Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions

Quality Awareness in Data Management and Mining

Laure BERTI-ÉQUILLE

Habilitation à Diriger des Recherches IRISA - Université de Rennes 1

25 Juin 2007

Activities 00000	Problem Statement	Metadata Management	Data Mining	Applications	Conclusions
Outline					

- 2 Problem statement
- Metadata management
- 4 Data mining

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Plan					

- Education and qualification
- Teaching activities
- Research activities
- Projects, contracts and collaborations
- Organization activities

Activities ●○○○○	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Education an	d qualification				
Do	ctoral Qualific	ation			
	1996: Univers	sité de Paris IX-Da	auphine		

• Master's Degree in Computer Science

1996-1999: Université de Toulon et du Var

- Ph.D. in Computer Science : "Qualité des données et leur recommandation: application à la veille technologique"
- Moniteur C.I.E.S."

Post-doctoral Position

1999-2000: Université d'Avignon et Pays du Vaucluse

Assistant Professor

Current Position

2000 - now: Université de Rennes 1 - IRISA

Associate Professor

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Teaching activitie	es				

Courses at Université de Rennes 1

- Databases
- Advanced Databases
- Data Warehouses
- XML Technologies
- Object-Oriented System Design
- Project Management

DIIC2 & MPRO2 MPRO2 TC MPRO2 MIAGE MPRO1 MIAGE MPRO2 MIAGE MPRO1-2 MIAGE

Details available at http://www.irisa.fr/Laure.Berti-Equille/Enseignement.html

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Research act	ivities				
Numbe	re				

Publications since 1996

2 book chapters and 3 edited proceedings5 papers in intl. journals et 7 in national journals15 papers in intl. conferences and 6 in intl. workshops7 papers in national conferences et 2 in national workshops

53% as a unique author

Supervision

- 1 Graduated Ph.D. and one current Ph.D. student
- 1 Expert engineer
- 1 Current post-doc
- 4 M.S. students and one internship
- 2 Participations as a reviewer in a Ph.D. jury

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Research act	ivities				
Numbe	re				

Publications since 1996

2 book chapters and 3 edited proceedings5 papers in intl. journals et 7 in national journals15 papers in intl. conferences and 6 in intl. workshops7 papers in national conferences et 2 in national workshops

53% as a unique author

Supervision

- 1 Graduated Ph.D. and one current Ph.D. student
- 1 Expert engineer
- 1 Current post-doc
- 4 M.S. students and one internship
- 2 Participations as a reviewer in a Ph.D. jury

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Projects, contra	acts and collaborations				

Coordination

- European Integrated Project (PF-6) ENTHRONE Phase 1, 2003-2005, Coordinator for INRIA Rennes
- International Projects
 - CLINIQ, PHC Italy, Università La Sapienza IStat, 2006
 - M4, PHC Japan, National Institute of Informatics, 2002

National Project (ANR)

QUADRIS, ANR-05-MMSA, Coordinator, 2006-2009

Contracts and Collaborations

- Scientific Responsability
 - Contract with Genielog, 2005-2006
 - Contract with Écoles Militaires de Coëtquidan, 2003-2008
- Participation

Inter-EPST Project with INSERM U522, 2002-2003

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions		
Projects, contracts and collaborations							

Coordination

- European Integrated Project (PF-6) ENTHRONE Phase 1, 2003-2005, Coordinator for INRIA Rennes
- International Projects
 - CLINIQ, PHC Italy, Università La Sapienza IStat, 2006
 - M4, PHC Japan, National Institute of Informatics, 2002

National Project (ANR)

QUADRIS, ANR-05-MMSA, Coordinator, 2006-2009

Contracts and Collaborations

- Scientific Responsability
 - Contract with Genielog, 2005-2006
 - Contract with Écoles Militaires de Coëtquidan, 2003-2008

Participation

Inter-EPST Project with INSERM U522, 2002-2003

Activities ○○○○●	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Organization	activities				
Or	ganization				

• Two first editions of the national workshop Data and Knowledge Quality (DKQ) in conjunction with EGC, Paris and Lille, January 2005 and 2006

Second edition of the international workshop

Information Quality in Information Systems (IQIS) in conjunction with ACM SIGMOD, Baltimore, USA, June 2005

Participation

- Organization Committee Member: BDA'05, JOBIM'02, EDD'01, INFORSID'98
- Program Committee Member:
 - 21 participations since 2005 including VLDB'07
- Editorial Board Member of two international journals:
 - International Journal of Information Quality (IJIQ)
 - Journal of Digital Information Management (JDIM)

