directly from the definitions that we have implications: G is antipodal⇒ G is
symmetric-even⇒ G is harmonic-even⇒ G is even. In [41], Fukuda and Handa proved that
if G is a partial cube, then the first two implications are in fact equivalence. The question
whether every even partial cube is antipodal is open, see [54].

We call a convex subgraph H of a partial cube G antipodal if every vertex x of H has an
antipode with respect to H, i.e. H is an antipodal partial cube. In Figure 2.3 is an antipodal
partial cube with all its antipodal subgraphs being convex cycles. Their behavior with respect
to pc-minors has been described in [22] in the following way:

Lemma 2.5.2 ([22]). Let H be an antipodal subgraph of G and f ∈ E . If E f is disjoint from
H, then ρ f +(H) is an antipodal subgraph of ρ f +(G). If E f crosses H or is disjoint from H,
then π f (H) is an antipodal subgraph of π f (G).

In particular, Lemma 2.5.2 implies that the class of antipodal partial cubes is closed
under contractions. Next, we present a characterization of those expansions that generate all
antipodal partial cubes from a single vertex, in the same way as Lemma 2.3.3 characterizes
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Figure 2.3: An antipodal partial cube.

all partial cubes. Let G be an antipodal partial cube and G1, G2 two subgraphs corresponding
to an isometric expansion. We say that it is an antipodal expansion if and only if −G1 = G2,
where −G1 is defined as the set of antipodes of G1.

Proposition 2.5.3 ([61]). Let G be a partial cube andπe(G) antipodal. Then G is an antipodal
expansion of πe(G) if and only if G is antipodal. In particular, all antipodal partial cubes arise
from a single vertex by a sequence of antipodal expansion.

Interesting property of antipodal graphs are present is the following.

Lemma 2.5.4 ([22]). If H is an antipodal subgraph of G, then H contains an isometric cycle
C such that conv(C) = H.

Lemma 2.5.5 ([61]). In an antipodal partial cube G, the antipodal mapping v 7→ −v is a
graph automorphism.

We call a partial cube affine if it is a halfspace of an antipodal partial cube. An interesting
question is the following: given a partial cube G, is there a simple condition that determines
if G is affine, or in other words, does connecting G with −G give a partial cube with both
graphs being complementray halfspaces. This question will be particularly interesting in
connection with oriented matroids in Section 4.1.

The answer was given [61] by the following intrinsic characterization of affine partial
cubes.

Proposition 2.5.6 ([61]). A partial cube G is affine if and only if for all u, v vertices of G there
are w,−w in G such that conv(u, w) and conv(v,−w) are crossed by disjoint sets of Θ-classes.

By Lemma 4.1.2 a contraction of a halfspace is a halfspace and by Lemma 2.5.2 antipodal
partial cubes are closed under contraction, therefore we immediately get:

Lemma 2.5.7. The class of affine partial cubes is closed under contraction.

Gated subgraphs

A subgraph H of G, or just a set of vertices of H, is called gated (in G) if for every vertex
x outside H there exists a vertex x ′ in H, the gate of x , such that each vertex y of H is
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Figure 2.4: Gated versus non-gated convex subgraph.

connected with x by a shortest path passing through the gate x ′ (see Figure 2.4). It is easy
to see that if x has a gate in H, then it is unique and that gated subgraphs are convex [45].

In [22] we showed that gated subgraphs behave well with respect to pc-minors:

Lemma 2.5.8 ([22]). If H is a gated subgraph of G, then ρ f +(H) and π f (H) are gated
subgraphs of ρ f +(G) and π f (G), respectively.

On the other hand, expansions can often cause that gated subgraphs become non-gated.

Lemma 2.5.9 ([22]). Let G be an expansion of πe(G) along sets G1, G2. Let H be a subgraph
of πe(G), v a vertex of πe(G) and v′ the gate of v in H. If v ∈ G1 ∩G2, v′ /∈ G1 ∩G2 and there
exist v′′ ∈ H, v′′ ∈ G1 ∩ G2, then the expansion of H in G is not gated.

The above two lemmas have implications in the following chapters.



3

Cycles in partial cubes

This chapter is mainly based on [65].

3.1 Traverses and cell complexes

Partial cubes inherit metric properties from hypercubes. One of the areas where this is
strongly reflected is in the cycle space of partial cubes. Particularly interesting are isometric
and convex cycles. Note that in a (general) graph G, every cycle can be obtained as a
symmetric difference of isometric cycles. In fact this can be proven by induction on the
length of the cycles. Take an arbitrary cycle in G; if it is not an isometric subcycle then there
exist a diagonal path connecting two vertices on the cycle of shorter length than the two
paths on the cycle. Then the cycle is a symmetric difference of two shorter cycles formed by
the diagonal and the two paths on the cycle. By induction, the two cycles can be obtained
as a symmetric difference of isometric cycles. We will show that in partial cubes even more
holds. We introduced the following definition in [65].

Definition 3.1.1 ([65]). Let v1u1Θv2u2 in a partial cube G, with v2 ∈Wv1u1
. Let C1, . . . , Cn,

n ≥ 1, be a sequence of isometric cycles such that v1u1 lies only on C1, v2u2 lies only on Cn,
and each pair C i and C i+1, for i ∈ {1, . . . , n− 1}, intersects in exactly one edge and this edge is
in Ev1u1

, all the other pairs do not intersect. If the shortest path from v1 to v2 on the union of
C1, . . . , Cn is a shortest v1, v2-path in G, then we call C1, . . . , Cn a traverse from v1u1 to v2u2.

Every isometric cycle in a partial cube has its antipodal edges in relation Θ. Using this
fact, we see that if C1, . . . , Cn is a traverse from v1u1 to v2u2, then also the shortest path
from u1 to u2 on the union of C1, . . . , Cn is isometric in G, since it must have all its edges in
different Θ-classes. Moreover, notice that the whole traverse is an isometric subgraph. We
will call shortest u1, u2-path on the traverse the u1, u2-side of the traverse and, similarly, the
shortest v1, v2-path the v1, v2-side of the traverse. The length of these two shortest paths is
the length of the traverse. If all isometric cycles on a traverse T are convex cycles, we will
call T a convex traverse.

Lemma 3.1.2 ([65]). Let v1u1Θv2u2 in a partial cube G. Then there exists a convex traverse
from v1u1 to v2u2.

13
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The above lemma is, surprisingly, not too hard to prove, but is a very useful tool. We
shall demonstrate its strength in the following. Let C (G) denote the set of all convex cycles
of G and let C(G) be the 2-dimensional cell complex whose 2-cells are obtained by replacing
each convex cycle C of length 2 j of G by a regular Euclidean polygon [C] with 2 j sides.
Recall that a cell complex X is simply connected if it is connected and if every continuous map
of the 1-dimensional sphere S1 into X can be extended to a continuous mapping of the disk
D2 with boundary S1 into X. A direct consequence of Lemma 3.1.2 is the next proposition
also proved in a different way in [22].

Proposition 3.1.3. If G is a partial cube, then C(G) is simply connected.

Proof. We will prove that every cycle C is a boundary of an image of continuous map of a
disk D2 in C(G) by induction on the length of C . Let C be a cycle of G and take an arbitrary
edge uv on C . Since uv corresponds to a coordinate change, there has to be another edge
u′v′ on C that corresponds to a change of the same coordinate. Then uv and u′v′ are in
relation Θ. By 3.1.2, a convex traverse T between uv and u′v′ exists. Let C ′ be the closed
path that consists of the u, u′-side of T and the u, u′-path on C not crossing uv or u′v′.
Similarly let C ′′ be the closed path that consists of the v, v′-side of T and the v, v′-path on
C not crossing uv or u′v′. Then C ′ and C ′′ are a union of cycles of smaller length than
C since already C ′ and C ′′ have smaller length than C . By induction, C ′, C ′′ and all the
convex cycles on T are boundaries of an image of continuous map of a disk D2 in C(G). By
construction of C ′, C ′′ and T also C is a boundary of an image of continuous map of a disk
D2 in C(G).

Notice that a weaker result stating that convex cycles in a partial cube form a basis was
proved in [49].

3.2 Enumerative properties of convex cycles and zone graphs

In [58], Klavžar and Shpectorov studied the density of convex cycles in partial cubes by
introducing a concept called convex excess of a graph. Let G be a partial cube and C (G) the
set of convex cycles in G. The convex excess ce(G) of G is defined as

ce(G) =
∑

C∈C (G)

|V (C)| − 4
2

.

Notice that partial cubes cannot have cycles of length less than four, thus the convex excess
counts how many (and how much longer) the other convex cycles are.

They proved that the convex excess is closely related with the following definition that
they provided.

Definition 3.2.1. Let G be a partial cube and E f ∈ E one of its Θ-classes. Define the zone
graph of G with respect to E f as the graph ζ f (G) whose vertices correspond to the edges of E f

and two vertices are connected by an edge if the corresponding edges of E f lie in a convex cycle
of G.
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(a) G (b) ζ f (G)

Figure 3.1: A partial cube and its zone graph.

See Figure 3.1 for an example. The zone graphs are defined for partial cubes, but a zone
graph itself does not need to be a partial cube. This topic will be thoroughly investigated
in Section 4.1, for examples of a partial cube whose not all zone graphs are partial cubes
see Figure 3.2. If G is a partial cube with all its zone graphs being trees, then G is called a
tree-zone graph.

The main result in respect to the convex excess is a Euler type formula connecting the
number of vertices, edges, isometric dimension i(G) and convex excess.

Theorem 3.2.2 ([58]). For a partial cube G with n vertices and m edges,

2n−m− i(G)− ce(G)≤ 2.

Moreover the equality holds if and only if G is a tree-zone graph.

Observe that ζ f can be seen as a mapping from edges of G that are not in E f but lie on
a convex cycle crossed by E f to the edges of ζ f (G). If ζ f (G) is a partial cube, then we say
that ζ f (G) is well-embedded if for two edges a, b of ζ f (G) we have aΘb if and only if the
sets of Θ-classes crossing ζ−1

f (a) and ζ−1
f (b) coincide and if a and b are not in relation Θ

then the classes crossing are disjoint.
To understand the definition of well-embeddedness better we state the following lemma.

Lemma 3.2.3 ([61]). Let G be a partial cube and f ∈ E . Then ζ f (G) is a well-embedded
partial cube if and only if for any two convex cycles C , C ′ that are crossed by E f and some Eg

both C and C ′ are crossed by the same set of Θ-classes.

Notice an important connection. In partial cubes whose zone graphs are well embedded
convex traverses correspond to the shortest paths in zone graphs. It turns out that well-
embedded zone graphs work well with contractions and restrictions.

Lemma 3.2.4 ([61]). Let G be a partial cube, E f ∈ E such that ζ f (G) is a well-embedded
partial cube. Then the zone graph with respect to E f of a restriction of G is a restriction of
ζ f (G). Moreover the zone graph with respect to E f of a contraction of G is a (possibly trivial)
contraction of ζ f (G).

A direct consequence is the following.
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Lemma 3.2.5. The family of partial cubes whose all zone graphs are well-embedded partial
cubes is a pc-minor closed family.

Proof. If G has all its zone graphs partial cubes, then all the zone graphs of a restriction or a
contraction of G are restrictions or contractions of zone graphs of G, thus partial cubes.

For a pc-minor closed family we can determine its list of excluded minors. Let
{Q−∗4 ,Q−−4 (m) | 1 ≤ m ≤ 4} be the set of graphs in Figure 3.2 (the construction and a
generalization of this graphs will be explained in Section 4.1).

(a) Q−∗4 (b) Q−−4 (1) (c) Q−−4 (2) (d) Q−−4 (3) (e) Q−−4 (4)

Figure 3.2: Graphs Q−∗4 ,Q−−4 (m), for 1≤ m≤ 4.

Theorem 3.2.6. The family of partial cubes whose all zone graphs are well-embedded partial
cubes equals F ({Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}).

Proof. The left inclusion of the families follows from Lemma 3.2.5 and the easy verifiable
fact that the graphs in {Q−∗4 ,Q−−4 (m) | 1 ≤ m ≤ 4} have zone graphs that are not partial
cubes. The right inclusion was proved in [61, Lemma 5.4].

3.3 Intertwining

In the previous two sections we have seen that cycles in partial cubes behave nicely. Never-
theless, in certain cases an unexpected behavior emerges, in particular in the following we
will present some results when isometric cycles intersect pairwise in more than a vertex or
an edge. To analyze such situations we gave the following definition in [65].

Definition 3.3.1. Let C1 = (v0v1 . . . vmvm+1 . . . v2m+2n1−1) and C2 = (u0u1 . . . umum+1 . . .
u2m+2n2−1) be isometric cycles with u0 = v0, . . . , um = vm for m≥ 2, and all the other vertices
pairwise different. Then we say that C1 and C2 intertwine.

Notice that in a partial cube, m can be at most half of l1 or l2, where l1 is the length of
C1, l2 the length of C2. Let us prove this: If m > l1/2, then the fact that antipodal edges
in an isometric cycle are in relation Θ implies that C1 is determined by the intersection.
Moreover, the path in the intersection is not isometric, thus it must cover more than half
of C2, i.e. m> l2/2. Thus also C2 is determined by the intersection, and consequently we
have C1 = C2.

Even though intertwining is a very particular interaction of two cycles we proved the
following.
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Lemma 3.3.2 ([65]). Let G be a partial cube and let two isometric cycles intersect in at least
two non-adjacent vertices. Then there exist two isometric cycles that intertwine.

In the case of convex cycles it holds even more.

Lemma 3.3.3 ([66]). If two convex cycles intersect in at least two non-adjacent vertices, then
they intertwine.

The latter two lemmas can be very useful for the study of partial cubes since we can
separate partial cubes in two disjoint subfamilies: partial cubes in which any two isometric
(or convex) cycles intersect in at most a vertex or an edge, and partial cubes in which we
have isometric (or convex) cycles that intertwine.

If two convex cycles intertwine and f is an edge shared by the two cycles, then by Lemma
3.2.3 the zone graph ζ f (G) is not well-embedded. We have the following consequence.

Corollary 3.3.4. If two convex cycles in a partial cube G intertwine, then G has a pc-minor in
{Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}.

3.4 Partial cubes with girth greater than 4

In this section we present our main results from [65], where the intertwining was introduced
for the study of partial cubes with high girth, i.e. length of the shortest cycle. We will write
g(G) for the girth of G. In the above paper graph Q−−4 (4) was defined as the graph from
Figure 3.3. Observe how convex cycles in this partial cube intertwine and notice that we
have already seen this graph as the forbidden minor for partial cubes whose zone graphs
are well-embedded partial cubes.

Figure 3.3: Graph Q−−4 (4)

Proposition 3.4.1 ([65]). If G is a partial cube with g(G)> 6, then every pair of isometric
cycles in G meets in either exactly one edge, or exactly one vertex, or not at all. Moreover, the
same holds if g(G) = 6, provided that G contains no isometric subgraph isomorphic to Q−−4 (4).

In fact, if the girth of G is 6 and G contains an isometric subgraph Q−−4 (4), the subgraph
X is convex. The latter holds since Q−−4 (4) can be seen as an isometric subgraph of Q4,
thus if there exist any shortest path in G connecting two verices of Q−−4 (4) but completely
outside of Q−−4 (4), then it lies in the Q4 containing Q−−4 (4). But adding any vertex of Q4

to Q−−4 (4) creates a 4-cycle, by an easy exercise. This proves that the isometric subgraph
isomorphic to Q−−4 (4) in the last assertion of the proposition can be replaced with a convex



18 CHAPTER 3. CYCLES IN PARTIAL CUBES

subgraph isomorphic to Q−−4 (4). Also, recall that by Theorem 3.2.6 all the graphs that have
well-embedded zone graphs have no convex Q−−4 (4).

The proof of the proposition turns out to be quite technical, while the result implies the
opposite: partial cubes with high girth have a convex space that is relatively simple, i.e.,
with no intertwining. In fact the proposition was used in [11] to show that such graphs are
zonotopal complexes of oriented matroids, that we will introduce in Section 4.1. Another
way to see the simple structure of partial cubes with high girth is the following corollary of
Proposition 3.4.1.

Corollary 3.4.2 ([65]). Every partial cube G with g(G)> 6 is a tree-zone graph and hence it
holds 2n(G)−m(G)− i(G)− ce(G) = 2.

The following results are all motivated and use the same ideas as used in [65], but we
reprove them since we make small modifications to obtain stronger result that will be used
at the end of this section.

Lemma 3.4.3. Let P = u0u1 . . . um be a shortest path in a partial cube. If there is some other
shortest u0, um-path, then there exists a convex cycle of the form (uiui+1 . . . u jw j−1w j−2 . . . w j−1)
for some 0≤ i < j ≤ m and j − i − 1 vertices wi+1, . . . , w j−1 not on P.

Proof. Assume this is not the case and let P = u0u1 . . . um and P ′ be two different u0, um-
geodesics for which the lemma does not apply. Without loss of generality assume the length
of P is minimal among all counterexamples of the lemma.

By the minimality assumption, paths P and P ′ intersect only in u0 and um. Denote the
vertices of P ′ with u0z1z2 . . . zm−1um and let C be the cycle formed by P and P ′.

Beside u0z1 itself, there must be an additional edge on C ′, that is in relation Θ with
u0z1. Since P ′ is a shortest path, this edge is on P. Let uk−1uk ∈ Fu0z1

, for some 0< k ≤ m.
By Lemma 3.1.2, there is a convex traverse from u0z1 to uk−1uk. Firstly, assume the path
P ′′ = u0u1 . . . uk−1 is the u0, uk−1-side of it. Then the last convex cycle on this traverse is
of the form (uk′uk′+1 . . . uk−1ukwk−1 . . . wk′+1) for some 0 ≤ k′ ≤ k − 2 and some vertices
wk′+1, . . . , wk−1 not on P (they do not lie on P since the cycle is isometric). We have found
the desired cycle.

On the other hand, assume P ′′ is not the u0, uk−1-side of a traverse from u0z1 to uk−1uk.
The geodesic P ′′ is shorter than P, and there exists another shortest u0, uk−1-path, namely the
u0, uk−1-side of the traverse from u0z1 to uk−1uk. Then the lemma applies to P ′′, and since
P ′′ is a subpath of P, the obtained convex cycle is of the form (uiui+1 . . . u jw j−1w j−2 . . . wi+1)
for some 0≤ i < j − 1≤ m− 1 and some vertices wi+1, . . . , w j−1 not on P.

Lemma 3.4.4. Let g(G) > 6 for a partial cube G. If u1v1Θu2v2 with u2 ∈ Wu1v1
, P1 being

a shortest u1u2-path, and P2 being a shortest v1v2-path, then P1 and P2 are the sides of the
unique (thus convex) traverse from u1v1 to u2v2. The same holds in G if g(G) = 6 and there is
no isometric subgraph of G isomorphic to Q−−4 (4).

Proof. Let P1 be a shortest u1u2-path, and let R1 be the u1, u2-sides of some convex traverse
T from u1v1 to u2v2, provided by Lemma 3.1.2. For the sake of contradiction, assume that
R1 6= P1. By Lemma 3.4.3, there exists a convex cycle C = (zk . . . zk+l wk+l−1 . . . , wk+1), where
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zk, . . . , zk+l are vertices on R1 and wk+l−1, . . . , wk+1 are some other vertices. If g(G) ≥ 6,
there are two convex cycles, namely C and one of the convex cycles on the traverse from u1u2

to v1v2, that have at least two edges in common. This is a contradiction with Proposition
3.4.1.

We have proved that R1 is the only shortest u1u2-path, and, similarly, the v1, v2-side of T
is the only shortest v1v2-path. Since it is impossible that two traverses have the same sides,
this also proves the uniqueness of the (convex) traverse.

We are now ready for our main result.

