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Abstract
Long-term planning of a robust power system
requires the understanding of changing demand
patterns. Electricity demand is highly weather
sensitive. Thus, the supply side variation from
introducing intermittent renewable sources, jux-
taposed with variable demand, will introduce
additional challenges in the grid planning pro-
cess. By understanding the spatial and tempo-
ral variability of temperature over the US, the
response of demand to natural variability and cli-
mate change-related effects on temperature can
be separated, especially because the effects due
to the former factor are not known .Through this
project, we aim to better support the technology
& policy development process for power systems
by developing machine and deep learning ’back-
forecasting’ models to reconstruct multidecadal
demand records and study the natural variability
of temperature and its influence on demand.

1. Introduction
Inclusion of clean energy in future grid to tackle climate
change requires careful and systematic planning. Both re-
newable energy and electricity demand have significant vari-
ability. This is because solar and wind energy are dependent
on atmospheric processes and the seasonality of tempera-
ture is a key driver of variable demand (6). Peak demand in
summer is not representative of the peak demand in winter
months. As temperature increases, demand can be expected
to increase to meet cooling needs. In regions with high
electrified heating, low temperatures will also increase de-
mand (1). Additionally, as the earth continues to warm, this
seasonal variability in electricity demand will be further
amplified due to the additional temperature gradients intro-
duced by climate change. The effect introduced by climate
change on temperature is often confounded with the natural
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variability of the temperature, something that is inherent
to many other atmospheric factors including solar radiance,
wind speed, etc.

Motivations: Multi-decade historical demand data is useful
to determine ’capacity gaps’, that is if sufficient solar and
wind resources are available during high load periods. In
addition to using long time series of load data to capture
the complexities involved with planning a cleaner grid, it is
also useful to understand the change in electricity demand
as residential, transportation, and commercial sectors are
rapidly electrified Both of these analyses requires hourly
historical demand records spanning multiple decades, which
is missing from the Balancing Authorities (BA)1database.

By assessing the spatial and temporal variability of temper-
ature over the mainland US using machine & deep learning,
we can differentiate the effects of natural variability and
climate change-related effects on temperature over demand,
especially because the effects due to the former cause are
lesser-known to researchers. Thus, there is a need to recon-
struct historical demand data with a focus to understand how
natural inter-annual variability (IAV) of temperature affects
demand.

Related Work: Reconstruction of multi-decade historical
electricity demand data as a response IAV in temperature
using ’back-forecasting’ methods, has not been attempted
for the case of the US. Even in the European context, it
has been discussed only in a handful of papers (14; 15; 2;
3; 6). The analyses in (2; 3; 6) studied the sensitivity of
grid to climate change by using temperature data to create
a 36-year long time series of demand using multiple linear
regression and Generalized Additive Models for the UK,
and comparing it with hourly solar and wind energy data.

We found out that for the case of US, some studies have
focused on assessing the long term IAV of wind speeds
(7; 8; 9) and solar radiation independently, but none in con-
junction with corresponding electricity demand. Other US
based studies (12; 11) attempted to quantify the capacity gap
in solar/wind energy during high demand spells over multi-
ple decades ( 30 years) and used demand data from a repre-
sentative year due to lack of historical demand records. They

1a BA is an organization in the US responsible for maintaining
electricity balance within its area of operation.
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replicated the representative year’s data (e.g., 2018 load data
(11)) for the length of period of study in their assessment.
This assumption of using a single year data failed to capture
variability in demand over multiple decades. Moreover, a
few studies also discussed the use Piece-wise regression to
forecast demand using temperature from climate models
and fixed effects (accounting for socio-economic factors)
(10; 5). These papers serve as a good example to develop
insights about methods to forecast demand in the US, but
the use of climate models for temperature records in place
of reanalysis/observed temperature data fail to account for
the response of demand on IAV of temperature.

To our best knowledge, there does not exist any study that as-
sessed hourly variability of demand and solar/wind resource
in conjunction over multiple decades at a BA level, due to
missing historical demand data. Thus, we aim to fill this gap
by reconstructing hourly demand data between 1980-2014
for BAs by leveraging advanced regression methods and
using temperature data as one of the key predictors.