Activities ○○○○●	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Organization a	activities				

Organization

• Two first editions of the national workshop Data and Knowledge Quality (DKQ) in conjunction with EGC, Paris and Lille, January 2005 and 2006

Second edition of the international workshop

Information Quality in Information Systems (IQIS) in conjunction with ACM SIGMOD, Baltimore, USA, June 2005

Participation

- Organization Committee Member: BDA'05, JOBIM'02, EDD'01, INFORSID'98
- Program Committee Member: 21 participations since 2005 including VLDB'07
- Editorial Board Member of two international journals:
 - International Journal of Information Quality (IJIQ)
 - Journal of Digital Information Management (JDIM)

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Plan					

- General remarks
- Context of research
- Research axis

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General remark	s				

At the schema level

- X Missing values
- X Domain constraints violation
- X Referential integrity constraints violation
- X Exact duplicates
- X Erroneous categorical data
- X Out-of-date data
- X Inconsistencies
- X Naming conflicts
- X Structural conflicts

Activities 00000	Problem statement ●oooooo	Metadata Management	Data Mining	Applications	Conclusions
General remark	s				

At the schema level

- / Missing values
- / Domain constraints violation
- / Referential integrity constraints violation
- ✓ Exact duplicates
- X Erroneous categorical data
- X Out-of-date data
- X Inconsistencies
- X Naming conflicts
- X Structural conflicts

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General remark	s				

At the schema level

- / Missing values
- / Domain constraints violation
- / Referential integrity constraints violation
- ✓ Exact duplicates
- X Erroneous categorical data
- X Out-of-date data
- X Inconsistencies
- X Naming conflicts
- X Structural conflicts

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
00000	000000	000000	000000	00000	0000
General rema	irks				

At the instance level

- X Non standardized data
- X Incomplete data
- X Erroneous data and outliers
- X Typos
- X Embedded values
- X Misfielded values
- X Ambiguous or contradictory data
- X Approximate duplicates

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General rema	rks				

At the instance level

- X Non standardized data
- X Incomplete data
- X Erroneous data and outliers
- X Typos
- X Embedded values
- X Misfielded values
- X Ambiguous or contradictory data
- X Approximate duplicates

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General remark	s				

Data Quality Research

Convergence of Several Fields

- Statistics
- Databases and Information Systems
- Project and workflow management
- Knowledge engineering

With 5 modalities

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General rema	rks				
Main A	pproaches				

Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General rema	arks				
Main A	pproaches				

Preventive Approaches

- Data model quality evaluation
- Software quality
- Retro-engineering
- Process management
- Data stewardship

Database or Data warehouse

Activities 00000	Problem statement 000●000	Metadata Management	Data Mining	Applications	Conclusions
General rema	irks				
Main A	pproaches				

Diagnostic Approaches

- Edition, audit, check sums
- Statistical analysis
- Exploratory Data Mining
- Metadata Management
- Constraint checking

Preventive Approaches

- Data model quality evaluation
- Software quality
- Retro-engineering
- Process management
- Data stewardship

Database or Data warehouse

Activities 00000	Problem statement 000●000	Metadata Management	Data Mining	Applications	Conclusions
General rema	irks				
Main A	pproaches				

- Comparison to the real-world
- Data consolidation based on several sources or a reference source
- Cleaning, ETL
- Imputation of missing values

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
General remai	rks				
Main A	pproaches				
		Diagnosti Approache - Edition, audit, chec - Statistical analysis - Exploratory Data M - Metadata Managen - Constraint checking	C 2S k sums ining tent		

Preventive Approaches

- Data model quality evaluation
- Software quality
- Retro-engineering
- Process management
- Data stewardship

Database or Data warehouse

Dynamic Approaches

- Adaptive query processing
- Personalization

Corrective Approaches

- Comparison to the real-world
- Data consolidation based on several
- sources or a reference source
- Cleaning, ETL
- Imputation of missing values

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions			
Context of research								
Main C	hallenges							

Methodological Level

- Unification and standardization
- Benchmarks

Information System Engineering Level

• Design and architecture patterns for data quality control

Languages Level (DDL and DML)

- Declaration and integrated management of data and meta-data
- Development and optimization of extended query languages

Algorithmic Level

- High dimensionality and volumetry of data and metadata
- Data and metadata indexation
- Optimization of statistical metadata computing
- Dynamic awareness of data quality in the data processing