Theorem 3.4.5. There is no finite partial cube G with δ(G)≥ 3, and g(G)> 6 or g(G) = 6
and there is no isometric subgraph of G isomorphic to Q−−4 (4).

Proof. Let G be such that δ(G) ≥ 3 and g(G) ≥ 6. We will inductively build an infinite
isometric path P in G.

Assume we have built an isometric path Pn of length n− 1. Notice that this is the same
as saying that all the Θ-classes of Pn are in pairwise different Θ-classes. Let u be the last
vertex on it. Since δ(G)≥ 3, u has two incident edges, say uu1, uu2 that are not on Pn. If
one of the Euu1

, Euu2
does not intersect Pn, then we can extend Pn to Pn+1 with an edge, such

that all the edges on Pn+1 are in pairwise different Θ-classes implying that Pn+1 is a shortest
path.

Hence assume that uu1 is in relation Θ with an edge a1 b1 on Pn and uu2 is in relation Θ
with an edge a2 b2 on Pn. Let T1, T2 be convex traverses from uu1 to a1 b1 and from u2 to
a2 b2, respectively. By Lemma 3.4.4, Pn is a side of T1 as well as T2. But if g(G)≥ 6, then
the two first convex cycles on T1 and T2, the ones incident with u, share at least two edges.
By Proposition 3.4.1, this cannot be. Therefore we can always extend Pn.

In [65], we proved a variant of Theorem 3.4.5. It is a stronger statement for graphs
with g(G) > 6, but cannot be generalized to graphs with g(G) = 6. Just for this part we
assume the graph can be infinite. First a definition is needed: If d ∈ N, let Bd(v) be the
number of vertices at distance at most d from a vertex v of an infinite graph G. If Bd(v)
is bounded from below by some exponential function in d, we say that G has exponential
growth. The definition is independent of the choice of the vertex in G.

Theorem 3.4.6 ([65]). Every partial cube G with g(G)> 6 and δ(G)≥ 3 contains an infinite
subtree in which vertices have degree 3 or 2. Moreover, any two vertices of degree 2 have
distance at least 2. In particular, G is infinite with exponential growth.

The property from the theorems reminds of the property trees have: every finite tree
has vertices of degree 1. In the case of finite partial cubes with g(G)> 6 or with g(G) = 6
and no isometric subgraph isomorphic to Q−−4 (4), they must have vertices of degree 2. The
latter has a strong impact on the topic of regular partial cubes, a topic we will consider in
more details in Section 5.1.

Corollary 3.4.7. Let G be a finite regular partial cube with g(G) > 6. Then G is K1, K2 or
an even cycle. The same holds if g(G) = 6 and there is no isometric subgraph isomorphic to
Q−−4 (4).
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To see that the conditions in Theorems 3.4.5, 3.4.6 and Corollary 3.4.7 cannot be
weakened, consider the following examples. Recall that the middle level graph M2n+1, for
n≥ 1, is the subgraph of Q2n+1 induced on the vertices (i1, . . . , i2n+1), such that there are
exactly n or n+ 1 coordinates equal to 1. In particular, M3 is the cycle of length 6, while
M5 is known as the Desargues graph (see Figure 5.1 graph G(10, 3)). Middle level graphs
are the only distance-regular partial cubes with girth 6 [86], and they show that the bound
g(G)> 6 is tight. Notice that in the case n≥ 2 these graphs have many isometric subgraphs
isomorphic to Q−−4 (4).

On the other hand, one could consider the existence of infinite partial cubes with δ(G)≥
3, g(G) = 6, and no convex subgraphs isomorphic to Q−−4 (4) but with sub-exponential
growth. We know of one such example: an infinite hexagonal net. Simple examination
shows that it in fact has polynomial growth.

Another interesting corollary of Theorem 3.4.5 is the following. Consider the famous
Erdős–Gyárfás conjecture [37]. The conjecture states that every finite graph G with δ(G)≥ 3
has a cycle of length a power of two. If a partial cube G has δ(G) ≥ 3, then it must have
girth 4 or 6. In the first case 4 is a power of 2, while in the second case G must include a
subgraph isomorphic to Q−−4 (4) which has a cycle of length 8. Hence the following holds:

Theorem 3.4.8. Every partial cube G with δ(G)≥ 3 has a cycle of length 4 or 8. In particular,
the Erdős–Gyárfás conjecture holds in partial cubes.

Another motivation for the study of partial cubes with high minimum degree comes
from the theory of oriented matroids that we will introduce in Section 4.1. Every oriented
matroid is characterized by its tope graph, formed by its maximal covectors [14]. As we will
see, tope graphs are partial cubes and it follows from basic properties of oriented matroids
that the minimum degree of a tope graph is at least the rank of the oriented matroid it
describes. Since tope graphs of oriented matroids with rank at most 2 are characterized as
even cycles, there is a special interest in graphs with high minimum degree.

Theorem 3.4.5 can be seen in another interesting way concerning tope graphs. A famous
Sylvester–Gallai theorem states that given a finite number of points in the Euclidean plane,
either all the points lie on a single line; or there is a line which contains exactly two of
the points. By point-line duality this is equivalent to saying that for any set of lines not
all intersecting in a point there exists a point that is crossed by exactly two lines. Now
in this dual setting form a graph whose vertices are regions (polygons) between the lines
and two regions adjacent if they are separated by exactly one line. Then Sylvester–Gallai
theorem states that such a graph has a square. In fact, as we will see in Section 4.1, such
a graph is always an affine partial cube without Q−−4 (4) isometric subgraphs, half of a
3-connected antipodal partial cube. This is implied also by Theorem 3.4.6, thus it can be
seen as a generalization of Sylvester–Gallai theorem to all 3-connected partial cubes (or
with δ(G)≥ 3), where the result is not that they must have a square, but rather a square or
an isometric Q−−4 (4).
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Families of partial cubes

In this chapter we present various families of partial cubes with the intention to make a map
of partial cubes. The families can be seen in two ways. On one hand, the main reason for
the popularity of partial cubes is the fact that they present a generalization of many families
they contain and that naturally emerge in the study of seemingly non-connected areas of
mathematics, chemistry, theory of social choices, genetics and others [6, 34, 35, 58, 60].
Each family is fascinating on its own with particular properties and interests connected to
the area of research that was defined in. Nevertheless, many of the properties that were
originally proved for a particular family in fact generalize to the whole class of partial cubes.

On the other hand, subfamilies can be seen as hierarchical classes giving an insight in
the general structure of partial cubes. In this view subfamilies are just partial cubes with
additional properties. The classes we will present are the classes that we find crucial in
the understanding of the structure of partial cubes and are also the classes that were of
research interest in the recent years. Their hierarchy can be seen in Figure 4.1 and will be
in details explained in this chapter. In particular, we will not only settle the inclusions of
the families but also determine the positions of intersections of many families by giving
examples of such graphs in Figure 4.1 or proving that the intersections are empty. Figure
4.1 gives a simple layout of the subfamilies, but for the price of making them look trivial
and completely understood, which is far from the truth.

Even though not all the subfamilies presented here are pc-minor-closed, the pc-minors
are the main tools to understand the difference and similarities of the families.

4.1 Tope graphs of (complexes of) oriented matroids

We will start with the most general family of partial cubes studied here called topes of
complexes of oriented matroids. This is in contrast with the historical development since this
area was in fact only recently introduced [11] and studied [61] while the first studied class
(besides tress or hypercubes) is the family of median graphs [2, 72, 70, 69]. The reason for
choosing this approach is that it gives us a possibility of reviewing old results in a new way
and placing long known families in the context of new research.

The topic of complexes of oriented matroids needs an introduction. We will closely
follow [61] with additional explanations.

21
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Cellular

Median

Polat

Netlike

Peano

Hypercellular

Pasch

Tope graphs of COMs

Partial cubes with well�embedded zone graphs

Partial cubes

Tree�zone

Almost�median

Tope graphs of LOPs

Figure 4.1: A map of families of partial cubes. Each combination of inclusion and exclusion
in the families either has an example of such a graph or is empty.

Systems of sign-vectors

We will follow the standard oriented matroid notation from [14] and concerning complexes
of oriented matroids we stick to [11]. The topic of systems of sign-vectors is strongly
connected with geometry, it can be seen as a combinatorial approach of understanding
geometrical objects. Since the geometrical motivation for various concepts regarding systems
of sign-vectors is crucial, we will equip the formal definitions of the concepts with some
basic translations into the geometrical language.
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Let E be a non-empty finite (ground) set and let ; 6=L ⊆ {±, 0}E . The elements of L
are referred to as covectors. For the geometrical motivation considerH = {H1, . . . , Hn} to
be a central arrangement of hyperplanes in an Euclidean space Rd , i.e., hyperplanes in Rd ,
each including the origin. Chose v1, . . . , vn to be vectors in Rd such that Hi is precisely the
space of vectors orthogonal to vi , for each 1≤ i ≤ n. Each vector v ∈ Rd gives an element
X v ∈ {±, 0}n whose i-th coordinate is the sign of the scalar product v · vi. Thus the i-th
coordinate of X v tells on which side of the hyperplane Hi vector v is (being 0 if it lies on
the hyperplane). The set LH of covectors of the hyperplane arrangement is the set of all
possible elements of {±, 0}n obtained in this way. Note that the elements of LH can be
regarded as disjoint regions whose union is Rd .

��

�2

�3

�4

����

����

����

�0��

0000

� � �0

Figure 4.2: Central hyperplane arrangement with some covectors

Back to the general setting, for X ∈ L , and e ∈ E , let X e be the value of X at the
coordinate e. The subset X = {e ∈ E : X e 6= 0} is called the support of X and its complement
X 0 = E \ X = {e ∈ E : X e = 0} the zero set of X . For X , Y ∈ L , we call S(X , Y ) = { f ∈ E :
X f Yf = −} the separator of X and Y . For a subset A⊆ E and X ∈ L the reorientation of X
with respect to A is the sign-vector defined by

(AX )e :=

�

−X e if e ∈ A
X e otherwise.

In particular −X :=E X . The reorientation of L with respect to A is defined as AL := {AX |
X ∈ L}. In particular, −L :=E L . Regarding the geometrical example, these notions are
easily explained: let vx be a vector of Rd corresponding to the covector X ∈ LH . The
support of X is the subset of the set of hyperplanes (ground set) for which vx does not
lie on it. The zero set of X is the set of hyperplanes vx does lie on. If vy ∈ Rd is a vector
corresponding to Y ∈ LH , then the separator S(X , Y ) is the set of hyperplanes separating
vx and vy . The reorientation ofLH with respect to A⊂H corresponds to a different choice
of vectors v1, . . . , vn, in particular for each Hi ∈ A we can choose −vi instead of vi .

The composition of covectors X and Y is the sign-vector X ◦ Y, where (X ◦ Y )e = X e

if X e 6= 0 and (X ◦ Y )e = Ye if X e = 0. Notice that this operation is associative, but not
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commutative. At the first glance a non-intuitive definition can be geometrically explained
in the following way. Let X , Y ∈ LH be as in the above example and let vx , vy be their
corresponding vectors in Rd . The covector X ◦Y corresponds to the vector vx +εvy for some
small ε > 0. In fact, for each coordinate i with X i 6= 0 vector vx lies on some side of the
hyperplane Hi , thus the same holds for vx + εvy provided ε is small enough. On the other
hand, if X i = 0, vx lies on the hyperplane Hi, thus the position relative to Hi of vx + εvy

depends only on the position of vy . This proves that X ◦ Y ∈ LH since it corresponds to the
vector vx + εvy .

We continue with the formal definition of the main axioms. These axioms will be
relevant for the definition of various families of sign-vectors. All of them are closed under
reorientation.

Composition:

(C) X ◦ Y ∈ L for all X , Y ∈ L .

Since ◦ is associative, arbitrary finite compositions can be written without bracketing
X1 ◦ . . . ◦ Xk so that (C) entails that they all belong to L .

Note that contrary to a convention sometimes made in oriented matroids we do not
consider compositions over an empty index set, since this would imply that the zero sign-
vector belonged to L . The same consideration applies for the following two strengthenings
of (C).

Face symmetry:

(FS) X ◦ −Y ∈ L for all X , Y ∈ L .

By (FS) we first get X ◦ −Y ∈ L and then X ◦ Y = (X ◦ −X ) ◦ Y = X ◦ −(X ◦ −Y ) ∈ L
for all X , Y ∈ L . Thus, (FS) implies (C).

Ideal composition:

(IC) X ◦ Y ∈ L for all X ∈ L and Y ∈ {±, 0}E .

Note that (IC) implies (C) and (FS). The following axiom is part of all the systems of sign-
vectors discussed in the thesis and the main property that connects systems of sign-vectors
with partial cubes. We give the geometrical intuition for it after the definition.

Strong elimination:

(SE) for each pair X , Y ∈ L and for each e ∈ S(X , Y ) there exists Z ∈ L such that Ze = 0
and Z f = (X ◦ Y ) f for all f ∈ E \ S(X , Y ).

We give a few more axioms.

Symmetry:

(Sym) −X ∈ L for all X ∈ L .

Zero vector:
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(Z) the zero sign-vector 0 belongs to L .

Axiom (Z) is a combinatorial equivalent to a geometrical demand that all hyperplanes
in an arrangement cross the origin, while (Sym) gives a central symmetry also observed in
an Euclidean space.

Finally we add:

(X ⊕ Y )e :=

�

0 if e ∈ S(X , Y )
(X ◦ Y )e otherwise.

Affinity:

(A) (X ⊕−Y )◦Z ∈ L for all X , Y, Z ∈ L such that for each e ∈ S(X ,−Y ) and W ∈ L with
We = 0 there are f , g ∈ E \ S(X ,−Y ) such that Wf 6= (X ◦ −Y ) f and Wg 6= (−X ◦ Y )g .

We are now ready to define the central systems of sign-vectors of the present thesis:

Definition 4.1.1. A system of sign-vectors (E ,L ) is called a:

• oriented matroid (OM) if L satisfies (C), (Sym), and (SE) (or alternatively (SE), (Z)
and (FS) [11]),

• complex of oriented matroids (COM) if L satisfies (FS) and (SE),

• affine matroid (AOM) if L satisfies (A), (FS), and (SE),

• lopsided system (LOP) if L satisfies (IC) and (SE).

Now we explain the axioms with geometrical examples. The system of sign-vectors
(H ,LH ) coming from a hyperplane arrangement as defined above is an example of an
OM, thus satisfying axioms (C), (Sym), and (SE). The axiom (C) is satisfied for the reasons
explained after the definition of composition. Moreover, the axiom (Sym) is satisfied since
the arrangement is central: for X ∈ LH with corresponding vx ∈ Rd , −X corresponds
to −vx , thus −X ∈ LH . To see that the axiom (SE) holds in LH let again X , Y ∈ LH
be covectors and let vx , vy be corresponding vectors in Rd . Moreover let i ∈ S(X , Y ), i.e.,
vectors vX and vy are separated by the hyperplane Hi . Then point vZ on the line connecting
vX and vY intersecting Hi gives a vector such that for its covector Z ∈ LH holds Zi = 0
(since it is on the hyperplane Hi) and Z f = (X ◦ Y ) f for all f ∈ H \ S(X , Y ). Oriented
matroids obtained from hyperplane arrangements are called realizable oriented matroids or
sometimes also zonotopal oriented matroids.

As noted, axioms for an OM can be replaced by (SE), (Z) and (FS). Thus OMs are
a subfamily of COMs and the above example of the hyperplane arrangement is also an
example of a COM. Nevertheless, we want to give another example of a COM separating
it from an OM. For the latter consider again a central arrangement H = {H1, . . . , Hn} of
hyperplanes in an Euclidean space Rd . Moreover, let C be an open convex subset of Rd .
Now, let LH ,C ⊂ {±, 0}n be the set of covectors defined in the same way as in the case
of an OM, but only for those points that lie in the set C . Thus LH ,C ⊂ LH where only
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those covectors are considered whose corresponding regions intersect C . We claim that the
system of sign-vectors (H ,LH ,C) is a COM. Let X , Y ∈ LH ,C be covectors and let vx , vy

be corresponding vectors in C ⊂ Rd . Moreover let i ∈ S(X , Y ), i.e., vectors vX and vy are
separated by the hyperplane Hi . As in the case of OMs, the point vZ on the line connecting
vX and vY intersecting Hi is vector such that for its covector Z it holds that Zi = 0 and
Z f = (X ◦Y ) f for all f ∈H \S(X , Y ). Since C is convex, vZ ∈ C , thus Z ∈ LH ,C . This proves
that the axiom (SE) is satisfied. For the axiom (FS), let again X , Y ∈ LH ,C be covectors.
Then let vX ∈ C be corresponding vectors of X and −vY be the corresponding vector of −Y .
Covector −Y might not be in LH ,C but as in the case of OMs, there is a vector −vY ∈ Rd

corresponding to it. Then vx − εvY ∈ C for sufficiently small ε (even though −vY might not
be in C) since C is an open set and vX ∈ C . Thus the axiom (FS) is satisfied. As in the case
of OMs, call a COM (H ,LH ,C) obtained from a central hyperplane arrangement and an
open convex subset a realizable COM.

Figure 4.3: Convex subset in central hyperplane arrangement with covectors: a COM

We continue with a few definitions. Let againL ⊆ {0,±}E be a system of sign-vectors and
e ∈ E . For X ∈ L let X\e be the element of {0,±}E\{e} obtained by deleting the coordinate
e from X . Define operations L /e = {X\e | X ∈ L , X e = 0} as taking the hyperplane of
e (usually referred to as contraction) and L\e = {X\e | X ∈ L} as the deletion of e. A
sign-system that arises by deletion and taking hyperplanes from another one is called a minor.
Furthermore denote by L +e := {X\e ∈| X ∈ L , X e = +} and L −e := {X\e | X ∈ L , X e = −}
the positive and negative (open) halfspaces with respect to e.

The following is easy to see.

Lemma 4.1.2 ([11]). For any system of sign-vectors the operations of taking halfspaces,
hyperplanes and deletion commute.

Now we better explain AOMs. Axiom (A) is not easy to be interpreted directly but
a theorem due to Karlander [52] characterizes AOMs as exactly the halfspaces of OMs1.

1Note that his proof contains a flaw that has only been observed and fixed recently in [12].
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In particular we call an AOM realizable if it is obtained from a central arrangement of
hyperplanesH and an open halfspace C in the same way as a realizable COM is obtained,
where C is a halfspace defined by one of the hyperplanes in H . Another way to look at
realizable AOMs, is to see them as a (not necessarily central) arrangements of hyperplanes.
In fact every non-central arrangement of hyperplanes in Rd can be transformed in a central
arrangement by embedding Rd in Rd+1 as a hyperplane with the last coordinate fixed and
equal to 1, and extending each hyperplane (of Rd) in this subspace to a hyperplane crossing
the origin of Rd+1 (see Figure 4.4). Adding the hyperplane (of Rd+1) with the last coordinate
fixed and equal to 0 to the arrangement leads to a realizable AOM as defined above.

Figure 4.4: Non-central planar arrangement corresponding to open halfspace of a central
arrangement in R3.

Finally, the ideal composition axiom is a bit harder to explain thus a more concrete
example is needed. Consider a non-central arrangement of lines in R2 and let v be a point
in it that is in an intersection of k lines, say {Hi1 , . . . , Hik}. In particular, its corresponding
covector X v as defined in above examples has exactly the coordinates i1, . . . , ik equal to 0.
Assume that it holds X v ◦Y ∈ L for all Y ∈ {±}E . This means that there must be 2k polygon
regions around v. But since v lies in a plane, there are exactly 2k polygon regions around v
(cf. Figure 4.2), proving that the ideal composition axiom holds in this case only if k = 2. In
fact, it turns out that the composition axiom holds in a hyperplane arrangement in Rd iff
each point is in the intersection of at most d hyperplanes. More examples and properties of
LOPs will be explained in the following subsection.

