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Abstract

The ability to find a set of records in Exploratory Data Analysis
(EDA) hinges on the scattering of objects in the data set and the on
users’ knowledge of data and their ability to express their needs.
This yields a wide range of EDA scenarios and solutions that differ
in the guidance they provide to users. In this paper, we investigate
the interplay between modeling curiosity and familiarity in Deep
Reinforcement Learning (DRL) and expressive data exploration
operators. We formalize curiosity as intrinsic reward and familiarity
as extrinsic reward. We examine the behavior of several policies
learned for different weights for those rewards. Our experiments on
SDSS, a very large sky survey data set1 provide several insights and
justify the need for a deeper examination of combining DRL and
data exploration operators that go beyond drill-downs and roll-ups.

ACM Reference Format:

Aurélien Personnaz+, Sihem Amer-Yahia+, Laure Berti-Equille∗, Maximilian
Fabricius−, Srividya Subramanian−. 2021. Balancing Familiarity and Cu-
riosity in Data Exploration with Deep Reinforcement Learning. In Fourth
Workshop in Exploiting AI Techniques for Data Management (aiDM’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3464509.3464884

1 Introduction

Research in Exploratory Data Analysis (EDA) has been around for
several decades and is seeing a renewal thanks to the increasing
application of machine learning-based techniques. In particular,
reinforcement learning applied to data exploration [3, 19, 26] has
shown very good results in the cases where EDA logs are data- and
scenario-specific and generally not exploitable as training data.

The ability to find a set of records in EDA depends on two key
aspects: (1) data and scenario complexity: searching for individual
records ranges from looking for "a needle in the hay" to "scattered
deposits" of clustered records, and (2) human ability: some users
may be very familiar with the data and/or the application domain
and know how and where to search, whereas others may not be
able to express their needs.

1https://www.sdss.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
aiDM’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8535-0/21/06. . . $15.00
https://doi.org/10.1145/3464509.3464884

Search for galaxies

 of similar color

Red

Blue
Weak      Strong 


Luminosity

From green galaxies, search for 
galaxies with similar magnitudes, size, 
redshift and emission line estimates 

21

by-neighbors by-facet

Search for galaxies with similar 
emission line estimates, but at 

higher redshifts

3

by-distribution

Identification of high 
redshift  galaxies

Green galaxies

An EDA scenario at Max Planck Institute for Extraterrestrial Physics 

SDSS  
galaxy DB Identification of  

green pea galaxies

Flux

Wavelength
Emission lines

Figure 1: Exploring SDSS Data

An Illustrative Example. Consider the case of exploring the
SDSS SkyServer database to find a set of galaxies. Today’s astro-
physicists spend considerable time running series of SQL queries
against the SkyServer database2. Many discoveries happen "acci-
dentally". Most of the scientists’ time is spent in reformulating
queries. That was the case for the discovery Green Pea galaxies
that recently gained attention in Astronomy as one of the potential
sources that drove cosmic reionization. What astronomers need
is the ability to search for subsets or supersets of objects (akin to
drill-down and roll-up operations), search for objects (i.e., galaxies)
with similar properties or similar property distributions, and also
search for objects in the vicinity (in terms of attribute values) of a
given set objects.

Let us consider a concrete scenario. Sri is an astronomer who
wants to engage in finding as many Green Peas as possible, and
possibly other kinds of galaxies that are similar. She needs to ex-
plore the data and refine her needs on-the-go. Figure 1 shows a
sequence of three steps that form an automated exploration pipeline.
The pipeline starts looking for familiar yet different objects: it first
finds neighboring objects, with similar colors as the Green

Pea galaxies and then it breaks down those objects into sub-

sets of similar spectral properties. These two steps result in
more Green Peas. At this stage, exploration becomes adventurous
and returns different objects with comparable distributions

of relative ratios and strength of emission lines at higher

redshifts. As a result, Sri discovers that Green pea galaxies are
analogous to high redshift galaxies. She hence decides to stop the
EDA process to have a discussion with her team.

While seemingly simple, the exploration steps of Sri went from
looking for needles in a haystack to exploring large sets of clustered
objects. In addition to operators that drill-down and roll-up in the
data, Sri also needs to look in the vicinity of some objects of interest,
or to jump in the space in search for other objects that have some
common or similar values with the ones she found in the course of
her exploration. To capture that, we define a set of operators that

2See the query interface and logs produced here http://skyserver.sdss.org/log/en/
traffic/sql.asp
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can be composed to form an exploration pipeline. Each operator
takes a set of records and returns 𝑘 sets of records. We formalize the
problem of learning a policy, i.e., an exploration pipeline. Similarly
to previous work on generating automated EDA sessions [3, 26], we
choose to use Deep Reinforcement Learning (DRL) in the absence
of training data or previous exploration logs. However, we do not
limit ourselves to a notion of reward that is based on finding famil-
iar target items and we propose to investigate a virtually infinite
number of scenarios that oscillate between looking for needles in a
haystack and more compact sets of clustered records. To achieve that,
we borrow the idea of combining extrinsic reward, i.e., looking for
familiar objects, with intrinsic reward, i.e., venturing in the space
like a curious explorer [7]. This idea was shown to be effective in
learning to play a game where high curiosity, i.e., exploring all the
states of a system, yields high learning performance when no or
low extrinsic reward is available [20, 24]. This allows us to investi-
gate the interplay between expressive data exploration operators
and a DRL approach that combines: (1) intrinsic reward to capture
curiosity and (2) extrinsic reward to capture data familiarity, in
order to train exploration pipelines.