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Research axis					

Proposed Approach

Mutual contributions of two fields

- Axis 1 Using data mining techniques for data quality evaluation
- Axis 2 Exploiting data quality metadata for evaluating and validating the quality of discovered knowledge and data mining results for decisional purposes

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Research axis					

Proposed Approach

Mutual contributions of two fields

- Axis 1 Using data mining techniques for data quality evaluation
- Axis 2 Exploiting data quality metadata for evaluating and validating the quality of discovered knowledge and data mining results for decisional purposes

Activities 00000	Problem statement ○○○○○●○	Metadata Management	Data Mining	Applications	Conclusions
Research axis					

Proposed Approach

Mutual contributions of two fields

- Axis 1 Using data mining techniques for data quality evaluation
- Axis 2 Exploiting data quality metadata for evaluating and validating the quality of discovered knowledge and data mining results for decisional purposes

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Research axis					

Axis 1: Quality-Awareness in Data management

Objective: Computing and management of metadata describing measurable factors of data quality **Contributions:**

- Modeling metadata and joint management of data and metadata
- Using and adapting statistical methods and data mining techniques for detecting patterns of anomalies on data
- Extension of a query language for manipulating data quality metadata in the query processing

Activities 00000	Problem statement	Metadata Management ●oooooo	Data Mining	Applications	Conclusions

Modeling Metadata

Extension of Common Warehouse Metamodel (OMG)

Activities 00000	Problem statement	Metadata Management ●oooooo	Data Mining	Applications	Conclusions

Modeling Metadata

Extension of Common Warehouse Metamodel (OMG)

n CWM wrappers for metadata integration

Activities 00000	Problem statement	Metadata Management o●ooooo	Data Mining	Applications	Conclusions				
Modeling Me	tadata								
CWM F	CWM Packages								

Management	Warehouse Process			Warehouse Operation				
Analysis	Transformat	ion	OLAP	Data Mining	Info Visu	rmation alization	Bu: Nome	siness enclature
Resources	Object- Oriented (ObjectModel)	Re	elationa	Rec Orie	ord- nted	Mul Dimens	ti ional	XML
Foundation	Business Information	Da Typ	ta jes ^{Expi}	ession	s Key Inde	s Type x Mappir	So ng Dep	oftware ployment
	ObjectModel (Core, Behavioral, Relationships, Instance)							

18/40

Activities 00000	Problem statement	Metadata Management o●ooooo	Data Mining	Applications	Conclusions
Modeling Me	etadata				
CWM F	Packages				

18/40

Activities 00000	Problem statement	Metadata Management ○○●○○○○	Data Mining	Applications	Conclusions
Metadata Gene	ration				

Computing metadata with analytic functions

- Collect and define the functions useful for measuring data quality factors at different levels of granularity
 - I: Profiling functions
 - II: Constraint-based functions including statistical constraints
 - III: Synopses functions with sketches, histograms, and sampling techniques
 - IV: Mining functions
- Composition of functions in analytic workflows
- Storage and indexing of metadata

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions

Metadata Generation

Example of an analytic workflow

Activities 00000	Problem statement	Metadata Management ○○○○●○○	Data Mining	Applications 00000	Conclusions 0000		
Declaration and manipulation of metadata							
Extension of SQL-like query language							

Creation of contract types composed of quality dimensions

Before querying

associated to one or more granularity levels Creation of contracts with specified constraints on each

Extension of SQL-like guery language								
Declaration and	Declaration and manipulation of metadata							
Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions			

Before querying

- Creation of contract types composed of quality dimensions associated to one or more granularity levels
- Creation of contracts with specified constraints on each dimension

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions		
Declaration and manipulation of metadata							

Extension of SQL-like query language

Quality-Constrained Query with contrats

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions			
Declaration and	Declaration and manipulation of metadata							

Examples

Creation of Contract Types

CREATE CONTRACTTYPE FRESHNESS(timeliness FLOAT ON CELL,ROW BY FUNCTION func_timeliness IS LANGUAGE JAVA NAME './XQLib/func_timeliness.java'); CREATE CONTRACTTYPE COMPLETENESS(nullValues% FLOAT ON ROW, TABLE BY FUNCTION plsql_nullValues%); CREATE CONTRACTTYPE CONSISTENCY(SCprice FLOAT ON PRODUCT BY FUNCTION price_regression IS LANGUAGE SAS NAME './XQLib/price_regression.sas');