Our systems of sign-vectors behave well with respect to operations of taking hyperplanes
and deletion:

Lemma 4.1.3 ([61]). The classes of COMs, AOMs, OMs, and LOPs are minor closed. Moreover,
COMs and LOPs are closed under taking halfspaces.

The rank of a system of sign-vectors (E ,L ) is the largest integer r such that there is
subset A⊆ E of size |E | − r such that L\A= {±, 0}r . In other words, the rank of (E ,L ) is
just the VC-dimension of L . Note that this definition of rank coincides with the usual rank
definition for OMs, see [28].

A system of sign-vectors (E ,L ) is simple if it satisfies the following two conditions:

(N1∗) for each e ∈ E , {±, 0}= {X e : X ∈ L};

(N2∗) for each pair e 6= f in E , there exist X , Y ∈ L with {X eX f , YeYf }= {±}.
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An element e ∈ E not satisfying (N1∗) is called redundant. Two elements e, f ∈ E are
called parallel if they do not satisfy (N2∗). Note that parallelism is an equivalence relation
on E . We denote by [e] the class of elements parallel to e, for e ∈ E .

For every COM (E ,L ) there exists up to reorientation and relabeling of coordinates a
unique simple COM, obtained by successively applying operation L\e to the redundant
coordinates e ∈ E and to elements of parallel classes with more than one element. See [11,
Proposition 3] for the details. Note that by Lemma 4.1.2 the order in which these operations
are taken is irrelevant and by Lemma 4.1.3 all the classes of systems of sign-vectors at
consideration here are closed under this operation. We will denote by S (E ,L ) the unique
simplification of (E ,L ).

We finalize this part with the geometrical motivation of the above operations. Let
again H = {H1, . . . , Hn} to be a central arrangement of hyperplanes in Rd and LH ,C its
corresponding realizable COM. Taking a halfspace or a halfplane corresponds to considering
only regions on one side of a chosen hyperplane or only regions on the chosen hyperplane,
respectively. The deletion corresponds to deleting one of the hyperplanes. If LH ,C does not
satisfy the axiom (N1∗) then one of the halfplanes inH does not cross C , thus the halfplane
is redundant. If LH ,C satisfies the axiom (N1∗), but does not satisfy the axiom (N2∗), then
two halfspaces coincide, from here the expression that the coordinates are parallel. The
simplification S (H ,LH ,C) is obtained by the removal of all redundant hyperplanes and
restriction to the equivalence classes of parallel ones.

Systems of sign-vectors and partial cubes

The topes of a system of sign-vectors (E ,L ) are the elements of T :=L ∩{±}E . If (E ,L ) is
simple, we define the tope graph G(L ) of (E ,L ) as the (unlabeled) subgraph of QE induced
by T . Note that, for the sake of the convenience, in this case we see the vertices of QE as
the strings of 1s and -1s rather than 1s and 0s. If (E ,L ) is non-simple, we consider G(L )
as the tope graph of its simplification S (E ,L ).

In general G(L ) is an unlabeled graph and even though it is defined as a subgraph of a
hypercube QE it could possibly have multiple non-equivalent embeddings in QE . We call
a system (E ,L ) a partial cube system if its tope graph G(L ) is an isometric subgraph of
QE in which the edges correspond to sign-vectors of L with a single 0. It is well-known
that partial cubes have a unique embedding in QE up to automorphisms of QE , see e.g. [74,
Chapter 5]. In other words, the tope graph of a simple partial cube system is invariant under
reorientation. For this reason we will, possibly without an explicit note, identify vertices of
a partial cube G(L ) with subsets of {±}E . The following was proved in [11, Proposition 2]:

Lemma 4.1.4 ([11]). Simple COMs are partial cube systems.

Moreover, in the case of a simple COM that is realizable in Rd it is crucial to notice that
its tope graph corresponds to the regions graph in which the d-dimensional regions of the
hyperplane arrangement are its vertices and two regions adjacent iff they are separated by
exactly one hyperplane. See Figures 4.2, 4.3 where the tope graphs are an 8-cycle and a
path of length 2, respectively.
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Before presenting basic results regarding partial cube systems, we discus how the minor
operations and taking halfspaces as defined in Section 4.1 affect tope graphs. So let (E ,L )
be a simple partial cube system.

First note that deletion does not affect the simplicity of (E ,L ). Furthermore, since
(E ,L ) is a partial cube system, the tope graph G(L\e) corresponds to πe(G(L )) obtained
from G(L ) by contracting all the edges in the Θ-class corresponding to coordinate e, as
defined in Section 2.4.

Also, the halfspace L +e is easily seen to be simple and its tope graph corresponds to the
restriction ρe+(G(L )) to the positive halfspace of Ee ∈ E , as defined in Section 2.4.

The hyperplane L /e does not need to be a simple system of sign-vectors nor a partial
cube system. However, we can establish the following:

Lemma 4.1.5 ([61]). Let (E ,L ) be a partial cube system and e ∈ E . If ζe(G(L )) is a
well-embedded partial cube, then ζe(G(L ))∼= G(L /e).

The correspondences before the lemma in particular give that deletions and halfspaces
of partial cube systems coincide with pc-minors, which together with Lemma 4.1.3 gives:

Proposition 4.1.6. Let (E ,L ) and (E ′,L ′) be simple partial cube systems with tope graphs
G(L ) and G(T ′), respectively. Then (E ′,L ′) arises from (E ,L ) by deletion and taking
halfspaces iff G(T ′) is a pc-minor of G(L ). Moreover, the families of tope graphs of COMs and
LOPs are pc-minor closed.

In the following, we will describe further how pc-minors and equivalently deletions
and halfspaces of partial cube systems translate metric graph properties as introduced in
Subsection 2.4 into properties of sign-vectors.

For X ∈ L we set T (X ) := {T ∈ T | X ◦ T = T} and denote by G(X ) the subgraph of
G(L ) induced by T (X ). Furthermore, letH (L ) = {G(X ) | X ∈ L} be the set of subgraphs
G(L ) obtained by considering G(X ) for all X ∈ L . Conversely, given a convex subgraph G′

of a partial cube G with Θ-classes E denote by X (G′) the sign-vector with X (G′)e = + or
X (G′)e = − if G′ ⊆ E+e or G′ ⊆ E−e ,respectively, and 0 otherwise for all Ee ∈ E . Note that for
each vertex v ∈ G(L ), X (v) = v. Furthermore, let L (H ) = {X (G′) | G′ ∈H } for a setH
of convex subgraphs of G.

Proposition 4.1.7 ([61]). In a simple partial cube system (E ,L ) for each X ∈ L its tope-
graph G(X ) is a convex subgraph of G(L ). Conversely, if G = (V, E) is a partial cube andH a
set of convex subgraphs of G, such thatH includes all the vertices of G, then there is a simple
(E ,L ) such that G = G(L ) andH =H (L ).

The following establishes a connection between the gates of a convex set and the
composition operator.

Lemma 4.1.8 ([61]). Let G be a partial cube embedded in a hypercube, G′ a convex subgraph
of G and v a vertex of G. Then w is the gate for v in G′ if and only if X (w) = X (G′) ◦ X (v).
Therefore, a subgraph G′ is gated if and only if for all v ∈ G there is a w ∈ G such that
X (G′) ◦ X (v) = X (w).
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For a partial cube G isometrically embedded in a hypercube QE define L (G) = {X ∈
{0,±}E | X ◦ (−Y ) ∈ T (X (G)), for all Y ∈ T (X (G))}.

Lemma 4.1.9 ([61]). Let G be a partial cube. ThenL (G) is a partial cube system that satisfies
(FS) (and therefore (C)) and the setH (L (G)) of corresponding subgraphs coincides with the
antipodal gated subgraphs of G.

Proposition 4.1.7 states that in a simple system of sign-vectors there is a correspondence
between its vectors and a subset of the set of convex subgraphs of its tope graph. The
following proposition determines which convex subgraphs are in the subset if the system is
a COM.

Theorem 4.1.10 ([61]). For a simple COM (E ,L ) with tope set T we have

L = {X (G′) | G′ antipodal subgraph of G(L )}
= {X (G′) | G′ antipodal gated subgraph of G(L )}
=L (G).

In particular, in a tope graph of a COM all antipodal subgraphs are gated.

As a consequence every simple COM is uniquely determined by its tope set, or up to
reorientation by its tope graph (for a non-constructive proof see [11, Propositions 1 & 3], for
an example of how to obtain a COM out of its tope graph see Figure 4.5. The constructive
statement here is in fact a generalization of a theorem known for OMs, usually attributed
to Mandel, see [25]. To understand the above theorem geometrically in realizable COMs,
recall that in this case L correspond to regions of Rd that are defined by some hyperplane
arrangement intersected by an open convex set where d-dimensional regions correspond
to the vertices of the graph G(L ). The theorem states that each region X of dimension
less than d defines an antipodal gated subgraph of G(L ) of all the d-dimensional regions
touching X . In fact the theorem states more, that for each non-trivial antipodal subgraph of
G(L ) there exist a region touching all the vertices in the subgraph.
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Figure 4.5: A tope graph of a COM in which all antipodal subgraphs are denoted forming a
COM.

We will from now on denote the class of tope graphs of COMs by GCOM and the class of
partial cubes in which antipodal subgraphs are gated by AG, i.e. the above theorem implies
GCOM ⊆ AG.
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Corollary 4.1.11 ([61]). A partial cube G is in GCOM if and only if L (G) is a simple COM.

Let us finally describe how tope graphs of the other systems of sign-vectors from Sec-
tion 4.1 specialize tope graphs of COMs. We will denote the classes of tope graphs of OMs,
AOMs, and LOPs by GOM, GAOM, and GLOP. A consequence of the definition of antipodality
in partial cubes is:

Proposition 4.1.12. A graph is in GOM if and only if it is antipodal and in GCOM.

A not yet intrinsic description of tope graphs of AOMs follows:

Proposition 4.1.13. A graph is in GAOM if and only if it is a halfspace of a graph in GOM.

Interpreting axiom (IC) in the partial cube model we get: for each X ∈ L , the antipodal
subgraph G(X ) must be isomorphic to a hypercube. Thus:

Proposition 4.1.14. A graph is in GLOP if and only if all its antipodal subgraphs are hypercubes
and it is in GCOM.

Noticing thatL (Qr), for a hypercube Qr , equals {±, 0}r we immediately get the following
lemma from the definition of the rank of a system of sign-vectors.

Lemma 4.1.15. The rank of a COM (E ,L ) is the largest r such that G(L ) contracts to Qr .

Obstructions for COMs

Let Qn be the hypercube, v ∈Qn any of its vertices and −v its antipode. Let Q−n :=Qn \ −v
be the hypercube minus one vertex. Consider the set of partial cubes arising from Q−n by
deleting any subset of N(v) ∪ {v}. It is easy to see that if n ≥ 4 a graph obtained this
way from Q−n is a partial cube unless v is not deleted but at least two of its neighbors are
deleted. Denote by Q−∗n the partial cube obtained by deleting exactly one neighbor of v,
and by Q−−n (m) the graph obtained by deleting v and m neighbors of v, respectively, where
for Q−−n (0) we sometimes simply write Q−−n . It is easy to see that Q−n and Q−−n are tope
graphs of (realizable) COMs. For n≤ 3 all the partial cubes arising by the above procedure
are isomorphic to Q−n or Q−−n , thus the interesting graphs appear for n ≥ 4. Denote their
collection by Q− = {Q−∗n ,Q−−n (m) | 4 ≤ n; 1 ≤ m ≤ n}. The family Q− will turn out to be
the list of excluded minors for tope graphs of COMs.

Q−−
4 (4)Q−−

4 (3)Q−−
4 (2)Q−−

4 (1)Q−∗
4

Figure 4.6: Graphs Q−∗4 ,Q−−4 (m), for 1≤ m≤ 4. The square vertex has no gate in the bold
C6.
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Notice that we have already seen some of the graphs inQ−. In fact we have encountered
the five graphs {Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4} when characterizing the family of partial cubes
whose zone graphs are well-embedded partial cubes. The following lemma says that the
class Q− is minimal with regards to the minor relation. Moreover, the second assertion of it
states that no graph in Q− is a tope graph of a COM, since by Theorem 4.1.10 antipodal
subgraphs are gated in tope graphs of COMs.

Lemma 4.1.16 ([61]). The class Q− is pc-minor minimal, i.e. any pc-minor of a graph in
Q− is not in Q−. Furthermore, any graph in Q− contains an antipodal subgraph that is not
gated, i.e. Q ⊆ AG.

Characterizations of tope graphs of COMs and corollaries

The main result of this section is a characterization of the tope graphs of COMs that does
not depend on axioms of systems of sign vectors but rather graph theoretical properties of
this graphs. In fact such a characterization for tope graphs of OMs was an open problem
[14, 40] and is implied by our result. We will present two characterizations, one in terms
of metric properties of subgraphs and another in terms of excluded pc-minors. A direct
corollary is a third characterization in terms of zone graphs. Characterizations of other
(geometric) families presented in this section also follow from the main result.

Theorem 4.1.17 ([61]). For a graph G the following conditions are equivalent:

(i) G ∈ GCOM,

(ii) G is a partial cube and all its antipodal subgraphs are gated,

(iii) G ∈ F (Q−).

We proved the theorem in [61] in the following way. Tope graphs have gated antipodal
subgraphs by Theorem 4.1.10 thus (i) impies (ii). The second part includes the proof that if G
is not a tope graph of a COM, then it must contain a minor in G ∈ F (Q−) proving (iii) implies
(i). The latter is proved in a recursive way, where recursion assumption is used on a smaller
graph obtained by well-embedded zone graphs. Recall from Theorem 3.2.6 that if the zone
graphs of G are not partial cubes then G has a minor in {Q−∗4 ,Q−−4 (m) | 1 ≤ m ≤ 4} ⊂ Q−

and thus is not in F (Q−). Finally, the fact that (ii) implies (iii) seems trivial since all the
graphs in Q− contain an antipodal subgraph that is not gated, but the catch is hidden in
the need to prove that the family AG is a minor closed family. In fact the latter presents the
greatest difficulty in the proof of Theorem 4.1.17.

The theorem can be used to obtain a characterization of GCOM in terms of zone graphs.

Corollary 4.1.18 ([61]). A graph G is in GCOM if and only if it is a partial cube such that all
iterated zone graphs are well-embedded partial cubes.

It is interesting to compare the families F ({Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}) and GCOM. On
one hand, the inclusion of the second in the first is clearly seen through the forbidden
subgraphs characterization. On the other hand, Theorem 3.2.6 and Corollary 4.1.18 give
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Figure 4.7: An example of a partial cube in GOM ⊂ GCOM, i.e. an antipodal partial cube with
all its antipodal subgraphs gated.

the inclusion via the zone graphs, where in the case of the second family all iterated zone
graphs are well-embedded partial cubes, while in the first family only the first iteration.

Theorem 4.1.17 and Corollary 4.1.18 specialize to other systems of sign-vectors. Using
Proposition 4.1.12 we immediately get:

Corollary 4.1.19 ([61]). For a graph G the following conditions are equivalent:

(i) G ∈ GOM,

(ii) G is an antipodal partial cube and all its antipodal subgraphs are gated,

(iii) G is in F (Q−) and antipodal,

(iv) G is an antipodal partial cube and all its iterated zone graphs are well-embedded partial
cubes.

Note that the equivalence (i)⇔(ii) corresponds to a characterization of tope sets of
OMs due to da Silva [28] and (i)⇔(vi) corresponds to a characterization of tope sets of
Handa [46]. See Figure 4.7 for an example of the tope graph of an OM, thus also of a COM.

Let us call an affine subgraph G′ of an affine partial cube G conformal if for all v ∈ G′

we have −G′ v ∈ G′⇔−G v ∈ G. We give an intrinsic characterization of GAOM:

Corollary 4.1.20 ([61]). For a graph G the following conditions are equivalent:

(i) G ∈ GAOM,

(ii) G is an affine partial cube and all its antipodal and conformal subgraphs are gated,

(iii) G is in F (Q−) (or G ∈ GCOM), affine, and all its conformal subgraphs are gated.

For the next statement denote Q−− := {Q−−n | n≥ 3}.
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Corollary 4.1.21 ([61]). For a graph G the following conditions are equivalent:

(i) G ∈ GLOP,

(ii) G is a partial cube and all its antipodal subgraphs are hypercubes,

(iii) G is in F (Q−−).

For lopsided sets the (i)⇔(ii) part of the corollary corresponds to a characterization
due to Lawrence [62]. See Figure 4.8 for an example graph.

Figure 4.8: The tope graph of a lopsided set.

Recall that by Lemma 4.1.15 the rank of a COM is the dimension of a maximal hypercube
to which its tope graph can be contracted. Considering COMs of bounded rank, we can
reduce the set of excluded pc-minors to a finite list. For any r ≥ 3 define the following finite
sets

Q−r := {Q−∗n ,Q−−n (m),Q
−−
r+2(r + 2),Qr+1 | 4≤ n≤ r + 1; 1≤ m≤ n} ⊂ Q− ∪ {Qr+1},

and

Q−−r := {Q−−n ,Qr+1 | 3≤ n≤ r + 1} ⊂ Q−− ∪ {Qr+1}.

Corollary 4.1.22 ([61]). For a graph G and an integer r ≥ 3 we have:

• G ∈ GCOM of rank at most r ⇔ G ∈ F (Q−r ).

• G ∈ GOM of rank at most r ⇔ G ∈ F (Q−r ) and G is antipodal.

• G ∈ GAOM of rank at most r ⇔ G ∈ F (Q−r ), G is affine and all its conformal subgraphs
are gated.

• G ∈ GLOP of rank at most r ⇔ G ∈ F (Q−−r ).

Note that Proposition 2.4.1 directly yields a polynomial time recognition algorithm for
the recognition of the bounded rank classes above. However, the recognition of graphs from
any of the classes GCOM,GAOM,GOM,GLOP can be done in polynomial time as in Algorithm 1.
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Algorithm 1 Recognition of classes GCOM,GAOM,GOM,GLOP

1. First we isometrically embed the graph in a hypercube. If this cannot be done, then
the graph is not in any of the above classes.

2. Next we compute all pairs of vertices u, v of G and store them. We check if each
conv(u, v) is antipodal, and if so, we check if it is gated. If all the antipodal graphs
obtained in this way are gated, then G ∈ GCOM, otherwise we do not proceed. If G is
among the antipodal subgraphs, then GOM.

3. Now we check if G is a LOP. For the latter we just check if all antipodal conv(u, v) are
isomorphic to a hypercube, i.e. |conv(u, v)|= 2d(u,v). If so, then G ∈ GLOP.

4. We continue by checking for each conv(u, v) if it is an affine subgraphs. For each pair
u′, v′ ∈ conv(u, v) such that |conv(u′, v′)|< |conv(u, v)| we store the pair in NA(u, v),
and we search for a pair w,−conv(u,v)w ∈ conv(u, v) such that the set of Θ-classes on
a shortest (u′, w)-path and on a shortest (v′,−conv(u,v)w)-path are disjoint. Note that
the convex hulls are already computed. If this is the case for all such u′, v′, we store
conv(u, v) as an affine subgraph.

5. Finally, we check if the whole graph is affine, in this case say G = conv(u, v). Then
for every affine subgraph conv(u′, v′) and vertex w ∈ conv(u′, v′), we check if the pair
w,−conv(u′,v′)w is a pair in NA(u′, v′) if and only if w,−Gw is a pair in NA(u, v). If this
is the case, conv(u′, v′) is a conformal subgraph and we check if it is gated. Finally, if
all conformal subgraphs are gated, then G ∈ GAOM.