2. Proposed Method
In this paper we aim to develop model architecture to re-
construct historical demand data that is generalizable (with
some fine-tuning) to all BAs. We use piece-wise linear
regression as suggested in (2; 5; 10) to ’back-forecast’ de-
mand and compare the results against our proposed method
of Long Short Term (LSTM) architecture.We also experi-
mented with kernel based SVR, but it failed to perform on
large dataset due to computational complexity. LSTM mod-
els have gating mechanism (13) which helps to deal with
vanishing and exploding gradients efficiently during back-
propagation, and has memory state which helps in modeling
dependencies in time-series data. Moreover, they have the
ability to model non-linear functions. Piece-wise linear re-
gression on the other hand is an enhanced version of linear
regression, which has the capability to model non-linear
dependency between dependent variables and predictors,
but fails to generalize in the case of large dataset, as used in
this study.

We are interested in conducting the analysis at BA level
rather than national/state level because a BA is responsi-
ble for managing the electricity supply for a state/group of
states (ex: ISO-NE, CAISO, NYISO, etc.). There is a need
to reconstruct the demand data for all BAs individually to
account for spatial heterogeneity that influence temperature.
We strive to achieve maximum generalizability in our pro-
posed model architecture and hence we use large dataset
for training. In this paper, we focus on the case study of
Electric Reliability Council of Texas (ERCOT), and present
our findings for one city being served by ERCOT - Dallas 2.

2we have tested our models on other locations within Texas to

Back-Forecasting: Typically in forecasting the future re-
sponse of a variable of interested is predicted, i.e., we try
to foresee what will happen. Thus, from starting time t, we
determine t+1, t+2,. . ., t+n. In our proposed method of
back-forecasting (analogous to forecasting), we leverage the
same regression based methods to create historical records
starting from present, i.e., from t, we try to predict t − 1,
t − 2,. . ., t − n. Hence, instead of forecasting forward in
time, we forecast backward to re-create the missing data.
We aim to develop these estimates for 30+ years into the
past (1980 - 2014) by training on available hourly demand
records between 2015-2019.

Data: The available trainable data consists of hourly de-
mand records (in megawatts) from ERCOT and hourly tem-
perature (reported in Kelvin; converted to Celsius) from
MERRA (4) reanalysis 3 dataset between 2015-2019. We
use reanalysis data as opposed to Global Climate Models
as we are interested in understanding the natural IAV of
temperature rather than IAV due to climate change.

The 43.8k instances of hourly demand and temperature
records were divided into training and validation (hold-
out) set in 80:20 ratio. The dependent variable (also the
’ground-truth’ in validation set) is hourly demand (contin-
uous). Hourly temperature (continuous) is one of the pre-
dictors along with fixed effects (categorical) to capture any
unobserved effects which may relate to changes in temper-
ature. The fixed effects - such as hour of the day, day of
the week, month and year, were feature engineered. The
hourly fixed effect captures pattern per hour of electricity
consumption in different seasons, and ensures controlling
for implicit behavioral patterns towards using certain appli-
ances during different times of the day, and other decisions
which are cannot be explicitly modeled otherwise. Simi-
larly, the annual fixed effects capture any effect related to
change in economic activity, population, and clean energy
consumption choices, etc. Since MERRA data records for
temperature only exists up to 1980, the back-forecasting of
hourly demand values was only possible between 1980-2014
(test dataset timeline).

Evaluation metric: Since this is a regression based prob-
lem, we choose Root Mean Square Error (RMSE) and Good-
ness of Fit (adjusted R2) to evaluate our models.

Modeling: As a pre-processing step, Min-max scaling was
applied to ensure that the models do not bias towards cer-
tain predictors. Additionally, missing values from demand
data were handled by dropping them, since they only made
up of less 2% of the training+validation data. Tempera-

validate the generalizability of our proposed architecture
3Reanalysis data is generated using data analysis methods to

develop consistent records of the observed conditions, which oth-
erwise has gaps due to techniques in which data is collected and
stored
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ture records were complete since we were using reanalysis
dataset. Moreover, for Piece-wise regression, bins were
created to construct segments in temperature data to ensure
that the model follows different trends over different re-
gions of the data. These bins were determined by plotting
the distribution of temperature data to understand how it
changed.

For the LSTM model, embeddings were created for categor-
ical variables (fixed effects) since PyTorch LSTM models
only accepts numeric values, and the size of the embedding
was tuned during training. Moreover, the LSTM model ex-
pects fixed/variable length sequence to represent inputs. For
the case of time series based forecasting/back-forecasting
of demand data hinged on temperature as a key regressor, a
fixed sequence length is more appropriate. We choose 24 as
the sequence length (after multiple experiments with values
between 12-36) to denote that a back-forecasted hourly de-
mand value depends on temperature records in the past 24
hours. The sequence length parameter is an empirical choice
that researchers need to make based on domain knowledge,
but can also be considered as a hyper-parameter.