Creation of Contracts

CREATE CONTRACT fresh OF FRESHNESS(timeliness > .50); CREATE CONTRACT complete OF COMPLETENESS(nullValues% <= .80); CREATE CONTRACT consistent OF CONSISTENCY(SCprice< .05);</pre>

Extended Query

SELECT PROD_ID, CUST_ID, FN, LN FROM CUSTOMER C, PRODUCT P WHERE P.CUST_ID=C.CUST_ID QWITH fresh ON CELL AND complete ON ROW AND consistent;

Activities	Problem statement	Metadata Management ○○○○○○●	Data Mining	Applications	Conclusions	
Quality-awareness in data management						

Contributions

- Modeling data quality metadata
- Development of a library of functions dedicated to data quality evaluation
- Design of analytic workflows for evaluating and controlling data quality
- Metadata manipulation with an extended query language

Perspectives

- Extended query optimization: approximation and constraint relaxation
- Extension of the library and development of a tool for helping the design of analytic workflows

Activities 00000	Problem statement	Metadata Management	Data Mining ●○○○○○	Applications	Conclusions
Objectives					

Axis 2: Quality-Awareness in Data Mining

- Evaluate the cost of data non-quality on the knowledge discovered from rule mining technique
- Propose a probabilistic decision model based on data quality metadata
- Ensure the quality of discovered and legitimately interesting knowledge for decision-making

Activities 00000	Problem statement	Metadata Management	Data Mining ○●○○○○	Applications	Conclusions			
Mining Association Rules								
Interes	Interestingness Measures							

Given the association rule $R: A \rightarrow B$ with A and B, two itemsets such as: $A \cap B = \emptyset$, the main interestingness measures are:

Support: $\frac{N_A - N_{AB}}{N}$ Confidence: $1 - \frac{N_{AB}}{N_A}$

 A rule is said to be valid if its confidence is greater than a predefined confidence threshold σ_C, and its support is greater than a predefined support threshold σ_S.

 A rule is said to be exact if its confidence is 1, otherwise the rule is partial.

Limit: Ignorance of quality metadata of the analyzed data

Activities	s Problem statement	Metadata Management	Data Mining ○○●○○○	Applications	Conclusions	
Associat	tion Rule Quality					
1	Measuring the Ru	Ile Quality				
-	The quality of the association rule $R: A \rightarrow B$ is defined as:					

$$Q(R) = \begin{pmatrix} q_1(R) \\ q_2(R) \\ \cdots \\ q_k(R) \end{pmatrix} = \begin{pmatrix} q_1(A) \otimes_1 q_1(B) \\ q_2(A) \otimes_2 q_2(B) \\ \cdots \\ q_k(A) \otimes_k q_k(B) \end{pmatrix}$$

with $q_j(A)$ and $q_j(B)$, the measures associated to quality dimension *j* and computed for *A* and *B* composing the rule *R* and

 \otimes_i a particular fusion function per dimension, for example:

j	Dimension	Fusion Function \otimes_j
1	Freshness	$\min[q_1(A), q_1(B)]$
2	Consistency	$q_2(A) \cdot q_2(B)$
3	Completeness	$q_3(A) + q_3(B) - q_3(A) \cdot q_3(B)$

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○●○○	Applications	Conclusions
Decision Model					
Objectiv	ves				

- Evaluate the average cost of a decision for selecting an association rule only based on interestingness measures ignoring initial data quality
- Minimize the average cost with considering the probabilities that metadata reflect the actual data quality status (no anomaly detection problem).

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○●○○	Applications	Conclusions
Decision Model					
Objectiv	ves				

- Evaluate the average cost of a decision for selecting an association rule only based on interestingness measures ignoring initial data quality
- Minimize the average cost with considering the probabilities that metadata reflect the actual data quality status (no anomaly detection problem).

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○●○○	Applications	Conclusions
Decision Model					
Objectiv	/es				

- Evaluate the average cost of a decision for selecting an association rule only based on interestingness measures ignoring initial data quality
- Minimize the average cost with considering the probabilities that metadata reflect the actual data quality status (no anomaly detection problem).

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○○●○	Applications	Conclusions		
Decision Model							
Experim	Experiments						

Experiments on KDD Cup-98 datasets:

- Extraction of the top ten association rules
- Generation of synthetic metadata describing data quality
- Evaluation of the rules as legitimately, potentially or non interesting rules
- Variations of data quality
- Cost analysis of data quality-blind decision based on selected rules based on acceptable vs unacceptable data quality

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○○●○	Applications	Conclusions
Decision Model					
Experim	ents				

Interesting Results:

- Best rules are not always legitimately interesting : interestingness measures are not self-sufficient.
- Data quality deterioration implies significative decision cost increases.