Note that by Theroem 2.2.4, partial cubes can be recognized and embedded in a hy-
percube in quadratic time. For a partial cube embedded in a hypercube checking if it is
antipodal can be done in linear time by checking if every vertex has its antipode. The convex
hull of any subset can be computed in linear time in the number of edges (for instance
by using Lemma 2.3.2) for a graph embedded in a hypercube and checking if a convex
subgraph is gated is linear by Lemma 4.1.8. The correctness of the algorithm follows directly
from Theorem 4.1.17, Corollaries 4.1.19, 4.1.21, 4.1.20, and Proposition 2.5.6.

Realizability of COMs

As we have seen, examples of tope graph of COMs can be constructed by considering a
central hyperplane arrangement together with an open convex subset, and extracting its tope
graph. Recall that such COMs are called realizable. In fact, as discussed in the connection
with AOMs, one can even take a non-central arrangement since such an arrangement can
be extended to a halfspace of a central one (see Figure ??. Since each convex set in an
Euclidean space can be approximated by an intersection of a finite number of halfspaces,
notice that the above construction corresponds to constructing a realizable OM and taking a
convex subgraph of it, by Lemma 2.3.2. Nevertheless, not all COMs can be constructed in
this way, i.e. not all COMs are realizable, see Figure 4.9. One of the reasons for that is that
already not all OMs are realizable [14].
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Figure 4.9: Tope graph of an affine COM, halfspace of non-realizable, so called non-Pappus
OM.

The Non-Pappus OM form Figure 4.9 (i.e. the full antipodal graph, not just the halfspace)
cannot be realized as an OM since the red lines, if stretched, must obey the Pappus theorem,
meaning that the three lines in the center of the figure must intersect, and one must obtain
a 6-cycle instead of the Q−3 in the center of the graph (see [14, Section 1.3] for details).
Moreover, notice also that the non-Pappus OM cannot be realized as a COM (i.e. realizability
of OM and a COM coincides) since if it is a convex subgraph of a realizable COM G, then it
must be gated by Theorem 4.1.17. Hence contracting all the Θ-classes of G (i.e. deleting all
the hyperplanes in the realization) besides the one intersecting the non-Pappus subgraph
gives a realization of the non-Pappus OM. But this cannot exist.

One of the most famous theorems about OMs is their topological representability. First
notice that in a realization of a realizable OM all the regions besides the central point intersect
the centrally positioned sphere. Hence instead of the whole space Rd one could consider
only its (d − 1)-dimensional central sphere Sd−1, and, instead of the hyperplanes, only
(d − 2)-dimensional subspheres of Sd−1. Notice that each subsphere obtained in the above
way cuts Sd−1 into two connected components homeomorphic to a (d − 2)-dimensional ball.
Call subspheres with such a property pseudospheres, and connected components obtained by
removing a pseudosphere its sides.

Definition 4.1.23. Let Sd−1 be a sphere. A finite set A= {Se | e ∈ E} of pseudospheres in Sd−1

is called an arrangement of pseudospheres if the following conditions hold:

(1) SA = ∩e∈ASe is a sphere, for all A⊆ E .

(2) If SA 6⊆ Se for some A ⊆ E , e ∈ E , and S+e , S−e are the two sides of Se, then SA ∩ Se is a
pseudosphere in SA with sides SA∩ S+e and SA∩ S−e .

The arrangement of pseudospheres is essential if the intersection SE (as defined by (1))
is empty. The representability theorem is the following:
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Theorem 4.1.24 ([31]). For each essential arrangement of pseudospheres in Sd−1, covectorsL
obtained from it, together with the zero covector, form an oriented matroid of rank d. Moreover,
each simple oriented matroid of rank d can be obtained from an essential arrangement of
pseudospheres in Sd−1.

A simplified interpretation of Theorem 4.1.24 is that all simple OMs can be seen as
arrangements of pseudospheres, where pseudospheres are (possibly) not straight (as in
the case of realizable OMs), but nevertheless have similar properties (as straight ones)
on intersections. It is an interesting question of determining which OMs and COMs are
realizable. In [82] it was shown that recognizability of realizable OMs is equivalent to
the existential theory of the reals, which is a stronger statement than NP-hardness. By
Corollary 4.1.19, tope graphs of OMs are just antipodal tope graphs of COMs thus also
recognizability of realizable COMs is equivalent to the existential theory of the reals. It is
interesting to notice that the tope graphs of realizable COMs are a minor closed family (since
contractions correspond to deletions of hyperplanes and restrictions to limiting the convex
set to a halfspace of some hyperplane, as it was written before), hence the minimal family
of forbidden minors of tope graphs of realizable COMs is infinite and hard to recognize.

On the other hand, the question of topological representability of COMs is an open
problem. In [11] it was conjectured that every tope graph of a COM is a convex subgraph
of a tope graph of an OM. If this is true, then it implies a topological representation with
pseudospheres. Another interesting concept was introduced in [11]: call a tope graph of a
COM locally realizable if all its antipodal subgraphs are realizable. Graph in Figure 4.9 is
locally realizable since all its antipodal subgraphs are even cycles, but not realizable.

Proposition 4.1.25. If H is a COM that is a convex peripheral expansion of a realizable COM
G, then H is realizable.

Proof. Let {Hi | 1≤ i ≤ m} be hyperplanes and C an open convex set realizing G in Rn. Let
G1, G2 be the sets of the peripheral expansion of G, such that G1 = G and G2 is a convex
subgraph of G. By Lemma 2.3.2, G2 corresponds to an intersection of open halfspaces. Let
C ′ be a open convex subset such that C ′ together with {Hi | 1 ≤ i ≤ m} realizes G2 but
instead of taking the full intersection of open halfspaces bounding G2 take C ′ to be a bit
smaller, say ε away from the boundary of the intersection of the halfspaces.

Extend {Hi | 1 ≤ i ≤ m} in Rn+1 so that all the hyperplanes are parallel to the last
coordinate axis. Let C be embedded into this space with last coordinate equal to 0 and C ′

be embedded with the last coordinate equal to 1. Let then C ′′ be the convex closure of C
and C ′ embedded this way minus the boundary of it. Then C ′′ is an open convex set. Add
a hyperplane Hm+1 orthogonal to the last axis with the last coordinate fixed to the value
1− ε2. Then {Hi | 1≤ i ≤ m+ 1} together with C ′′ is a realization of H assuming ε is small
enough.
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4.2 Pasch and Peano graphs

We observed in Lemma 2.3.2 that partial cubes are precisely the bipartite graphs in which
convex sets correspond to intersection of halfspaces (restrictions). This property is one of
the essential features of the metric of Euclidean spaces. In this section we will work with
bipartite graphs having additional similarities with Euclidean spaces.

First we define properties we are interested in. We will denote with I(u, v) the interval
from u to v, i.e., all the vertices that lie on some shortest u, v-path. We defined in partial
cubes the sets of the form Wab to be halfspaces, in general graphs halfspaces are defined as
those convex sets whose complement is also convex. As noted before, in partial cubes the
above two definitions coincide.

Definition 4.2.1. A graph G is said to have the:

• Peano property if for all u, v, w ∈ V (G), x ∈ I(u, w) and y ∈ I(v, x), there exists a point
z ∈ I(v, w) such that y ∈ I(u, z).

• Pasch property if for all u, v, w ∈ X , v ∈ I(u, w) and w′ ∈ I(u, v), the intervals I(v, v′)
and I(w, w′) are non-disjoint.

• Join-hull commutativity property if for any convex set C ⊆ V (G) and any u ∈ V (G), the
convex hull of {u} ∪ C equals the union of the convex hull of {u, v} for all v ∈ C.

• Separation property S3 if for every x ∈ V (G) that does not belong to a some convex
set C ⊂ V (G), there is a halfspace H which separates x form C, that is, x ∈ H and
C ∈ V (G) \H.

• Separation property S4 if for all C , D ⊆ V (G) disjoint convex sets, there is a halfspace H
which separates C from D, that is, C ⊂ H and D ⊂ X \H.

Now we focus on what the above properties imply in bipartite graphs. Restating Lemma
2.3.2 a bipartite graph has the S3 property if and only if it is a partial cube.

Lemma 4.2.2 ([21]). A graph has the S4 property if and only if it has the Pasch property.

Since a vertex is a convex set in graphs, the S4 property implies the S3 property. For the
reasons of the above lemma we define the following family of partial cubes.

Definition 4.2.3. A bipartite graph G is a Pasch graph if it satisfies the Pasch (or equivalently
the S4) property.

More equivalences among the properties hold. The first statement is from [85], the
second from [20].

Lemma 4.2.4 ([85, 20]). Let G be a graph in which intervals are convex sets. Then G has
the join-hull commutativity property if and only if it has the Peano property. Moreover if G is
bipartite and satisfies the latter properties, then it is a Pasch graph.
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Intervals in hypercubes are always isomorphic to sub-hypercubes, which are convex
subgraphs. Now, let u, v be vertices of a partial cube G embedded in a hypercube Q. By the
above the interval IQ(u, v) in Q is a sub-hypercube Q′ ⊂Q. On the other hand, the interval
IG(u, v) of G consists of precisely all the vertices of G ∩Q′. Hence also IG(u, v) is convex,
proving that intervals are convex also in partial cubes. Now we can give another definition.

Definition 4.2.5. A partial cube G is a Peano graph if it satisfies the Peano (or equivalently
the join-hull commutativity) property.

By Lemma 4.2.4, Peano graphs are a subfamily of Pasch graphs. Pasch graphs were
explored in detail already in 1994 in [21] while Peano graphs were put on the map only
recently in [75].

The main result regarding Pasch graphs explaining their position on the map of Figure
4.1 is the following. The forbidden minors are denoted as in Section 4.1.

Theorem 4.2.6 ([21]). The family of Pasch graphs corresponds to the family
F ({Q−4 ,Q−−4 ,Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}).

(a) Q−4 (b) Q−−4

Figure 4.10: Graphs Q−4 and Q−−4 .

See Figure 4.10 for the first two forbidden minors and Figure 3.2 for the remaining ones.
Theorem 4.2.6 together with Theorem 4.1.17 implies that Pasch graphs are tope graphs
of COMs. To see this notice that the graphs in {Q−∗4 ,Q−−4 (m) | 1 ≤ m ≤ 4} are precisely
the forbidden minors of COMs of isometric dimension four, while all the other forbidden
minors of COMs have a pc-minor in {Q−4 ,Q−−4 }. In fact, we observe that the forbidden minors
of isometric dimension five have a convex Q−−4 , while all the forbidden minors of higher
isometric dimension have a convex Q−4 subgraph. This implies that any graph that is not a
COM is not a Pasch graph since it has a minor among the forbidden minors of COMs, which
further have a pc-minor among the forbidden minors of Pasch graphs.

In [22] we went further and analyzed isometric cycles in Pasch graphs.

Proposition 4.2.7 ([22]). The convex closure of any isometric cycle of a Pasch graph G is a
gated subgraph. If the subgraph is antipodal, then it is isomorphic to a Cartesian product of
edges and even cycles.

The above implies the following.
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Proposition 4.2.8. Every Pasch graph is a tope graph of a locally realizable COM.

Proof. By Lemma 2.5.4 every antipodal subgraph in a partial cube is a convex closure of
some isometric cycle. By Proposition 4.2.7, every antipodal subgraph of a Pasch graph is
gated and isomorphic to a Cartesian product of edges and even cycles, i.e., a tope graph of
a realizable oriented matroid.

For a triple of vertices u, v, w of a graph G, a u-apex relative to v and w is a vertex
x := (uvw) ∈ I(u, v) ∩ I(u, w) such that I(u, x) is maximal with respect to inclusion. A
graph G is apiculate [8] if and only if for any vertex u the vertex set of G is a meet-
semilattice with respect to the base-point order �u defined by v �u v′⇔ v ∈ I(u, v′), that
is, I(u, v)∩ I(u, w) = I(u, (uvw)) for any vertices v, w.

Lemma 4.2.9 ([8]). Every Pasch graph G is apiculate.

Note that many partial cubes are not apiculate. In fact, in [13] it was proved that a
tope graph of an OM of rank r is apiculate if and only if the graph is regular with degree
r. Also notice that properties from Propositions 4.2.7, 4.2.8 and Lemma 4.2.9, i.e. that
the graph has all its antipodal subgraphs gated and isomorphic to the Cartesian product of
edges and even cycles, and that the graph is apiculate, are not characterizing properties of
Pasch graph. In fact there exist partial cubes with this properties that are not Pasch, but
the smallest such graphs have isometric dimension 6 making them too big for a simple
presentation. Moreover there exist also apiculate tope graphs of lopsided set (in this case,
all their antipodal subgraphs are hypercubes) that are not Pasch. The latter gives a negative
answer to the question posed in [22]. We found all the above examples by a computer
search.

Figure 4.11: A non-Pasch partial cube being apiculate and having all its antipodal subgraphs
isomorphic to the Cartesian product of even cycles and edges.

An extensive study of Peano graphs was conducted in [75], here we present the main
result of it. Before doing so, we point out that Peano graphs are not a pc-minor closed family
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proved by the graphs G1 and G2 =Q−3 from Figure 4.12 where G2 is a pc-minor of G1 but
G1 is a Peano graph while G2 is not. Thus different tools are needed to understand Peano
graphs.

(a) G1 (b) G2

Figure 4.12: A Peano graph G1 and its non-Peano minor G2 (which is a Pasch graph).

Recall that a convex closure of a set in a graph can be obtained by iteratively adding all
the vertices on the shortest paths between vertices of the set. For a set S in a graph G we
will denote with I(S) all the vertices in G lying on shortest path between two vertices of S,
i.e., I(S) = ∪u,v∈S I(u, v). A copoint at a vertex x is a convex set K which is maximal with
respect to the property that x /∈ K .

Definition 4.2.10. Let G be a graph. The least non-negative integer n such that conv(C∪{x}) =
In(C ∪ {x}) for each vertex x and each copoint C, is called the pre-hull number of a graph G
and is denoted by ph(G).

The pre-hull number gives a measure how complicated the convexity of a graph is. In
particular, the bipartite graphs with pre-hull number 0 are characterized as trees [81]. In
the case of finite graphs, the characterization of Peano graphs states that they are the second
in this measure.

Theorem 4.2.11 ([75]). A partial cube G is a Peano graph if and only if ph(G)≤ 1.

An important subfamily of Peano graphs is the family of netlike partial cubes. The study
of them exceeds the scope of this thesis, see [76, 77, 78, 79, 80]. Here we just define them
by a characterization presented in [76] (avoiding additional definitions) as the partial cubes
with pre-hull number less or equal to 1 and the convex closure of each non-convex isometric
cycle isomorphic to a hypercube. In particular, notice that they are locally realizable COMs
(since Pasch graphs are) with all its antipodal subgraphs being hypercubes or even cycles.
The graphs in Figure 4.12 show that also netlike partial cubes are not a pc-minor closed
family since G1 is a netlike partial cube while G2 is not.

4.3 Hypercellular graphs

We have seen in the previous chapter that Peano graphs are not a pc-minor closed family. A
simplest graph that is not a Peano graph is graph Q−3 , a 3-dimensional hypercube minus a
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vertex. This simple motivation lead to the analysis of the family F (Q−3 ) that turned out to
be relevant on the map of partial cubes as the family generalizing many existing families,
but with similar properties as them. For the reasons of generalizing bipartite cellular graphs
(that we will introduce in Section 4.5) and their cellular structure we called the family
hypercellular graphs in [22]. This section intends to present the most important results from
the latter paper.

Many structural properties have been proved for hypercellular graphs, we will start with
the property of their isometric cycles:

Theorem 4.3.1 ([22]). The convex closure of any isometric cycle of a graph G ∈ F (Q−3 ) is a
gated subgraph isomorphic to a Cartesian product of edges and even cycles.

In the view of Theorem 4.3.1 we will call a subgraph X of a partial cube G a cell if X is a
convex subgraph of G which is a Cartesian product of edges and even cycles. Note that since
a Cartesian product of edges and even cycles is the convex hull of an isometric cycle, by
Theorem 4.3.1 the cells of F (Q−3 ) can be equivalently defined as convex hulls of isometric
cycles. An amalgamation defined in Section 2.3 is said to be gated if the intersection graph
along which we make the amalgamation is gated in both of the graphs. We are prepared for
the first structural characterization of hypercellular graphs, showing the importance of cells
as the basic building blocks of such graphs (and also motivating their name).

Theorem 4.3.2 ([22]). A partial cube G is hypercellular if G can be obtained by gated
amalgams from Cartesian products of edges and even cycles (cells).

Figure 4.13: A hypercellular graph as a gated amalagamation of three cells.

To emphasize the elegance of this theorem we would like to make a correspondence
between hypercellular graphs and chordal graphs. Chordal graphs are considered as one of
the most well behaved graphs with nice correspondence to the concepts of tree-width and can
be characterized as the graphs obtained as amalgams from cliques where only amalgamations
along subgraphs isomorphic to cliques are allowed. In this sense hypercellular graphs can
be seen as the bipartite version of chordal graphs.

To better understand convex and gated subgraphs of hypercellular graphs (subgraphs
along which we preform amalgamation) we proved the following proposition.
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Proposition 4.3.3 ([22]). A connected subgraph H of a hypercellular graph G is convex
(respectively, gated) if and only if the intersection of H with each cell of G is convex (respectively,
gated).

The latter gives an interpretation to Theorem 4.3.2 how the amalgamation is done.
Say G is the gated amalgamation of G1 and G2. Then for each cell of C of G1 or G2 the
intersection G1 ∩ G2 ∩ C is a subcell of C . Informally we can say that the cells of G1 and the
cells of G2 meet in the subcells.

Firstly we determine their position in the hierarchy of partial cubes from Figure 4.1.

Corollary 4.3.4 ([22]). Any hypercellular graph G is a Peano graph.

The latter easily follows from the characterization of hypercellular graphs as gated
amalgams of cells, since cells are Peano graphs and the Peano property is preserved by the
gated amalgamation. It is also directly seen from the fact that all the forbidden minors of
Pasch graphs can be contracted to Q−3 .

For the further characterizations of hypercellular graphs we need some definitions.
We will say that a partial cube G satisfies the 3-convex cycles condition (abbreviated, 3CC-
condition) if for any three convex cycles C1, C2, C3 that intersect in a vertex and pairwise
intersect in three different edges the convex hull of C1 ∪ C2 ∪ C3 is a cell; see Figure 4.14
for an example.

Figure 4.14: The 3-convex cycles condition.

Noticing that the rank of a cell X is the number of edge-factors plus two times the
number of cyclic factors one can give a natural generalization of the 3CC-condition. We say
that a partial cube G satisfies the 3-cell condition (abbreviated, 3C-condition) if for any three
cells X1, X2, X3 of rank k+ 2 that intersect in a cell of rank k and pairwise intersect in three
different cells of rank k+ 1 the convex hull of X1 ∪ X2 ∪ X3 is a cell.

Theorem 4.3.5 ([22]). For a partial cube G = (V, E), the following conditions are equivalent:

(i) G ∈ F (Q−3 ), i.e., G is hypercellular;

(ii) any cell of G is gated and G satisfies the 3CC-condition;

(iii) any cell of G is gated and G satisfies the 3C-condition;
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Figure 4.15: A median cell.

The equaivalence (i) ⇐⇒ (ii) of the characterization reminds of the famous characteri-
zation of planar graphs as the ones that do not have a minor K5 or K3,3, or equivalently they
do not have a subgraph isomorphic to a subdivision of K5 or K3,3. In the case of hypercellular
graphs, they do not have a pc-minor Q−3 or equivalently every three convex cycles forming a
subdivision of Q−3 are a part of a cell. The part (iii) is a generalization of the latter property
in a more topological way.

Three (not necessarily distinct) vertices x , y, z of a graph G are said to form a metric
triangle x yz if the intervals I(x , y), I(y, z), and I(z, x) pairwise intersect only in the common
end vertices. A (degenerate) equilateral metric triangle of size 0 is simply a single vertex.
We say that a metric triangle x yz is a quasi-median of the triplet u, v, w if

d(u, v) = d(u, x) + d(x , y) + d(y, v),

d(v, w) = d(v, y) + d(y, z) + d(z, w),

d(w, u) = d(w, z) + d(z, x) + d(x , u).