Both Piece-wise regression and LSTM model were deployed
in python, and multiple architectures were tested for the
latter, which includes stacked LSTM model, bidirectional
model, etc. with P100 GPU. The best performing model
(based on RMSE loss and R2 on validation set) was the
LSTM based architecture consisting of a single layer of
LSTM units (with dropout = 0.2) followed by two (fully
connected) linear layers. Table 1 presents the best selection
of hyper-parameters which were derived after experimenting
with various optimizers (Stochastic Gradient Descent &
Adam), learning rate schedulers (ReduceLRonPlateau), and
learning rate values between 0.001 - 0.01.

Hyper-parameter type Value
Learning Rate 0.009
Epochs 1700
Optimizer Adam
Time taken per epoch 143 sec

Table 1. LSTM model architecture details

3. Results
As hypothesized earlier, the best LSTM architecture (among
all experiments)performed better than Piece-wise regression
when Root Mean Squared Error (RMSEpiecewise: 1643
vs. RMSELSTM : 1485) and goodness of fit (R2

piecewise:
0.73 vs. R2

LSTM : 0.87) values were compared for Dallas
(other cities within ERCOT also showed similar results). We
attribute this to the complex relationship that exists between
demand and temperature, which the LSTM model captures
efficiently, as well as the large size of the dataset.

Figure 1. Distribution of back-forecasted electricity demand in
GWs in the summer quarter, from 1980-2014 for Dallas

Figure 2. Distribution of back-forecasted electricity demand in
GWs in the winter quarter, from 1980-2014 for Dallas

But while analysing the test set results, when we compared
the distribution of back-forecasted demand in gigawatts
(GWs) grouped over the summer quarter, i.e., July - Septem-
ber (Figure 1) and winter quarter i.e., October - December
(Figure 2) for Dallas, we found that the variance in winter
demand was far greater than summer. This could be hypoth-
esized to relate to sudden cold winter spells which have been
common in Dallas over the years, or our proposed model
was learning to back-forecast summer demand better than
winter.

We measured the R2 value individually between the ground
truth and predictions from summer & winter months by
slicing the backforecasts from hold-out set. We found
that models were indeed performing worse on winter
data (R2

winter−LSTM : 0.48 vs. R2
summer−LSTM : 0.83;

R2
winter−piecewise: 0.21 vs. R2

summer−piecewise: 0.78). On
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analyzing the scatter plot and correlation (Spearman Rank
correlation coefficient -0.36) between winter temperature
(Oct-Dec) for Dallas 4 and demand, we found that there is a
non-monotonic relationship between the two, and the mean
summer temperature is twice of winter average. Hence, a
single model cannot capture the complex relationship be-
tween winter temperature and demand, and thus we decided
to experiment with fitting separate models to back-forecast
winter and summer demand.

After fitting separate LSTM models (with same architecture
and hyper-parameters as the orginal) for winter and summer
data, we plotted the performance on their corresponding
hold-out set on an hourly basis 5.

Figure 3. Maximum back-forecasted summer demand in GWs
grouped per hour over validation set for Dallas

Figure 4. Maximum back-forecasted winter demand in GWs
grouped per hour over validation set for Dallas

From Figure 4 and the hold-out set performance measures
we found out that even though the R2

winter measure im-
proved (0.76 vs. 0.48) when a separate model was used to
back-forecast winter demand, it was still under performing
as compared to summer demand predictions (R2

summer of

4this is true for other cities within ERCOT
5the 20 % split on the total trainable data led to hold-out set

only containing data from 2015. Hence, we plot maximum demand
grouped on a per hour basis for winter and summer months in 2015

0.94), where almost all predictions fell in the range of ±
standard error.

We attempted to change the LSTM architecture and also
fine-tune the model for winter including use of different
fixed sequence length as presented in Figure 4, but the hold
out set predictions were beyond the range of ± standard
error of winter ground truth. This means tweaks in model
architecture were not sufficient, & perhaps the model needs
additional weather variables as predictors (such as humidity).
Additionally, between 1990 - 2016 some winters in Dallas
had extreme snow spell, tornadoes, etc. Thus, additional
experiments are required to identify such anomalous events
and calibrating the LSTM model accordingly.