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Decision Model					
Experim	ents				

Interesting Results:

- Best rules are not always legitimately interesting : interestingness measures are not self-sufficient.
- Data quality deterioration implies significative decision cost increases.

Activities 00000	Problem statement	Metadata Management	Data Mining ○○○○○●	Applications	Conclusions
Decision Model					

Contributions and perspectives

- Exploitation of data quality metadata for:
 - Evaluating the quality of association rules and validation
 - Post-filtering association rules
- Retro-analysis and targeted corrective actions on data used for exploratory mining and decision-making
- Application to other mining techniques

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Disa					
Plan					

3 Applications

- Integration of Genomic and Biomedical Data
- CRM Data Mediation
- Telecom Data Stream Monitoring

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications •••••	Conclusions
Integration of Ge	enomic and Biomedical Data				

Project and collaboration with INSERM U522

Context

Collect all genomic and biomedical information and knowledge available in public databanks describing genes involved in liver pathologies

Contributions

- Modeling of the genomic domain
- Design of a specific ETL process (XML → OODW)
- Evaluation of biomedical data quality in the DW
- Development of tools for data warehouse exploration with browsing, querying, and profiling functionalities useful for biologists

Integration of	Conomic and Riomodical P	lata			
				00000	
Activities	Problem statement	Metadata Management	Data Mining	Applications	Conclusions

Architecture: Data Integration System

- Extraction and cleaning of XML data from the main public databanks (GenBank, SwissProt)
- Integration into the object-oriented data warehouse: GEDAW (Gene Expression DAta Warehouse)

Custom	er relationshi	p Data			
CRM Data Med	diation				
Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions

Context

Extended query processing including constraints on data quality in a mediation environment

Contributions

- Declaration and propagation of quality contracts
- Query language extended with QWITH operator
- Transformation of global extended queries (SFW-QWITH) into local extended queries
- Source selection depending on sources' ability to answer the query and satisfy the constraints on data quality
- Negotiation and relaxation of data quality constraints

Telecon	nmunication I	Data			
Telecom Data	Stream Monitoring	Monitoring			
Activities 00000	Problem statement	Metadata Management	Data Mining	Applications ○○○○●	Conclusions

Context

Prospective work for Genielog/SFR-Cegetel companies

Problem Statement

- On-line analysis and processing
- Stringent Constraints
- Approximation and widowing requirements

Contributions

- Study of data mining techniques for evaluating stream data quality
- Specification of first analytic workflows for stream data quality control

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Plan					
i ian					

- Contributions
- Perspectives

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions ●○○○
Contributions					
Main Co	ontributions				

Data quality awareness in data management

- Modeling data quality metadata
- Specification of analytic functions for metadata generation
- Extension of a query language for declaration and manipulation of constraints on data quality

Data quality awareness in rule mining

- Exploitation of metadata for evaluating the quality of association rules
- Decision model for filtering legitimately interesting association rules with data quality awareness

Contributions					
Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions ••••

Data quality awareness in data management

- Modeling data quality metadata
- Specification of analytic functions for metadata generation
- Extension of a query language for declaration and manipulation of constraints on data quality

Data quality awareness in rule mining

- Exploitation of metadata for evaluating the quality of association rules
- Decision model for filtering legitimately interesting association rules with data quality awareness

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions
Perspectives					
Resear	ch Directions				

Short Term

- Optimizing extended queries
- Designing patterns of analytic workflows dedicated to the evaluation of data quality
- Studying the sensibility of clustering and mining techniques face to combined data quality problems

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions		
Perspectives							
Research Directions							

Mid Term

- Analysis of interdependencies between data quality dimensions: QUADRIS project
- Design of introspective data management systems: mobility project funded by the European Commission, 2 years in D. Srivastava's Team at AT&T Labs Research, New Jersey, USA

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions			
Perspectives								
Research Directions								

Mid Term

- Analysis of interdependencies between data quality dimensions: QUADRIS project
- Design of introspective data management systems: mobility project funded by the European Commission, 2 years in D. Srivastava's Team at AT&T Labs Research, New Jersey, USA

Long Term

Widening the coverage of my contributions to Data Quality Research to:

- Other application domains
- Much larger data volumes (3 billions of records)

Activities 00000	Problem statement	Metadata Management	Data Mining	Applications	Conclusions ○○○●
Perspectives					

Thanks !