Observe that, for every triplet u, v, w, a quasi-median x yz can be constructed in the following
way: first select any vertex x from I(u, v)∩ I(u, w) at maximal distance to u, then select a
vertex y from I(v, x)∩ I(v, w) at maximal distance to v, and finally select any vertex z from
I(w, x)∩ I(w, y) at maximal distance to w. In the case that the quasi-median is degenerate
(x = y = z), it is a median of the triplet u, v, w. By Lemma 4.2.9, Pasch graphs are apiculate,
thus also hypercellular graphs are. For any triplet u, v, w of vertices of an apiculate graph G,
the vertices u, v, w admit unique apices x := (uvw), y := (vuw), and z := (wuv) and admit
a unique quasi-median defined by the metric triangle x yz.

We say that a triplet u, v, w of vertices in an apiculate graph G admits a median cell
(respectively, a median cycle) if the gated hull 〈〈x , y, z〉〉 of the unique quasi-median x yz
of u, v, w is a Cartesian product of cycles or a single vertex (respectively, a cycle or a single
vertex). A graph G is called cell-median (respectively, cycle-median) if G is apiculate and
any triplet u, v, w of G admits a unique median cell (respectively, unique median cycle or
vertex). See Figure 4.15 for a visualization. This rather complicated introduction brings us
to a simply expressible theorem.
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Theorem 4.3.6 ([22]). A partial cube G = (V, E) is cell-median if and only if G is hypercellular.

The proofs of Theorems 4.3.2, 4.3.5, and 4.3.6 is in contrast to their simple nature rather
long and technical. Therefore we shall prefer to concentrate on the corollaries of these four
characterizations of the family of hypercellular graphs.

We continue with geometrical properties of hypercellular graphs. The Helly number h(G)
of a graph G is the smallest number h ≥ 2 such that every finite family of (geodesically)
convex sets meeting h by h has a nonempty intersection. The Caratheodory number c(G)
is the smallest number c ≥ 2 such that for any set A ⊂ V the convex hull of A is equal to
the union of the convex hulls of all subsets of A of size c. The Radon number r(G) of a
graph G is the smallest number r ≥ 2 such that any set of vertices A of G containing at least
r + 1 vertices can be partitioned into two sets A1 and A2 such that conv(A1)∩ conv(A2) 6= ;.
More generally, the mth partition number (Tverberg number) is the smallest integer pm ≥ 2
such that any set of vertices A of G containing at least pm + 1 vertices can be partitioned
into m sets A1, . . . , Am such that ∩m

i=1conv(Ai) 6= ;. For a detailed treatment of all these
fundamental parameters of abstract and graph convexities, see [85].

Recall that the rank of a COM (thus also of a hypercellular graph) G is the maximal
dimension of hypercube that G can be contracted to. In the case of hypercellular graphs
this coincides with the greatest rank of a cell in G. The following result is straightforward:

Corollary 4.3.7 ([22]). Let G be a hypercellular graph. Then h(G)≤ 3, c(G)≤ 2 · rank(G),
and r(G)≤ 10 · rank(G) + 1. More generally, pm ≤ (6m− 2) · rank(G) + 1.

A star St(v) of a vertex v (or a star St(X ) of a cell X ) is the union of all cells of G
containing v (respectively, X ).

Proposition 4.3.8 ([22]). For any cell X of a hypercellular graph G the star St(X ) is gated.

The thickening G∆ of a hypercellular graph G is a graph having the same set of vertices
as G and two vertices u, v are adjacent in G∆ if and only if u and v belong to a common cell
of G. A graph H is called a Helly graph if any collection of pairwise intersecting balls of G
has a nonempty intersection [9].

Proposition 4.3.9 ([22]). The thickening G∆ of a hypercellular graph G is a Helly graph.

We conclude with properties of maps of hypercellular graphs to themselves, and with
a proposition on regular ones. All of them were proved in [22] using the ideas already
established for more specific families, hence giving additional confirmation that hypercellular
graphs present a meaningful generalization of those families. Interestingly, they hold also
for infinite hypercellular graphs.

Proposition 4.3.10 ([22]). If G is a hypercellular graph not containing infinite isometric rays,
then there exists a finite cell X in G fixed by every automorphism of G.

Recall that a non-expansive map from a graph G to a graph H is a map f : V (G)→ V (H)
such that for any x , y ∈ V (G) it holds dH( f (x), f (y))≤ dG(x , y).
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Proposition 4.3.11 ([22]). Let G be a hypercellular graph and let f be a non-expansive map
from G to itself such that f (S) = S for some finite set S of vertices of G. Then there exists a
finite cell X of G that is fixed by f . In particular, if G is a finite hypercellular graph, then it has
a fixed cell.

An endomorphism r of G with r(G) = H and r(v) = v for all vertices v in H is called a
retraction of G and H is called a retract of G.

Proposition 4.3.12 ([22]). A retract H of a hypercellular graph G is a hypercellular graph.

Proposition 4.3.13 ([22]). If G is a finite regular hypercellular graph, then G is a single cell,
i.e., G is isomorphic to a Cartesian product of edges and even cycles.

These results prove that hypercellular graphs are a meaningful generalization of es-
tablished families since they generalize and unify results about median graph, cellular
bipartite graphs and Polat graphs. Further details about these families and their more
specific properties will be given in the next chapters.

4.4 Median and almost-median graphs

Median graphs are probably the most studied family of partial cubes, with many applications
and generalizations. Their analysis by far exceeds the scope of this thesis, for the summary
of the most important results see [45], or for various characterizations see [59]. The aim
of this section is only to understand their relations with other families of partial cubes and
explore their shared properties. We start with their definition.

Definition 4.4.1. A graph G is a median graph if for every triple {u, v, w} of its vertices there is
a unique vertex x, called the median, such that d(u, x)+d(x , v) = d(u, v), d(u, x)+d(x , w) =
d(u, w) and d(v, x) + d(x , w) = d(v, w).

Se Figure 4.16 for an example of a median graph. We restate the definition in terms of
apices defined in Section 4.2. It states that a median graph is such an apiculate graph that
for every triple {u, v, w} of its vertices apices (uvw), (vwu), (wuv) coincide in one vertex. In
particular, by Theorem 4.3.6, median graphs are precisely those hyercellular graphs whose
median cells are trivial (isomorphic to a vertex). Furthermore, if a hypercellular graph has
no minor isomorphic to a cycle C6, then all the median cells in it must be trivial, implying
that the graph is median. We have the following corollary.

Corollary 4.4.2 ([22]). Median graphs are precisely the graphs in F (Q−3 , C6).

Since the median graphs are a subfamily of hypercellular graphs, they inherit properties
stated in the previous section. Furthermore some properties translate to:

• Median graphs are precisely the graphs obtained from copies of hypercubes by a
sequence of gated amalgamations. This was first proved in [85] and [51].

• A partial cube is a median graph if and only if all its cells are hypercubes and 3C-
condition (or equivalently 3-CC condition) is satisfied.
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Figure 4.16: A median graph.

• If G is a median graph not containing infinite isometric rays, then there exists a finite
hypercube X in G fixed by every automorphism of G. This was first proved in [84].

• Let G be a median graph and let f be a non-expansive map from G to itself such that
f (S) = S for some finite set S of vertices of G. Then there exists a finite hypercube X
of G that is fixed by f . In particular, if G is a finite median graph, then it has a fixed
hypercube. This was also first proved in [84]

• The only regular median graphs are hypercubes. This was first proved in [70].

The above properties of median graphs were known before the introduction of hypercel-
lular graphs and were one of the motivations for the additional studies of the class and its
generalizations. We point out one interesting characterization. For an edge ab define Uab

and Uba to be the subsets of vertices in Wab and Wba, respectively, that are incident with an
edge in relation Θ with ab.

Theorem 4.4.3 ([45]). A partial cube G is a median graph if and only if for each edge ab the
sets Uab and Uba induce convex subgraphs.

This property was a starting point for two generalizations of median graphs. Call partial
cubes in which for each edge ab the sets Uab and Uba induce isometric subgraphs almost-
median graphs. Generalizing even more, call the partial cubes in which for each edge ab
the sets Uab and Uba induce connected subgraphs semi-median graphs.

Noticing that the graph Q−−4 (1) in Figure 3.2 is semi-median but includes a convex
6-cycle which is not semi-median, we conclude that semi-median graphs are not a minor-
closed family. Therefore, we focus here on almost-median graphs. The first assertion of the
following theorem was first proved in [57] improving the result from [16]. Here we offer
an alternative proof and an additional characterization.
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Theorem 4.4.4. A partial cube is an almost-median graph if and only if it has no convex cycle
of length at least 6. The later implies that almost-median graphs correspond to the family
F (C6).

Proof. First notice that the definition of almost-median graphs is identical as saying that for
every two edges in relation Θ there exists a traverse connecting the two edges that consists of
only 4-cycles. Let G be an almost-median graph. Every contraction of G contracts traverses
made of 4-cycles into traverses of 4-cycles, while every convex subgraph must include also the
traverses between its edges. Hence the family of almost-median graphs is a pc-minor closed
family. Now assume G includes a convex cycle C of length six or more. Then the antipodal
edges of it, say ab and a′b′, are in relation Θ and there exists a convex traverse between the
two edges made of 4-cycles. In particular the traverse is crossed by precisely the Θ-classes
that C is crossed. By Lemma 3.2.3 the zone graph of the Θ-class of ab and a′b′ is not a
well-embedded partial cube hence G must have a pc-minor in {Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}
by Theorem 3.2.6. But all the graphs in {Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4} are not almost-median
graphs, contradicting that it is a pc-minor closed family. Thus G has no convex cycles of
length at least 6.

On the other hand, if a partial cube G has no convex cycles of length at least 6, all its
convex cycles must be of length 4. In particular, every pair of edges in relation Θ must have
a convex traverse connecting them, by 3.1.2, which has to be made of 4-cycles. Then G is
an almost-median graph.

Since C6 is not an almost-median graph and the latter family is minor closed, it must be
a subfamily of F (C6). On the other hand, if a partial cube is not an almost median graph it
includes a convex cycle of length at least six proving it has a pc-minor C6. This proves the
last assertion of the theorem.

Finally, to fix its position on the map of partial cubes, first notice that all the forbidden
minors of partial cubes whose zone graphs are well-embedded have a pc-minor (a convex
subgraph) 6-cycle, thus almost-median graphs are a subfamily of such graphs. Another easy
corollary of forbidden minor characterization is that tope graphs of LOPs are a subfamily
of almost-median graphs, since C6 =Q−−3 is one of the forbidden minors of tope graphs of
LOPs. Moreover, almost-median graphs are not a subfamily of tope graphs of COMs as one
can observe in Figure 4.17.

Figure 4.17: An almost-median graph Q−−5 (1) that is not in the family of tope graphs of
COMs.
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We continue with the following two propositions giving more insight in the hierarchicy
of families of partial cubes and explaining Figure 4.1.

Proposition 4.4.5. The intersection of almost-median graphs and Peano graphs are precisely
median graphs.

Proof. Median graphs are a subfamily of almost-median graphs by definition, in [76] it was
proved that they are a subfamily of netlike partial cubes, thus a subfamily of peano graphs.

For the sake of contradiction let G be a non-median graph that is netlike and almost-
median. By Corollary 4.4.2, G has a minor Q−3 or C6. Since it is almost-median the minor
must be Q−3 , by Theorem 6.3.22. This is, G contains a convex subgraph that can be contracted
by a sequence of contractions G1, . . . , Gk to Gk =Q−3 .

Now we consider all possible expansions of Q−3 along isometric sets G1 and G2. The
graph can be seen as a union of three 4-cycles. If one of the 4 cycle is such that is not entirely
in G1 or in G2, then this 4-cycle is expanded to a convex 6-cycle. If all of the 4-cycles are
either entirely in G1 or in G2, then without loss of generality we can assume that two of the
4-cycles are in G1. If the third cycle is also in G1, then the expanded graph will include a
convex Q−3 . If on the other hand, the third cycle is entirely in G2 but not entirely in G1, then
it has precisely three vertices in G1. This implies that the third 4-cycles expands into a Q−3 .

We have proved that every expansion of Q−3 either contains a convex C6 or a convex
Q−3 . Now notice that expansion of a convex subgraph is a convex subgraph in the extended
graph. Since the graphs G1, . . . , Gk do not contain a convex C6, this inductively means that
they all contain a convex Q−3 . In particular, G contains a convex Q−3 . Let v1, v2, v3 be the
vertices of Q−3 that have degree 2 inside the Q−3 and v be the central vertex of the Q−3 . The
path P from v1 to v2 is a convex subgraph since the Q−3 is convex but the convex hull of
{P, v} does not equal to the union of intervals from v to P since it also includes v3. Hence
the join-hull commutativity property does not hold in G, a contradiction with the graph
being Peano.

Proposition 4.4.6. Intersection of Pasch graphs and almost-median graphs is included in the
family of tope graphs of LOPs.

Proof. Considering the union of the sets of the forbidden minors of Pasch graphs and almost
median graphs we see that some of the graphs are not minimal with respect to the minors
inclusion. In particularly all the graphs {Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4} have a minor C6, thus the
minimal set of the forbidden minors is {C6,Q−4 ,Q−−4 }. Now each of the forbidden minors of
tope graphs of LOPs {Q−−n | n≥ 3} has a minor in {C6,Q−4 ,Q−−4 } proving the proposition.

We conclude this chapter with a new result about median graphs.

Proposition 4.4.7. Median graphs are realizable COMs.

Proof. We prove the assertion with the induction on the size of a median graph G. As proved
in [45] and easily seen using the fact that for each edge ab the sets Uab and Uba are convex
in a median graph, it holds that there exists an edge uv such that Wab is peripheral. Then
G is a peripheral expansion of a smaller median graph, thus by induction and Proposition
4.1.25, G is realizable.
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4.5 Tree-zone and cellular graphs

In Section 3.2 tree-zone graphs were introduced as those graphs whose all zone graphs are
trees. Such graphs naturally emerged in the study the cycle space of partial cubes. Here we
further analyze this graphs.

Lemma 4.5.1. Let G be a tree-zone graph. Then no two convex cycles are both crossed by some
Θ-classes E f and Eg , E f 6= Eg .

Proof. Assume that there exist C1, C2 both crossed by E f and Eg . Let a1 b1, a2 b2 be edges
on C1 in E f and a3 b3, a4 b4 be edges on C2 in E f . Without loss of generality a1 b1, a3 b3 ∈ E+g
and a2 b2, a4 b4 ∈ E−g . By Lemma 3.1.2 there exists a convex traverse T1 from a1 b1 to a3 b3

and a convex traverse T2 from a2 b2 to a4 b4. By definition of traverse, T1 ∈ E−g and T2 ∈ E+g .
Then C1, T1, C2, T2 together form a cycle in the zone graph ζ f (G). A contradiction.

Corollary 4.5.2. Tree-zone graphs are a pc-minor closed family.

Proof. By Lemma 4.5.1, the assumptions of Lemma 3.2.3 are trivially satisfied in a tree-zone
graph G, thus all the zone graphs of G are well-embedded partial cubes. By Lemma 3.2.4,
zone graphs of every pc-minor of G are pc-minors of zone graphs of G. The only minors of
trees are trees.

Theorem 4.5.3. Tree-zone graphs correspond to F (Q3,Q−−4 (4)).

Proof. Both graphs Q3,Q−−4 (4) have a zone graph which is a cycle, thus tree-zone graphs
are a subfamily of F (Q3,Q−−4 (4)). Let G be a graph that is not a tree-zone graph. If G has a
zone graph that is not a well-embedded partial cube, then G has a minor {Q−∗4 ,Q−−4 (m) |
1 ≤ m ≤ 4}. All the graphs in the latter set have a minor Q3 besides Q−−4 (4). Thus in this
case G has a minor in {Q3,Q−−4 (4)}.

Now assume that all the zone graphs of G are well-embedded. Let ζ f (G) be such that it
contains a cycle. Contract all Θ-classes of G besides E f and two classes crossing two incident
convex cycles corresponding to two incident edges on the cycle of ζ f (G). The obtained
partial cube G′ must have isometric dimension three, moreover by Lemma 3.2.4 its zone
graph ζ f (G′) must have a 4-cycle. Then G must be isomorphic to Q3. This finishes the
proof.

An interesting example of tree-zone graphs are so called benzenoid structures. These
graphs, motivated by chemistry, are defined as the unions of 6-cycles lying inside a hexagonal
grid without forming a hole. It is easy to see that all the zone graphs of benzenoids are
isomorphic to paths (see Figure 4.18).

A similar structure called cellular bipartite graphs was introduced in [7]. As proved it
can be defined in one of the following equivalent ways.

Theorem 4.5.4 ([7]). A bipartite graph G is cellular if it satisfies one of the following equivalent
conditions:

(a) G is obtained as a gated amalgamation from even cycles and edges.
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(b) Every isometric cycle in G is gated and there are no tree isometric cycles sharing exactly a
vertex and pairwise sharing exactly an edge in G.

(c) conv(S) = ∪v,u∈S I(u, v)

(d) conv({u, v, w}) = I(u, v)∪ I(v, w)∪ I(w, u)

Figure 4.18: Tree-zone graph with only the second being cellular bipartite graph.

As it is clearly seen by the characterization (a) cellular graphs are precisely those
hypercellular graphs whose cells are even cycles, edges, or vertices. Thus the characterization
(b) could also be strengthen by Theorem 4.3.5 to:

(b’) There are no three convex cycles sharing exactly a vertex and pairwise sharing exactly an
edge in G.

Also notice that (c) is a generalization of the join-hull commutativity property, a direct
way to see that cellular graphs are Peano graphs in contrast to seeing them as a subfamily
of hypercellular graphs. The position of cellular graphs as hypercellular with no high-
dimensional cubes immediately gives the following characterization:

Theorem 4.5.5 ([22]). The cellular bipartite graphs correspond exactly to the family
F (Q−3 ,Q3).

Similar as in the case of median graphs, properties of cellular graphs inherited from
hypercellular graphs translate to:

• Cellular bipartite graphs have the median cycle property.

• If G is a cellular bipartite graph not containing infinite isometric rays, then there exists
a finite cycle, an edge or a vertex in G fixed by every automorphism of G.

• Let G be a cellular bipartite graph and let f be a non-expansive map from G to itself
such that f (S) = S for some finite set S of vertices of G. Then there exists a finite
cycle, edge or a vertex of G that is fixed by f . In particular, if G is a finite graph, then
it has a fixed cycle, edge or a vertex.

• The only regular median graphs are even cycles, an edge or a vertex.
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To our knowledge all the above results have not been observed before [22]. Interestingly,
Polat in [78] studied netlike partial cubes that have a median cycle property and showed
that these are precisely graphs obtained by gated amalgamation from hypercubes and even
cycles. We will call them Polat graphs. Similarly as above we have:

Theorem 4.5.6 ([22]). Polat graphs correspond to the family F (Q−3 , K2�C6).

Notice that it is easily seen from the above, that all cellular bipartite graphs and median
graphs are Polat graphs, thus netlike partial cubes. Also, Polat graphs inherit properties of
hypercellular graphs that were not observed before: a fixed hypercube of an automorphism
or an endomorphism with f (S) = S for some finite set S, classification of the regular cellular
graphs and a characterization as partial cubes with with the median cycle property.

Finally we settle the last position of the intersection of families of partial cubes in the
next proposition.

Proposition 4.5.7. The intersection of tree-zone graphs and Peano graphs is a subfamily of
netlike partial cubes.

Proof. Let G be a tree-zone graph with the Peano property. By Theorem 4.2.11, ph(G)≤ 1.
Thus by the definition of netlike partial cubes, we only need to prove that the convex hull of
any non-convex isometric cycle is a hypercube. But since hypercubes of dimension three or
more cannot be convex subgraphs of tree-zone graphs by Theorem 4.5.3, we in fact need to
prove that all isometric cycles of G are convex.