But, since the summer model performed well, we wanted to
understand how ten largest hourly demand back-forecasts
for Dallas evolved between 1980-2014. The large variance

Figure 5. Twenty largest hourly demand values in GWs for Dallas
between 1980-2014

in twenty greatest hourly demand requirements (Figure 5)
for 1992, 1999, 2010, 2012, etc. is evidence as to why
historical demand is required to plan a grid with solar/wind
resources. The available data is not representative of the past
at BA level. Moreover, the trend-less’ hourly demand back-
forecasts corroborates the fact that there is no functional
form to derive historical demand empirically.

To test the model performance in a different weather zone
compared to Texas, we back-forecasted electricity demand
(using the same hyper-parameters) for the North-East Mas-
sachusetts and Boston region or NEMA, governed by the
Independent System Operator of New England (ISO-NE).
The separate summer model performance had similar per-
formance compared to the Dallas region (RMSEsummer :
201.786, R2

summer : 0.80, and MAPEsummer = 6.01).
At the same time winter back-forecasts in the winter months

6RMSE values are scale dependent and the demand in the
NEMA region of 2GW on an hourly basis
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performed relatively worse (same as the case of Dallas).

Plotting the top twenty summer demand hours in the NEMA
region, we identified an interesting pattern that is signifi-
cantly different than the Dallas’ case.

Figure 6. Twenty largest summer hourly demand values in GWs
for NEMA region between 1980-2014

While Dallas demand data (which falls under the North
Central weather zone in ERCOT) showed large year-to-year
variability in the twenty greatest summer hourly demand,
the demand back-forecasts from NEMA between 1980 and
2014 showed a weak decreasing trend. This is because
temperature change in different regions of the US is hetero-
geneous. And as these different regions experience different
interannual variability in temperature, the electricity de-
mand would change accordingly throughout the day, month,
and quarter of the year. Thus, as shown while comparing
the examples of ERCOT and ISO-NE, trends of electricity
demand observed in one region are significantly different
compared to other areas.Hence, there is a need to separately
understand on a granular level the variance in hourly de-
mand for different Balancing Authorities.

4. Conclusions
In this paper, we developed a novel back-forecasting elec-
tricity demand model (reliant on natural IAV of tempera-
ture) to reconstruct historical demand data and present a
robust model to reconstruct historical summer and winter
electricity demand for 30+ years for any BA (with some
fine-tuning in the number of epochs & learning rate). The
model was tested on two completely different weather zones,
which have different heating and cooling requirements in
winter and summer respectively, that is Texas and New Eng-
land. These two regions are also governed by different
Balancing Authorities (ERCOT and ISO-NE), and using the
performance results on validation set, as well as visualiz-
ing the distribution of back-forecasts on the test/predictor
set, we concluded that a ’one model fits all’ approach to

back-forecasting electricity demand is not appropriate as
the relationship between winter temperature and demand is
more complex than summer. It is imperative to use separate
models for summer and winter. Additionally, it is suggested
to train models for each BA separately due to spatial hetero-
geneity that affects hourly temperature, although transfer
learning techniques could be used.

The impact of reconstructing hourly demand data can be
seen in Figure 5 and in Figure 6. It is important to capture
the nuanced variability in the largest demand over different
hours in a day over a long time frame, to build adequate
capacity in the power system to serve all customers reliably.
Aggregated annual demand data over a long time scale,
even though available readily, does not help in capturing
these subtle differences, which are only discernible in an
hourly time frame. And thus, generating long-term hourly
electricity demand data is critical to support capacity market
expansion in the US.

5. Future Work
We firstly plan to automate the scripts used to train the mod-
els to make them ”production-ready” and repeat the process
of reconstructing hourly demand data for all the 66 Balanc-
ing Authorities of the US. Some of these BAs are not unique
to a state, but a particular state may have multiple BAs. To
account for multiple BAs in a state and not associate each
one of them to the same largest population center, we plan
to extract temperature carefully to correctly by using GIS
data of each Balancing Authority. Furthermore, we also
plan to experiment with humidity as an additional regressor
in the winter LSTM model as it has been used in the demand
forecasting literature and check the change in performance
of the winter model. We also aim to detect anomalies in
temperature data and specifically model outliers to make our
suggestive winter back-forecasting architecture even more
robust.
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