Let C be an isometric cycle of G and u1v1Θu2v2 two edges on it. Let T be a convex
traverse from u1v1 to u2v2. If the shortest u1, u2- and v1, v2-paths in C are the sides of the
traverse T , then T must consist from exactly one convex cycle, namely C . Hence assume
that, say the u1, u2-path in C is not the side of T . It follows from Lemma 3.4.3 that then
there exists a convex cycle on vertices w0, . . . , w2k such that vertices w0, . . . , wn induce a
path that lies on a side of T . Since Peano graphs and also three-zone graphs are a subfamly
of well-embedded partial cubes, no two convex cycles intertwine. In particular, this implies
that C shares an edge with two convex cycles C1, C2 and all three share a vertex. Moreover,
at least one of them must be a 4-cycle, since C has half of its edges on the side of T and
there is no intertwining in G. Without loss of generality assume C is a 4-cycle, otherwise
rename the cycles.

Let v be the vertex in the intersection C ∩ C1 ∩ C2 and vu1, vu2, vu3 edges in the inter-
section C ∩ C1, C ∩ C2, C1 ∩ C2, respectively. Then Wu3v is a maximal convex set that does
not include v, by Lemma 2.3.2. Since G is a Peano graph, ph(G)≤ 1, by Theorem 4.2.11. In
particular, conv(Wu3v ∪{v}) = I(Wu3v ∪{v}). Clearly C1 and C2 are inside conv(Wu3v ∪{v}),
hence u1 and u2 are included. But since C is a 4-cycle, also C ⊆ conv(Wu3v ∪ {v}). Let u4

be the vertex of C adjacent to u1, u2 and different from v. Then there must be a shortest
path P from Wu3v to v passing through u4. The latter implies that there exist an edge in
Eu3v on P that is in Wu1v ∩Wu2v . Moreover the edges on C1 \C2, C1∩C2, C2 \C1 in Evu3

are
in Wu1v ∩Wvu2

, Wvu1
∩Wvu2

, Wvu1
∩Wu2v, respectively. Hence contracting all the Θ-classes

in G besides Evu1
, Evu2

, Evu3
gives a hypercube, contradictory to the assumption that G is a

tree-zone graph.
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Highly symmetric partial cubes

Hypercubs are considered to be one of the classic examples of graphs that possess many
symmetries. It is a fundamental question to ask how those symmetries are preserved on
their subgraphs. To our knowledge the first ones who addressed this question were Brouwer,
Dejter and Thomassen in 1992 in [18]. They provided many surprising and diverse examples
of vertex-transitive subgraphs of hypercubes, but did not make a classification. Based on
their results, examples are very diverse hence a classification seems too ambitious. They
suggested that one of the reasons for the latter is that the group of symmetries of a subgraph
of a hypercube need not be induced by the group of symmetries of the hypercube.

On the other hand, a complete opposite occurs if one considers only median graphs.
As seen in Section 4.4, but first proved in [70], the hypercubes are the only finite regular
median graphs, thus the only finite vertex-transitive. As observed in Section 4.3, the complete
classification can be obtained also in the case of hypercellular graphs, where cells are the
only examples. The structure of median (and possibly also hypercellular) graphs is so
limiting that the latter results can even be generalized to infinite graphs of bounded growth,
see [63, 64]. Symmetric partial cubes seem a perfect balance between the (too large) variety
of symmetric subgraphs of hypercubes and (too well-structured) regular median graphs.

In this chapter we first focus on regular partial cubes describing the history of their
research and then present results concerning vertex-transitive partial cubes.

5.1 Regular partial cubes

The study of regular partial cubes began in 1992 by Weichsel in [86], independent of studies
of median graphs. He considered distance-regular subgraphs of hypercubes, i.e., he did not
in advance limit himself only to isometric subgraphs, but he imposed a striker criterion on
the regularity. He derived certain properties of them, and noticed that all his examples are
not just subgraphs, but isometric subgraphs of hypercubes. It was thus a natural decision
to focus on the symmetries of partial cubes. He classified all distance-regular partial cubes
based on their girth: hypercubes are the only ones with girth four, the six cycle and the
middle level graphs are the only ones with girth six, and even cycles of length at least
eight are the only ones with higher girths. Notice that all these graphs are vertex-transitive,
therefore they are a subfamily of vertex-transitive subgraphs of hypercubes.
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A hunt for regular partial cubes began in more recent years, particularly focusing on
the cubic case. The topic became interesting after a computer search was made in [15],
showing that besides prisms only three other cubic partial cubes on at most 30 vertices exist.
Moreover they managed to construct more cubic partial cubes by modifying known ones.
On the other hand, Brešar et al. took a different approach in [17], and used so called cubic
inflation – a method for constructing cubic graphs on surfaces – to find a few new regular
(even vertex-transitive) partial cubes. Klavžar et al. analyzed the family of generalized
Petersen graphs in [55] to prove that there is only one cubic partial cube among them,
namely G(10,3).

A connection between partial cubes and geometric structures given by the subfamily of
COMs (Section 4.1) was used in [29, 32] where other regular partial cubes were found. In
particular, Eppstein analyzed arrangements of (pseudo) lines in a plane leading to cubic
partial cubes. Finally, a systematic approach was taken in [56] to group together various
examples and to form so called tribes of cubic partial cubes. Furthermore, they used their
method to find some new examples and explained how to produce even more of them.

With [56] it became clear that the variety of regular partial cubes is probably too big
to allow an explicit classification of its graphs. Nevertheless, the examples show certain
unexpected properties. In Section 3.4, we showed that partial cubes with minimum degree
at least 3 have girth at most 6 hence Corollary 3.4.7 states that there are no regular partial
cubes with girth 8 or more besides even cycles, an edge, or a vertex. Other properties remain
unproven for several years:

Are all cubic partial cubes besides G(10, 3) planar graphs?
Barnette’s conjecture states that all cubic, 3-connected, planar bipartite graphs are

Hamiltonian. Since all the examples of cubic partial cubes are 3-connected and also G(10, 3)
is Hamiltonian, the following is also in question:

Are all cubic partial cubes Hamiltonian?

5.2 Vertex-transitive partial cubes

The main result presented in this section is the classification of cubic, vertex-transitive partial
cubes. Furthermore, we summarize the ideas that we used to prove the theorem in [66].

Let K2 denote the complete graph of order 2, Ck the cycle of length k, and G(n, k) the
generalized Petersen graph with parameters 3 ≤ n, 1 ≤ k < n/2. The main result of the
mentioned paper is the following:

Theorem 5.2.1 ([66]). If G is a finite, cubic, vertex-transitive partial cube, then G is isomorphic
to one of the following: K2�C2n, for n≥ 2, G(10, 3), the cubic permutahedron, the truncated
cuboctahedron, or the truncated icosidodecahedron.

To our surprise, the variety of the graphs from Theorem 5.2.1 (cf. Figure 5.1) is small,
and all the graphs are classical graphs that were studied from many (especially geometric)
views. We point out that the cubic permutahedron, the truncated cuboctahedron, and
the truncated icosidodecahedron are cubic inflations of graphs of platonic surfaces [17],
K2�C2n are the only cubic Cartesian products of (vertex-transitive) partial cubes (this
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(a) G(10,3) (b) Cubic permutahedron

(c) Truncated cuboctahedron (d) Truncated icosidodecahedron

Figure 5.1: The four sporadic examples of cubic, vertex-transitive partial cubes

includes also the hypercube Q3
∼= K2�C4), while G(10,3) is, as already stated, the only

known non-planar cubic partial cube and is isomorphic to the middle level graph of valence
three [55]. All the graphs besides G(10,3) are tope graphs of OMs of rank 3.

The main idea how to prove Theorem 5.2.1 is to consider convex cycles incident with
some vertex (since the graphs are vertex-transitive this local property is independent of the
choice of the vertex). In particular we proceeded in the following way:

• First we analyzed the case if every vertex is incident with two (convex) 4-cycles.
This is the easy case and it immediately implies that the graph in this case must be
isomorphic to K2�C2n, for some n≥ 2.

• On the other hand, if the girth of the graph is 6, then Proposition 3.4.1 implies that
each vertex must be incident with at least two convex 6-cycles and a simple case
analysis leads to the proof that in this case the graph must be isomorphic to G(10, 3).

• By Corollary 3.4.7, the girth of a regular cubic partial cube can only be 4 or 6. Thus
in the remaining cubic, vertex-transitive partial cubes every vertex must be incident
with precisely one 4-cycle. It turns out that the only remaining cases are that every
vertex is incident with additionally two convex 6-cycles, or a convex 6-cycle and some
convex cycle of greater length.

• The case when every vertex is incident with a 4-cycle and two convex 6-cycles leads to
the graph being the cubic permutahedron, by embedding it on surface and counting
its vertices.
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• The final case when every vertex is adjacent with a 4-cycle, a convex 6-cycle and some
convex cycle of greater length is the hardest. To complete the proof, an analysis of
intertwining (Section 3.3) is needed to prove that the third cycle must be an 8- or 10-
cycle and then to establish a connection with Cayley graphs. In this case the graph must
be isomorphic to the truncated cuboctahedron, or the truncated icosidodecahedron.

Since the variety of such graphs is rather small, it suggests that a similar classification can
be done for graphs with higher valencies. The latter problem is wide open, the classifications
are not known even for Cayley graphs that are partial cubes. The regular graphs in the
subcubic cases can be seen as the beginnings of greater families of vertex-transitive partial
cubes:

• Middle level graphs were in Section 2.1 defined as the induced subgraphs of Qn, n> 1
odd, on all the vertices with bn/2c or dn/2e coordinates equal to 1. It is clear that such
graphs are vertex transitive, it is not hard to see that they are partial cubes. G(10, 3)
is the second simplest middle level graph for n= 5 right after a 6-cycle for n= 3.

• The cubic permutahedron, the truncated cuboctahedron, the truncated icosidodecahe-
dron, even cycles, and K2 are Cayley graphs of finite Coxeter groups as we will see in
Section 5.3 in more details.

• The Cartesian product of vertex-transitive graphs is clearly vertex-transitive. Even
prisms are just the Cartesian products of cycles and edges, similarly we can construct
many others.

To our knowledge these are the only known examples of vertex-transitive partial cubes.

5.3 Mirror graphs

Brešar et al. gave the following definition in [17]. Let G be a simple, connected graph. Call
a partition P = {E1, E2, . . . , Ek} of edges in G a mirror partition if for every i ∈ {1, . . . , k},
there exists an automorphism αi of G such that:

(i) for every edge uv ∈ Ei: αi(u) = v and αi(v) = u

(ii) G − Ei consists of two connected components G1
i and G2

i , and αi maps G1
i to G2

i

A graph that has a mirror partition is called a mirror graph. By definition they are highly
symmetrical graphs. In [17] it was shown that all mirror graphs are vertex-transitive, and
certain connections with regular maps and polytope structures were established, indicating
strong geometric properties of these graphs. An even more surprising result that they
provided is that every mirror graph is a partial cube and that the mirror partition of the
edges corresponds to partition in the Θ-classes. Therefore the study of mirror graphs is in
fact the study of partial cubes with symmetrical halfspaces.

In [67] we characterized mirror graphs in a way that led to the complete classification
of such graphs. We present the result here, but first a few definitions. Recall from Section
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Figure 5.2: Example of a mirror graph: the cubic permutahedron with the corresponding
hyperplane arrangement

4.1 that a partial cube is a tope graphs of realizable oriented matroid if it can be obtained
from a central arrangement of hyperplanes in a Euclidean space. For a hyperplane Hi with
an orthogonal vector vi its reflection is the map σHi

(x) = x −2 x ·vi
vi ·vi

vi . A central arrangement
of hyperplanes {H1, . . . , Hm} in Rn such that for every i ∈ {1, . . . , m} the reflection of Hi

permutes the hyperplanes {H1, . . . , Hm} are called reflection arrangements. A simple example
is a collection of m central lines in a plane such that the angle between lines and a chosen
axis is i

π , while for a more complicated example see Figure 5.2.
A Coxeter group is a group which can be presented by generators and relations as

〈α1, . . . ,αm | (αiα j)
ki j = 1 for all 1 ≤ i, j ≤ m〉, where kii = 1 and ki j ≥ 2 for all 0 ≤ i <

j ≤ m. By a classical result [14, Theorem 2.3.7], reflection arrangements are in one to one
correspondence with finite Coxeter groups since the tope graphs of reflection arrangements
are the Cayley graphs of finite Coxeter groups and vice versa. Moreover finite Coxeter groups
were classified by Coxeter [26]. They give rise to four infinite families and six exceptional
cases of irreducible reflection arrangements. Here irreducible means that there is no non-
trivial partition of the hyperplanes in two mutually orthogonal classes; equivalently, their
tope graphs are not the Cartesian product of smaller tope graphs.

The characterization of mirror graphs we provided is the following.

Theorem 5.3.1 ([67]). For a graph G the following statements are equivalent:

(i) G is a mirror graph.

(ii) G is the Cayley graph of a finite Coxeter group with canonical generators.

(iii) G is the tope graph of a reflection arrangement.

As stated above, the finite Coxeter groups are classified. The classification is usually
denoted by An, Bn, Dn, I2(p), E6, E7, E8, F4, H3, H4, where the first four are infinite families
and the rest are sporadic cases. This translates to the following partial cubes. The family
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I2(p) corresponds to even cycles. Families An, Bn, Dn give rise to three infinite families of
partial cubes, for each n ≥ 3 the corresponding graphs are n-valent, with rank n and of
order (n+ 1)!, 2nn!, 2n−1n!, respectively. Particularly, in the case n = 3 the Cayley graph
of A3 and D3 are both isomorphic to the cubic permutahedron and the Cayley graph of
B3 is isomorphic to the truncated cuboctahedron (Figure 5.1). For H3, its Cayley graph
is the truncated icosidodecahedron while for E6, E7, E8, F4, H4 their Cayley graphs are: a
6-valent graph on 51840 vertices, a 7-valent graph on 2903040 vertices, an 8-valent graph
on 696729600 vertices, a 4-valent graph on 1152 vertices, and a 4-valent graph on 14400
vertices, respectively.

The idea how to prove Theorem 5.3.1 is to prove the following results.

Lemma 5.3.2 ([67]). A mirror graph G is an antipodal partial cube.

Lemma 5.3.3 ([67]). Let G be an antipodal partial cube, and Eab, Ecd two of its Θ-classes.
Then there exists a convex cycle in G that includes edges from Eab and Ecd .

Lemma 5.3.4 ([67]). For an antipodal partial cube G and a Θ-class Eab in G, there exists at
most one automorphism αab of G such that for each uv ∈ Eab it holds vαab = u and uαab = v.
Moreover, α2

ab = 1.

Recalling that the mirror partition in fact corresponds to the partition into Θ-classes, the
above states that the mirror automorphisms are very limited.

Observation 1 ([67]). An automorphism α of a partial cube G is completely determined
by the permutation of the Θ-classes of G and the image vα of some vertex v of G.

Additionally, the space of convex cycles needs to be analyzed to prove the correspondence
with the Cayley graphs of Coxeter groups. The Lemmas 5.3.2 and 5.3.4 and Observation 1
led to a polynomial algorithm presented in Algorithm 2, that for a graph G with n vertices
and m edges decides if G is a mirror graph, and in the positive case outputs its mirror
partition and mirror automorphisms [67].

An interesting problem regarding mirror graphs is to generalize Theorem 5.3.1 to infinite
graphs. In fact, it is not known if the Cayley graphs of infinite Coxeter groups with canonical
generators are partial cubes (and in this case if they are mirror graphs), or if infinite mirror
graphs are a subfamily of the Cayley graphs of infinite Coxeter groups.
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Algorithm 2 Recognition of mirror graphs [67]

1. Check if G is a partial cube by calculating the Θ-classes and obtaining its embedding
in a hypercube. This can be done in O(n2) by Proposition 2.2.4. The Θ-classes are
candidates for the mirror partition of G. If G is not a partial cube, it is not a mirror
graph.

2. For eachΘ-class Fab, its corresponding mirror automorphism αab, if existent, must map
all the convex cycles crossed by Fab to themselves. By Lemma 5.3.3 this determines
the image of each Θ-class, and thus by Observation 1 gives a candidate for the mirror
automorphism. Convex cycles of G can be found in O(mn2) by [49], obtaining at most
O(nm) of them by [3]. Iterating through convex cycles we can determine for each
Θ-class how its corresponding mirror automorphism permutes the other Θ-classes.

3. Considering G embedded in a hypercube, each permutation of Θ-classes can be seen
as a permutation of coordinates of the hypercube that G is embedded into, and thus
as an automorphism of the hypercube. Hence it can be checked if the candidates for
the mirror automorphisms in fact define automorphisms of G by checking if they map
the vertices of G to vertices of G. If so, we output the Θ-classes and the corresponding
mirror automorphisms.





6

Computational and computed properties

6.1 Generating partial cubes

In this section we present an approach to generating and enumerating partial cubes up to
reasonable sizes. Even though the structure of partial cubes is very limiting their variety is
large. In particular, notice that the number of non-isomorphic trees on 20 vertices is 823065
and on 30 vertices already 40330829030. Hence generating partial cubes bounded in the
number of vertices in this way leads to time and space complexity difficulties already before
generating, say, a simple 5-cube on 32 vertices. For this reason rather than bounding the
number of vertices in partial cubes we want to generate, we bound the isometric dimension
of the cubes. This way we can obtain partial cubes with already complicated structure, but
not too many of them.

The idea that works good is to generate isometric subgraphs of a fixed hypercube by
a mixed integer-linear program searching for possible solutions. For a hypercube Qn and
vertices v, u ∈Qn we denote with Nv(u) the set of all the neighbors of u that are closer to v
that u is. We write conditions of a mixed integer-linear program without a maximization
function in the following way:

xv ∈ {0,1} for all v ∈Qn
(
∑

w∈Nv(u)
xw)− xv − xu ≥ −1 for all non-identical v, u ∈Qn

The variables xv for v ∈Qn indicate which vertices of the hypercube we want to include
in the partial cube. On the other hand, the second argument states that if for some pair
u, v ∈Qn both the vertices are included, then there must be a neighbor of u closer to v than
u also included. Demanding the latter for all the pairs of vertices, for each two included
vertices also a shortest path connecting them must be included.

We use Cplex [27] for obtaining the pool of all possible solution to the above condition.
After obtaining the solutions we reduce them to the isomorphism classes using Sagemath
[83]. For hypercube Q5, the program gives 2345 non-isomorphic partial cubes embeddable
into it. To find all partial cubes embeddable in Q6 an additional trick is needed: for each of
2345 partial cubes embeddable in Q5, say G, we generate the above mixed integer-linear
program with vertices in Q6 and fix the variables corresponding to vertices with the first
coordinate equal to 1 to induce precisely G. This way only 25 variables are undetermined.
This procedure leads to 13491182 non-isomorphic partial cube embeddable in Q6, taking

61



62 CHAPTER 6. COMPUTATIONAL AND COMPUTED PROPERTIES

Isometric dimension 0 1 2 3 4 5 6

All partial cubes 1 1 2 7 48 2286 13488837
Trees 1 1 1 2 3 6 11
Median graphs 1 1 2 5 18 90 736
Cellular graphs 1 1 2 5 17 77 501
Polat graphs 1 1 2 6 21 112 925
Netlike partial cubs 1 1 2 6 21 112 926
Hypercellular graphs 1 1 2 6 22 119 1025
Peano graphs 1 1 2 6 22 119 1026
Tree-zone graphs 1 1 2 6 33 935 265136
Pasch graphs 1 1 2 7 41 1257 845609
Tope graphs of LOP 1 1 2 6 36 1249 2933377
Tope graphs of COMs 1 1 2 7 43 1476 3204305
Almost-median graphs 1 1 2 6 38 1395 3153906
Well-embedded partial cubes 1 1 2 7 43 1482 3269284
Tope graphs of OMs 1 1 1 2 4 9 35
Antipodal partial cubes 1 1 1 2 4 13 115

Table 6.1: Enumerative properies of families of partial cubes up to isometric dimension 6.

approximately 1.4GB of memory to save. Generating all partial cubes embeddable in Q7

seems implausible with respect to time and memory suitable for contemporary computers.

6.2 Computed properties

A list of partial cubes from the previous section allows us to analyze small partial cubes. Par-
ticularly we are interested in enumerating partial cubes being part of the families presented
in Chapter 4. Since most of the families presented are minor closed families with finite
list of excluded minors, we can by Proposition 2.4.1 use a polynomial algorithm for their
recognition. Notice that for certain classes, more efficient algorithms have been developed,
but were not needed here. The results are presented in Table 6.1.

6.3 Computational properties of isomorphisms of partial cubes

For many computational aspects of partial cubes it is crucial to compute if two partial cubes
are isomorphic or not. A practical solution is offered by implementation called nauty [68],
while in this chapter we settle the theoretical properties of this problem. Recall that the
problem of deciding if two graphs are isomorphic is up to date best solved in quasipolynomial
time e(log n)O(1) where n is the number of vertices [4]. A problem equivalent to the latter
problem is said to be GI-complete. We find the following result surprising since median
graph are often seen as a generalization of hypercubes and trees, isomorphism problem of
which can be solved in linear time [53].
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Theorem 6.3.1. Deciding if two median graphs are isomorphic is GI-complete.

Proof. Say G1 and G2 are two connected graphs. First form new graphs G′1 and G′2 from G1

and G2, respectively, by subdividing each edge. Subdivision vertices can easily be recognized
as a half of a bipartition whose all vertices have degree two. Such recognition is unique if
and only if the graphs are not cycles in which case the graphs are isomorphic if they have
the same number of vertices. This implies that G′1 and G′2 are isomorphic iff G1 and G2 are.

Now form new graphs G′′1 and G′′2 from G′1 and G′2 in the following way: vertices of each
new graph are vertices and edges of the old graph plus an additional special vertex. Two
vertices in the new graph are adjacent if one is a vertex and the other is an incident edge
in the old graph or if one is the special vertex and the other is an arbitrary vertex in the
old graph. In [50], where such a construction was introduced, it was proved that that the
obtained graphs are median if and only if the starting graphs are triangle-free. Moreover
the special vertex is uniquely recognizable as the maximum degree vertex (and thus also
vertices and edges in the starting graph are uniquely recognizable) if the starting graph is
not a star. Since graphs G′1 and G′2 were subdivision graphs, they are triangle-free and are
stars only if G1, G2 are isomorphic to K2. It follows that G′′1 and G′′2 are isomorphic if and
only if G1 and G2 are isomorphic. Since the final graphs have n+ 3m+ 1 vertices, this is a
polynomial reduction proving that the problem is GI-complete.

maybe add some conjectures about partial cubes
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Povzetek

Grafi v hiperkockah

Teza se ukvarja s podgrafi, ki jih lahko najdemo v grafu hiperkocke:

Definicija 2.1.1 Hiperkocka Qn dimenzije n je graf z vozlišči {1,0}n in povezavami med
tistimi pari vozlišč, ki se razlikujejo v natanko eni koordinati.

Ta navidezno preprosta struktura v sebi skriva veliko neintuitivnih lastnosti povezanih z
višje dimenzijskimi prostori in veliko nerešenih problemov. V zadnjem času najbolj razvijajoče
področje teorije hiperkock je raziskovanje njenih podgrafov, ki imajo podobne metrične
lastnost kot sama hiperkocka. Definirajmo take podgafe:

Definicija 2.2.1 Delna kocka je graf G, ki ga lahko izometrǐcno vložimo v graf hiperkocke
Qn, tj. vložitev je taka, da velja dG(u, v) = dQn

(u, v) za poljubni vozlišči u in v grafa G, kjer d
označuje funkcijo razdalje v grafu.

Najpomembnejša definicija v študiju delnih kock je definicija relacije Θ. Za povezavo
e = uv poljubnega grafa G, definirajmo Wuv = {x ∈ V : d(x , u)< d(x , v)} in Wvu = {x ∈ V :
d(x , v)< d(x , u)} in ju imenujmo polprostora. Povezavi uv in u′v′ sta v relaciji Θ, uvΘu′v′,
če velja u′ ∈Wuv and v′ ∈Wvu.

Imenujmo podgraf H grafa G konveksen, če so za poljubni vozlišči u, v iz H vse najkrajše
poti med u in v v G tudi vsebovane v H. Djoković in Winkler sta dokazala, da je G delna
kocka natanko tedaj, ko je graf dvodelen in je relacija tranzitivna. Še več, v dvodelnem grafu
G je lastnost biti delna kocka ekvivalentna temu, da sta za vsako povezavo uv polprostora
Wuv in Wvu konveksna. Če imamo delno kocko izometrično vloženo v hiperkocko, potem
so Θ-razredi preprosto povezave, ki ustrezajo spremembi neke koordinate hiperkocke in
polprostora Wuv , Wvu sta razdelitev vozlišč v množici, ki imajo ustrezno koordinato 1 oziroma
0. Število Θ-razredov grafa G, oziroma ekvivalentno dimenzijo najmanjše hiperkocke, v
katero je G izometrično vložljiv, imenujemo izometrična dimenzija G-ja.

Ker je presek konveksnih množic konveksen, da je vsak presek polprostorov konveksen.
Imenujmo take preseke polprostorov restrikcije. Velja še več:

Lema 2.3.2 Množica vseh restrikcij v delni kocki se ujema z množico vseh konveksnih podgrafov.

Po drugi strani graf G/E f dobljen s s skrčitvijo vseh povezav v delni kocki G, ki so v
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Θ-razredu E f , imenujemo skrčitev G-ja. Ni težko videti, da je vsaka skrčitev delne kocke
prav tako delna kocka vložljiva v hiperkocko z izometrično dimenzijo ena manj kot jo ima G.

Zgornje definicije omogočajo osnovno orodje za delo z delnimi kockami. Naj bo graf G′

dobljen iz grafa G s pomočjo zaporedja skrčitev in restrikcij. Tedaj rečemo, da je graf G′

minor grafa G. Za poddružino delnih kock C , v kateri velja, da če G ∈ C in G′ je minor G-ja,
potem je tudi G′ ∈ C , pravimo, da je zaprta za minorje. Vsaka taka družina ima (mogoče
neskončno) množico delnih kock X , za katere velja, da niso v družini, ampak vsak njihov
minor pa je. Obratno, za množico delnih kock X = {T1, T2, . . .} označimo s F (X ) množico
vseh delnih kock, ki nimajo minorja v X . Taka množica je seveda zaprta za minorje, če je
število prepovedanih minorjev končno, jo lahko tudi algoritmično prepoznamo:

Lema 2.4.1 Naj bo X končna množica delnih kock. Za vsako delno kocko G lahko v poli-
nomskem času odločimo, če je v F (X ).

Predstavimo še par definicij potrebnih za razumevanje glavnih rezultatov te teze. Delna
kocka G vložena v hiperkocko Qn je antipodalna, če za vsako vozlišče v = (i1, i2, . . . , in)
obstaja vozlišče −v v G vloženo kot −v = (ī1, ī2, . . . , īn), kjer ī j = 1− i j. Tudi konveksen
podgraf H imenujemo antipodalen, če ima vsako vozlišče v H svoje antipodalno vozlišče v
H. Antipodalne delne kocke imajo zanimive lastnosti, kot na primer, da je vsaka njihova
skrčitev tudi antipodalna ter:

Lema 2.5.5 V antipodalne delni kocki G je antipodalna preslikava v 7→ −v avtomorfizem
grafa.

Podgraf H grafa G imenujemo zastražen, če za vsako vozlišče x v G izven H obstaja
neko vozlišče vx v H, tako da lahko iz v pridemo po najkrajši pot do poljubnega vozlišča v
H preko xv . Tudi zastraženi grafi v delnih kockah imajo lastnosti, ki se dobro povezujejo z
minorji, saj je vsaka slika zastraženega podgrafa restrikcije ali skrčitve prav tako zastražen
podgraf.

Cikli v delnih kockah

Delne kocke si delijo mnogo podobnosti s hiperkockami. Urejenost ciklov je ena izmed
takih lastnosti. Definirajmo eno izmed struktur, ki jo tvorijo cikli v delnih kockah. Naj bosta
povezavi v1u1Θv2u2 v delni kocki G, kjer v2 ∈ Wv1u1

. Naj bo C1, . . . , Cn, n ≥ 1 zaporedje
izometričnih ciklov, kjer v1u1 leži samo na C1, v2u2 leži samo na Cn in je presek vsakega para
C i ter C i+1 za i ∈ {1, . . . , n−1} natanko povezava, ki leži v Ev1u1

, ostale pari se ne sečejo. Če
je najkrajša pod iz v1 v v2 na uniji ciklov C1, . . . , Cn tudi najkrajša pot iz v1 do v2 v G, potem
imenujemo C1, . . . , Cn traverza iz v1u1 do v2u2. Če so cikli na traverzi vsi konveksni, potem
jo imenujemo konveksna traverza. Presenetljiv in izjemno uporaben rezultat je sledeči:

Lema 3.1.2 Naj velja v1u1Θv2u2 v delni kocki G. Potem obstaja konveksna traverza iz v1u1 v
v2u2.
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Naj bo C (G) celični kompleks dobljen tako, da nadomestimo vsak konveksen cikel C
dolžine 2 j v G s pravilnim dvodimenzionalnim 2 j-kotnikom [C]. S pomočjo konveksnih
traverz se da pokazati sledeče:

Trditev 3.1.3 Za delno kocko G je celǐcni kompleks C(G) enostavno povezan.

S pomočjo konveksnih ciklov lahko tvorimo tudi nove grafe iz delne kocke G. Naj bo
E f eden izmed Θ-razredov v G. Graf con ζ f (G) grafa G in Θ-razreda E f je graf, katerega
vozlišča so povezave v E f in dve vozlišči povezani, če ustrezni povezavi ležita na konveksnem
ciklu v G. Izkaže se, da so grafi con vedno povezani, v najpreprostejšem primeru so to
drevesa. Grafom, v katerih so vsi grafi con drevesa pravimo drevesne delne kocke.

Operacijo ζ f lahko vidimo kot preslikavo iz povezav v E f v vozlišča novega grafa ter
iz povezav grafa G, ki niso v E f , ampak ležijo na konveksem ciklu s povezavama iz E f , v
povezave novega grafa. Vendar tako dobljeni graf ni nujno delna kocka. Če pa velja, da je,
in da za vsaki povezavi aΘb iz grafa con ζ f (G) vsi Θ-razredi, ki prečijo ζ−1

f (a), ustrezajo

Θ-razredom, ki prečijo ζ−1
f (b), potem rečemo, da je graf con dobro vložen. Naj bodo grafi

{Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4} definirani kot na Sliki 3.2.

Izrek 3.2.6 Družina delnih kock, katerih vsi grafi con so dobro vloženi je zaprta za minorje in
ustreza družini F ({Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}).

Cikli v delnih kocka pa lahko tvorijo tudi bolj prepletene strukture. Bodita C1 =
(v0v1 . . . vmvm+1 . . . v2m+2n1−1) in C2 = (u0u1 . . . umum+1 . . . u2m+2n2−1) izometrična cikla
z u0 = v0, . . . , um = vm za m≥ 2, vsa druga vozlišča so paroma različna. Potem pravimo, da
se C1 in C2 prepletata.

Lema 3.3.2 Če obstajata v G izometrǐcna cikla, ki se sečeta v vsaj dveh nezaporednih vozliščih,
potem obstajata tudi izometrǐcna cikla, ki se prepletata.

Dodatno še velja, da če se dva konveksna cikla sečeta v vsaj dveh nezaporednih vozliščih,
potem se taka dva cikla prepletata. S počjo analize prepletanja je moč analizirati grafe, ki
vsebujejo samo daljše cikle. Označimo z g(G) ožino grafa G, tj. dolžino najkrajšega cikla v
G.

Posledica 3.4.2 Vsaka delna kocka G z g(G)> 6 je drevesna delna kocka.

Pokazati se tudi da, da delna kocka ne more imeti hkrati samo dolgih ciklov in visokih
stopenj vozlišč.

Izrek 3.4.5 Ne obstaja nobena delna kocka G z δ(G)≥ 3 in g(G)> 6. Prav tako ne obstaja
nobena z g(G) = 6, δ(G)≥ 3 in brez izometrǐcnega podgrafa Q−−4 (4).

Slednje ima zanimive posledice. Regularna delna kocka G z g(G)> 6 je lahko izomorfna
le K1, K2 ali sodemu ciklu. Obstajajo regularne delne kocke z g(G) = 6, primer take je
posplošeni Petersonov graf G(10,3). Še lažje najdemo grafe z g(G) = 4, primer take je
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recimo sama hiperkocka. Še ena zanimiva posledica Izreka 3.4.5 je, da v vsaki delni kocki
G z δ(G)≥ 3 obstaja cikle dolžine 4 ali pa cikel dolžine 8, saj v grafu Q−−4 (4) obstaja cikel
dolžine 8. To implicira, da slaven odprti problem Erdős–Gyárfás o obstoju cikla dolžine 2n,
za nek n, v vsakem grafu H z δ(H)≥ 3 drži v delnih kockah.

Poddružine delnih kock

Delne kocke vsebujejo veliko poddružin, ki so se neodvisno pojavile pri študiju navidez
nepovezanih področij, kot so različna področja matematike, kemije, teorije družbenih
odločitev in drugih. Te družine lahko vidimo kot ena izmed glavnih motivacij za študij
delnih kock. Poleg tega pa poddružine omogočajo boljši vpogled v lastnosti delnih kock.
Namen tega poglavja je predstaviti izbrane poddružine, ki se pojavljajo v raziskavah v
zadnjih letih, ter razumeti relacije med družinami. V nadaljevanju bomo predstavili različne
karakterizacije teh družin, ki razlagajo zemljevid delnih kock predstavljen na Sliki 4.1.

Tope grafi (kompleksov) orientiranih matroidov

Orientirani matroidi so kombinatorični objekti, ki omogočajo razumevanje raznolikosti
postavitev vektorjev v evklidski prostor in objektov povezanih s tem. Naj bodo v1, . . . , vn

vektorji v Rd in za vsak 1 ≤ i ≤ n naj bo Hi centralna hiperravnina v Rd ortogonalna
na vi. Vsakemu v ∈ Rd lahko priredimo element X v ∈ {±, 0}n katerega i-ta koordinata
ustreza predznaku skalarnega produkta v · vi. Torej i-ta koordinata X v pove na kateri
strani hiperravnine Hi se vektor v nahaja (kjer vrednost 0 pomeni, da leži na hiperravnini).
Množica LH imenovana kovektorji razporeditve hiperravnin je podmnožica {±, 0}n vseh
elemtov, ki jih lahko pridobimo na zgoraj opisan način. Take možice kovektorjev imajo
lastnosti, s katerimi lahko aksiomatiziramo kombinatorične objekte L . Za kovektor X
označimo z X i vrednost njegove i-te koordinate.

Kompozicija:

(C) X ◦ Y ∈ L za vse X , Y ∈ L , kjer je (X ◦ Y )e = X e, če X e 6= 0, in (X ◦ Y )e = Ye, če
X e = 0.

Obrazna simetrija:

(FS) X ◦ −Y ∈ L za vse X , Y ∈ L , kjer je −Y dobljen iz Y z množenjem z −1 vseh svojih
koordinat.

Z uporabo (FS) dobimo X ◦ −Y ∈ L , torej X ◦ Y = (X ◦ −X ) ◦ Y = X ◦ −(X ◦ −Y ) ∈ L
za vse X , Y ∈ L . Torej (FS) implicira (C).

Za par X , Y ∈ L definiramo S(X , Y ) kot množico vseh koordinat e, za katere velja
X eYe = −1.

Stroga eliminacija:

(SE) za vsak par X , Y ∈ L in za vsak e ∈ S(X , Y ) obstaja Z ∈ L da velja Ze = 0 in
Z f = (X ◦ Y ) f za vse kordinate f , ki niso v S(X , Y ).
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Simetrija:

(Sym) −X ∈ L za vse X ∈ L .

Ničelni kovektor:

(Z) Ničelni kovektor 0 je vsebovan v L .

Kompozicija idealov:

(IC) X ◦ Y ∈ L za vse X ∈ L in Y ∈ {±, 0}n.

Slednje zadošča za definicijo:

Definicija 4.1.1 Množici kovektorjev L ⊂ {±, 0}n pravimo:

• orientirani matroid (OM), če L zadošča (C), (Sym) in (SE) (ali ekvivalentno (SE), (Z)
in (FS)),

• kompleks orientiranih matroidov (COM), če L zadošča (FS) in (SE),

• neuravnovešen sistem (LOP), če L zadošča (IC) in (SE).

Kot omenjeno primere (kompleksov) orientiranih matroidov lahko konstruiramo s po-
močjo razporeditve hiperravnin v evklidski prostor. Natančneje, s postopkom opisanim na
začetku te sekcije lahko vsaki razporeditvi hiperravnin priredimo množico kovektorjev. Če
izhajamo iz centralne razporeditve, potem dobljeni kovektorji tvorijo orientirani matroid. Če
pa se omejimo samo na vektorje v neki odprti konveksni podmnožici evklidskega prostora in
le tem priredimo kovektorje, je dobljena struktura vedno kompleks orientiranih matroidov.
Kompleksom orientiranih matroidov dobljenih na ta način pravimo realizabilni.

Izkaže se, da za opis (kompleksov) orientiranih matroidov ne potrebujem celotne struk-
ture, zadošča poznavanje le nekaterih kovektorjev. Naj bo L množica kovektorjev. Tiste
kovektorje, ki nimajo koordinat enakih 0 lahko vidimo kot vozlišča v hiperkocki enake dimen-
zije kot so dimezionalni kovektorji. Torej tvorijo induciran podgraf hiperkocke. Imenujmo ta
graf tope graf in ga označimo z G(L ). Eden izmed osnovnih rezultatov teorije (kompleksov)
orientranih matroidov pravi, da je tope graf G(L ) delna kocka v primeru, ko jeL COM, OM
ali LOP. Še več, tak sistem je enolično določen z njegovim tope grafom. Naš glavni rezultat
je karakterizacija tope grafov v jeziku teorije grafov. Označimo z GCOM množico vseh delnih
kock, ki so tope grafi kakega kompleksa orientiranega matroida, z GOM množico vseh delnih
kock, ki so tope grafi kakega orientiranega matroida in z GLOP množico vseh delnih kock, ki
so tope grafi kakega neuravnovešenega sistema.

Uvedimo množico posebnih delnih kock. Naj bo Qn hiperkocka, v ∈Qn njeno vozlišče
in −v antipodalno vozlišče izbranega vozlišča. Najprej definirajmo Q−n := Qn \ −v kot
hiperkocko brez enega vozlišča. Če dodatno obravnavamo množico grafov dobljenih z
odstranitvijo neke podmnožice vozlišč N(v)∪ {v} v Q−n , n≥ 4, opazimo, da je dobljeni graf
delna kocka natanko tedaj, ko odstranimo v in poljubno podmnožico N(v) ali pa v ohranimo
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in odstranimo samo en element iz N(v). Označimo z Q−∗n graf dobljen na slednji način in z
Q−−n (m) graf dobljen z odstranitvijo v in m njegovih sosedov. Namesto Q−−n (0) bomo pisali
kar Q−−n . Izkaže se, da so tako dobljeni grafi ključni za razumevanje tope grafov kompleksov
orientiranih matroidov. Definirajmo Q− = {Q−∗n ,Q−−n (m) | 4≤ n; 1≤ m≤ n}.

Ključna lastnost delnih kock v Q− je, da vse vsebujejo antipodalni graf, ki ni zastražen
(kot je na primer vidno na Sliki 4.6). Prav tako velja, da noben graf iz te družine ni minor
kakega drugega, saj je vsaka skrčitev ali restrikcija grafa iz družine enaka manjši hiperkocki
ali hiperkocki brez enega vozlišča. Torej je družina minimalna glede na relacijo minorjev.
Izkaže se, da so ti grafi prepovedani minorji družine GCOM.

Izrek 4.1.17 Za graf G so naslednji pogoji ekvivalentni:

(i) G ∈ GCOM,

(ii) G je delna kocka in vsi njeni antipodalni grafi so zastraženi,

(iii) G ∈ F (Q−).

Iz gornjih karakterizacij je moč pokazati še eno. Za delno kocko G imenujmo iterirani
grafi con množico vseh grafov con dobljenih iz G, množico vseh grafov con dobljenih iz teh
grafov in tako dalje.

Posledica 4.1.18 Graf G je v GCOM natanko tedaj, ko je delna kocka in vsi njegovi iterirani
grafi con so dobro vložene delne kocke.

Iz zgornjega takoj sledi tudi karakterizacija tope grafov dobljenih iz orientiranih ma-
troidov ter neuravnovešenih sistemov.

Posledica 4.1.19 Za graf G so naslednji pogoji ekvivalentni:

(i) G ∈ GOM,

(ii) G je antipodalna delna kocka in vsi njeni antipodalni grafi so zastraženi,

(iii) G je v F (Q−) in antipodalen,

(iv) G je antipodalna delna kocka in vsi njeni iterirani grafi con so dobro vložene delne kocke.

Označimo Q−− := {Q−−n | n≥ 3}.

Posledica 4.1.21 Za graf G so naslednji pogoji ekvivalentni:

(i) G ∈ GLOP,

(ii) G je delna kocka in vsi njegovi antipodalni grafi so izomorfni hiperkockam,

(iii) G je v F (Q−−).
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Iz teh rezultatov sledi, da lahko družino grafov v GCOM, v GOM ali v GLOP prepoznamo
v polinomskem času, saj zadošča, da najdemo antipodalne grafe in preverimo njihovo
zastraženost.

Pasch in Peano grafi

V evklidski geometriji naletimo na več lastnosti, ki bi jih želeli tudi v grafu G. Imenujmo
konveksno množico, katere komplement je prav tako konveksen, polprostor (kar ustreza
definiciji polprostora v delni kocki).

• Peanova lastnost: za vse u, v, w ∈ V (G), x ∈ I(u, w) in y ∈ I(v, x), obstaja točka
z ∈ I(v, w), da y ∈ I(u, z).

• Pascheva lastnost: za vse u, v, w ∈ X , v ∈ I(u, w) in w′ ∈ I(u, v), se intervala I(v, v′)
in I(w, w′) sekata.

• Komutativnost ogrinjače in unije: za poljubno konvekso množico C ⊆ V (G) in vsak
u ∈ V (G) je konveksna ogrinjača {u} ∪ C enaka uniji konveksnih ogrinjač {u, v} za
vsak v ∈ C .

• Separacijska lastnost S3: za poljubno točko x ∈ V (G), ki ni v konveksi množici
C ⊂ V (G), obstaja polprostor H, ki ločuje x od C , tj. x ∈ H in C ∈ V (G)−H.

• Separacijska lastnost S4: za poljubni disjunktni konveksi množici C , D ⊆ V (G) obstaja
polprostor H, ki loči C od D, tj. C ⊂ H in D ⊂ X −H.

V grafih se izkaže, da sta separacijska lastnost S4 in Pascheva lastnost ekvivalentni. V
dvodelnih grafih pa je lastnost S3 ekvivalentna temu, da je graf delna kocka. Še več, v
delnih kockah sta Peanova lastnost in komutativnost ogrinjače in unije ekvivalentni. Torej
zgornje lastnosti definirajo dva zanimiva razreda delnih kock: Paschevi grafi, če zadoščajo
Paschevi lastnosti (ekvivalentno lastnosti S4), in Peanovi grafi, če zadoščajo Peanovi lastnosti
(ekvivalentno lastnosti komutiranja ogrinjače in unije). Ni težko videti, da so Penovi grafi
podmnožica Paschevih.

Karkaterizacija, ki pojasni pozicijo Paschevi grafov na zemljevidu delnih kock je sledeča:

Izrek 4.2.6 Družina Paschevih grafov ustreza družini F ({Q−4 ,Q−−4 ,Q−∗4 ,Q−−4 (m) | 1≤ m≤
4}).

Iz izreka sledi, da so Paschevi grafi (in zato tudi Peonovi grafi) tope grafi kompleksov
orientiranih matroidov, kajti vsi prepovedani minorji slednje družine imajo minorja v
{Q−4 ,Q−−4 ,Q−∗4 ,Q−−4 (m) | 1≤ m≤ 4}. Poleg tega imajo Paschevi grafi več zanimivih lastnosti,
kot recimo, da je vsak antipodalen podgraf v Paschevem grafu kartezični produkt ciklov in
povezav. Najmanjši primer Paschevega grafa, ki ni Peanov je Q−3 .
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Hipercelični grafi

Hipercelični grafi so naravna posplošitev več družin delnih kock, v katerih ne najdemo
konveksnega graf Q−3 in imajo veliko lepih lastnosti. Definirali smo jih kot družina F (Q−3 ),
izkaže pa se, da so lahko definirani na veliko različnih načinov. Amalgam nedisjunktnih
grafov G1, G2 je graf na njuni uniji vozlišč in povezav. Amalgam je zastražen, če je G1 ∩ G2

zastražen podgraf tako v G1 kot v G2.

Izrek 4.3.2 Delna kocka G je hipercelǐcna natanko tedaj, ko je dobljena iz zaporednih zas-
traženih amalgamov, kjer začnemo z grafi izomorfnimi kartezǐcnemu produktu sodih ciklov in
povezav.

Zgornja karakterizacija razloži ime hiperceličnih grafov, saj so slednji sestavljeni iz tako
imenovanih hipercelic, tj. kartezičnih produktov ciklov in povezav. Prav tako iz zgornjega
izreka sledi, da so hipercelični grafi Peanovi grafi, saj se Peanova lastnost ohranja pri
zastraženih amalgamacijah.

Graf G zadošča pogoju treh konveksnih ciklov, če za vsake tri konveksne cikle C1, C2, C3,
ki se sečejo v enem vozlišču in paroma v povezavah, velja, da je konveksna ogrinjača množice
C1 ∪ C2 ∪ C3 izomorfna hipercelici (glej Sliko 4.14). To lastnost lahko tudi posplošimo v
višje dimezije. Če definiramo rank hipercelice kot vsoto števila faktorjev hipercelice, ki so
izomorfni povezavi, in dva krat števila faktorjev izomorfnih ciklom, lahko posplošimo: Graf
G zadošča pogoju treh konveksnih celic, če za vsake tri hipercelice X1, X2, X3 dimenzije k+2,
ki se sečejo v celici dimenzije k, paroma pa v celicah dimenzije k+ 1, velja, da je konveksna
ogrinjača X1 ∪ X2 ∪ X3 izomorfna hipercelici.

Izrek 4.3.5 Za delno kocko G so naslednje lastnosti ekvivalentne:

(i) G ∈ F (Q−3 ), tj. G je hipercelǐcna;

(ii) vsaka celica v G je zastražena in G zadošča pogoju treh konveksnih ciklov;

(iii) vsaka celica v G je zastražena in G zadošča pogoju treh konveksnih celic.

Hipercelični grafi imajo več zanimivih lastnosti. Za vsaka tri vozlišča hiperceličnega grafa
obstaja enolično določena hipercelica, t.i. medianska celica, tako da lahko najdemo najkrajšo
pot med poljubnima dvema izmed izbranih treh tako, da preči mediansko celico. Nadalje
vsak endomorfizem končnega hiperceličnega grafa ima neko celico, ki se preslika sama vase.
Prav tako velja, da so vsi regularni hipercelični grafi izomorfen eni sami hipercelicam.

Medianski in skoraj-medianski grafi

Medianski grafi so verjetno najbolj raziskovana družina delnih kock. Njihova definicija
je sledeča: Graf G je medianski, če za vsako trojico vozlišč {u, v, w} v G obstaja enolično
določeno vozlišče x , imenovano mediana, da velja d(u, x) + d(x , v) = d(u, v), d(u, x) +
d(x , w) = d(u, w) in d(v, x)+ d(x , w) = d(v, w). S pomočjo študije hiperceličnih grafov smo
pokazali, da lahko medianske grafe klasificiramo tudi v jeziku minorjev.
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Posledica 4.4.2 Medianski grafi so natanko družina F (Q−3 , C6).

Torej medianski grafi podedujejo vse lastnost hiperceličnih grafov, kjer dodatno velja, da
so edine hipercelice hiperkocke. Ena izmed zanimivih karakterizacij medianskih grafov je
sledeča. Označimo z Uuv in Uvu, za vsako povezavo uv v delni kocki G, množici vozlišč v
Wuv, ki imajo soseda v Wvu, in obratno. Izkaže se, da je G delna kocka natanko tedaj, ko
so množice Uuv in Uvu konveksne za vsak uv. To motivira sledečo posplošitev. Imenujmo
delno kocko, v kateri so množice Uuv in Uvu izometrične za vsak uv, skoraj-medianski graf.
Dokazali smo:

Izrek 6.3.22 Delna kocka je skoraj medianska natanko tedaj, ko nima konveksih ciklov dolžine
šest ali več, kar je natanko tedaj, ko je v F (C6).

Še več, izkaže se, da so medianski grafi natanko presek skoraj-medianskih grafov in
Peanovih grafov. Dokazali smo tudi, da so medianski grafi realizabilni kompleksi orientiranih
matroidov.

Drevesne delne kocke in celični grafi

Drevesne delne kocke smo definirali kot delne kocke, ki imajo vse grafe con izomorfne
drevesom. Izkaže se, da je taka družina zaprta za minorje in preprosto opisljiva:

Izrek 4.5.3 Drevesne delne kocke ustrezajo družini F (Q3,Q−−4 (4)).

Eden izmed zanimivih primerov drevesnih delnih kock, ki se pogosto pojavljajo v kemiji,
so tako imenovani benzeoidi, tj. unije 6-ciklov v heksagonalni mreži brez pravih lukenj. Ni
težko videti, da so grafi poti edini grafi con v benzenoidih. Podobna struktura imenovana
celǐcni grafi so bili definirani na več ekvivalentnih načinov. Omenimo dva in sicer, da so grafi
dobljeni z zastraženo amalgamacijo povezav in sodih ciklov, oziroma ekvivalentno, da so
dvodelni grafi, v katerih je konveksna ogrinjača vsake množice S enaka uniji intervalov med
vozlišči v S, tj. conv(S) = ∪v,u∈S I(u, v). Iz prve definicije neposredno sledi, da so celični
grafi poddružina hiperceličnih.

S pomočjo analize hiperceličnih grafov lahko dodamo še eno klasifikacijo celičnih grafov:

Izrek 4.5.5 Celǐcni grafi ustrezajo družini F (Q−3 ,Q3).

Kot v primeru medianskih grafov tudi celični grafi podedujejo veliko lepih lastnosti
od hiperceličnih, na primer lastnost fiksne celice pri vsakem endomorfizmu, klasifikacijo
regularnih, itd.

Simetrične delne kock

Hiperkocke so grafi, ki vsebujejo ogromno simetrij. Vprašanje, kako se te simetrije prenesejo
na podgrafe, se izkaže za precej težko. Prvi rezultati o obstoju vozliščno tranzitivnih
podgrafov hiperkock segajo v leto 1992, ko so Brower, Dejter in Thomassen predstavili
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veliko raznolikih primerov in izpostavili, da se klasifikacija le teh zdi nedosegljiva. Po drugi
strani, če se omejimo samo na, recimo, medianske grafe, je nabor le teh zelo omejen, saj so
le hiperkocke regularni medianski grafi.

Študij regularnih delnih kock je požel precej zanimanja. Poleg rezultatov o medianski
grafih, so v devetdesetih klasificirali razdaljno-regularne grafe. Šele v naslednjem desetletju
je bilo opaženo, da to niso edine regularne delne kocke. S pomočjo računalnika so klasificirali
vse kubične delne kocke na največ 30 vozliščih ter našli nove in večje primere. Z metodami
kot je kubična inflacija ter razporeditvami premic v ravnino (torej v povezavi s kompleksi
orientiranih matroidov) so raziskovalci dobili nove zanimive kubične delne kocke. S slednjim
se je nakazalo, da je tudi klasifikacija regularnih delnih kock težko dosegljiva.

Vozliščno tranzitivne delne kocke

V naših raziskavah smo se omejili na vozliščno tranzitivne, kubične delne kocke. Naš glavni
rezultat je popolna klasifikacija le teh.

Izrek 5.2.1 Če je G končna, kubǐcna, vozliščno tranzitivna delna kocka, potem je G izomorfna
enemu izmed naslednjih grafov: K2�C2n, za n ≥ 2, G(10,3), kubǐcnemu permutaedru,
prisekanemu kubooktaedru ali prisekanemu ikozidodekaedru.

Grafi K2�C2n, za n ≥ 2, so prizme, graf G(10,3) je posplošeni Petersonov graf z
danimi parametri, medtem ko so kubični permutaeder, prisekani kubooktaeder in prisekani
ikozidodekaeder klasični grafi geometrijskih teles. Vse grafe lahko najdemo na Sliki 5.1.
Kot zanimivost navedimo, da je G(10,3) edini znan primer kubične, neravninske delne
kocke. Ker je število vozliščno tranzitivnih, kubičnih delnih kock precej omejeno, slednje
daje upanje za podobno klasifikacijo v primeru višjih stopenj. Zgornje grafe lahko vidimo
kot začetnike večjih družin vozliščno tranzitivnih grafov.

• Kartezični produkt vozliščno tranzitivnih delnih kock je vedno vozliščno tranzitivna
delna kocka. Prizme nad sodimi cikli so kartezični produkt povezav in sodih ciklov,
edinih vozliščno tranzitivnih grafov s stopnjami manj kot dva. Podobno lahko kon-
struiramo nove vozliščno tranzitivne grafe.

• Middle level grafi so definirani kot inducirani podgrafi hiperkock Qn, za lih n> 1, na
vseh vozliščih ki imaj natanko bn/2c ali dn/2e koordinat enakih 1. Taki grafi so vedno
vozliščno tranzitivne delne kocke. Graf G(10,3) je najpreprostejši primer za n = 5,
takoj za 6-ciklom v primeru n= 3.

• Kubični permutaeder, prisekani kubooktaeder in prisekani ikozidodekaeder so Cayley-
jevi grafi končnih Coxeterjevih grup, kot bomo podrobneje razložili v nadaljevanju.

Zgoraj opisane družine so edine znane vozliščno tranzitivne delne kocke.
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Zrcalni grafi

Definicija zrcalnih grafov je sledeča. Naj bo G povezan graf. Imenujmo particijo P =
{E1, E2, . . . , Ek} povezav v G zrcalna particija, če za vsak i ∈ {1, . . . , k} obstaja avtomorfizem
αi grafa G, da velja:

(i) za vsako povezavo uv ∈ Ei velja: αi(u) = v in αi(v) = u.

(ii) G − Ei je sestavljen iz natanko dveh povezanih komponent G1
i in G2

i ter αi preslika G1
i

v G2
i .

Graf, ki poseduje zrcalno particijo je imenovan zrcalni graf. Ni težko pokazati, da so
zrcalni grafi vozliščno tranzitivni, manj pričakovan rezultat je, da so delne kocke, v katerih
zrcalna particija ustreza particiji povezav v Θ-razrede.

V nadeljevanju bomo predstavili popolno klasifikacijo zrcalnih grafov. Začnimo z definici-
jami. Spomnimo se, da tope grafi realizabilnih orientiranih matroidov izhajajo iz centralnih
postavitev hiperravnin v evklidski prostor. Za hiperravnino Hi z vektorjem vi ortogonalnim
na hiperravnino definirajmo zrcaljenje kot preslikavo σHi

(x) = x − 2 x ·vi
vi ·vi

vi v evklidskem
prostoru. Centralna razporeditev hiperravnin {H1, . . . , Hm} v Rn se imenuje zrcalna raz-
poreditev, če za vsak i ∈ {1, . . . , m} zrcaljenje čez hiperravnino Hi permutira hiperravnine
(primer na Sliki 5.2).

Nadalje imenujmo grupo Coxeterjeva, če jo lahko predstavimo z generatorji in relacijami
v sledeči oblike: 〈α1, . . . ,αm | (αiα j)

ki j = 1 za vse 1≤ i, j ≤ m〉, kjer je kii = 1 in ki j ≥ 2 za
vse 0≤ i < j ≤ m.

Znano je, da obstaja bijektivna korespondenca med zrcalnimi razporeditvami in končnimi
Coxeterjevimi grupami. S sledečim smo povezali ti dve strukturi z zrcalnimi grafi.

Izrek 5.3.1 Za končen graf G so naslednje izjave ekvivalentne:

(i) G je zrcalni graf.

(ii) G je Cayleyjev graf končne Coxeterjeve grupe s kanonǐcnimi generatorji.

(iii) G je tope graf zrcalne razporeditve hiperravnin.

Končne Coxeterjeve grupe so povsem klasificirane, običajno jih označimo z
An, Bn, Dn, I2(p), E6, E7, E8, F4, H3, H4, kjer prve štiri označujejo neskončne družine, ostalih
šest pa je sporadičnih primerov. V jeziku delnih kock se prevedejo na naslednje. Družina I2(p)
ustreza sodim ciklom. Družine An, Bn, Dn definirajo neskončne družine delnih kock, za vsak
n dobimo n-regularen graf na (n+1)!, 2nn! oziroma 2n−1n! vozliščih. Natančneje, Cayleyeva
grafa A3 in D3 ustrezata kubičnemu permutaedru, B3 pa ustreza prisekanemu kubooktaedru.
Cayleyev graf H3 ustreza prisekanemu ikozidodekaedru, medtem ko E6, E7, E8, F4, H4 us-
trezajo: 6-regularnem grafu na 51840 vozliščih, 7-regularnemu grafu na 2903040 vozliščih,
8-regularnemu grafu na 696729600 vozliščih, 4-regularnemu grafu na 1152 vozliščih in
4-regularnemu grafu na 14400 vozliščih.

Iz samega dokaza zgornjega izreka tudi sledi, da se da zrcalne grafe prepoznati ter najti
njihovo zrcalno particijo in zrcalne avtomorfizme v polinomskem času.
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Računske in izračunane lastnosti

S pomočjo celoštevilskega linearnega programa smo generirali delne kocke vložljive v
hiperkocko dimenzije največ šest. Takih je kar 13491182 neizomorfnih delnih kock. Za
vsako smo preverili, če je vsebovana v kaki izmed poddružin opisanih v prejšnjih odstavkih
in nekaj drugih lastnosti. Rezultati so podani v Tabeli 6.1.

Eden izmed osnovnih vprašanj, na katerega naletimo pri računski analizi delnih kock, je
vprašanje, kako preveriti, če sta dve delni kocki izomorfni. Ali sta dva grafa izomorfna, se
po dosedanjih vedenjih da preveriti najhitreje v e(log n)O(1) operacijah, kjer je n število vozlišč
v obeh grafih. Problemom, ki so temu ekvivalentni, rečemo, da so GI polni. Za konec smo
pokazali zanimiv izrek:

Izrek 6.3.1 Problem odločanja, ali sta dva medianska grafa izomorfna, je GI poln.
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