Our system, dora the explorer, pre-trains several models with
different weights for intrinsic and extrinsic rewards.3 We use Deep-
Mind’s A3C (Asynchronous Advantage Actor Critic), a well-known
DRL agent architecture. Actor-critic methods combine policy gra-
dient methods with a learned value function using asynchronous
gradient descent to optimize deep neural network controllers. A3C
completes this actor-critic architecture with parallel workers learn-
ing from diverse experience and sharing their learning, which was
shown to have a stabilizing effect on training [20].

We run extensive experiments and find that rewarding the model
every time it ventures into new states (i.e., curiosity) outperforms
traditional familiarity-only exploration [3, 19, 26]. However, while
some curiosity is good, too much of it is not appropriate for data
exploration. Additionally, we observe that the addition of new oper-
ators does not degrade extrinsic reward (capturing data familiarity),
as the agents learn to choose the most efficient set of operators to
produce the type of reward they are looking for.

In summary, our contributions are:
(1) We cast the problem of producing exploration pipelines as a

DRL problem and formalize the BCF Pipeline Generation

Problem (Balancing between Curiosity and data Familiarity)
that learns a policy maximizing a combination of extrinsic
and intrinsic rewards (Section 3).

(2) We build dora the explorer, a data exploration system
that leverages state-of-art A3C curiosity-based learning and
expressive data exploration operators (Section 4).

(3) Our experiments on real-world data corroborate our claim
that curiosity-based DRL combined with expressive data ex-
ploration operators that go beyond traditional drill-down and
roll-up operations, outperforms existing approaches lever-
aging RL and DRL for data exploration (Section 5).

2 Related Work

EDA. Guiding users in EDA is a well-studied area. Our work is re-
lated to research on query learning. For instance, AIDE [9] focuses
3dora the explorer is available at https://bit.ly/dora-application

on building a query based on generating a decision tree that classi-
fies tuples as relevant/irrelevant, a task requiring considerable user
effort to annotate samples. Another work, REQUEST [12] proposes
a framework for query-from-examples. It relies on a « User-Driven
Pruning » technique to rule out subsets of the space that are irrele-
vant to the user. This approach reduces the exploration space, but
it also requires important user effort.

Numerous other works proposed next-step recommendations
by using logs of previous operations (e.g., [11]) or by relying on
real-time feedback [9]. Similarly to existing work on automated
generation of EDA sessions [3, 26], our work generates end-to-end
exploration pipelines and studies the interplay between the data or
EDA scenario complexity and the human ability to express needs.
Most importantly, it examines the utility of combining expressive
data exploration operations with curiosity-based RL.

RL for Data Exploration. ATENA [3] leverages DRL for EDA.
Its reward function encourages the agent to perform a sequence of
operations to maximize: (i) operator interestingness: for example,
GROUP operators are ranked using the Compaction-Gain method
[6] to favor actions yielding a small number of groups that cover
a large number of tuples; (ii) diversity of actions computed as a
distance between actions’ results; and (iii) human understandability
computed by a weak supervision-based classifier that employs a
set of hand-crafted rules and a small set of EDA operators defined
by human experts as examples. Our approach differs noticeably
in offering a large degree of freedom for the exploration, without
requiring any user-defined training sample or complex metrics
to compare the actions’ result sets. Most importantly, it enables
to control "adventurous" explorations via curiosity, which is not
possible with previous approaches.

Curiosity driven RL. Intrinsically motivated RL was initially
defined in early 2000 [7]. It recently gained interest with successful
applications to video games [24] but also other tasks like visual
paragraph generation [18].

Exploration Operators. Several expressive data exploration
operations have been proposed in recent work. The difference with
our work is that they have not been considered in an iterative
exploration session and combined with curiosity-based DRL. Our
by-facet is the same as other work on faceted search [16, 31, 32]. In
[21], by-example is used to find sets that are similar to/different from
an input set. In [22], by-example-around returns 𝑘 diverse sets that
overlap with an input set, and by-example- within returns 𝑘 subsets
that maximize the coverage of an input set. Our by-distribution is
similar to by-analytics in [15] as it looks for sets that are simi-
lar/different from to an input set in terms of data distributions, or
that admits a set of distributions and finds sets with similar distribu-
tions [2]. There exist other operators that we did not consider. For
instance, by-text [8] leverages textual information such as tags and
reviews to find sets that exhibit similar/dissimilar tags or reviews.

Our design relies on an expressive set-based data model that
is modular and our set of operators can be extended with new
operators, assuming they are closed under a set semantics.

3 Casting EDA as Curiosity-based DRL

We consider a set of records 𝐷 . In our example, each record repre-
sents an object in the sky that is described with a set of attributes.

https://bit.ly/dora-application
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Figure 2: Sample from a set of galaxies

Operator RCC8 Formalism [25] Output description

by-facet(𝐷,𝐴) NTPPi returns as many subsets of 𝐷 as there
are combinations of values of attributes
in𝐴

by-superset(𝐷,𝑘) NTPP returns the𝑘 smallest supersets of input
set 𝐷 (𝑘 is application-dependent)

by-distribution(𝐷) DC returns all sets that are distinct from the
input set 𝐷 and whose attribute value
distribution is similar to 𝐷

by-neighbors(𝐷,𝑎) EC returns 2 sets that are distinct from the
input set 𝐷 and that have the previous
(smaller) and next (larger) values for at-
tribute 𝑎

Table 1: Exploration operators. The initial data is represented with

a bold line and the destination results are represented with dashed

lines.

We use 7 attributes to describe galaxies: attributes (u,g,r,i,z)

describe the magnitude in each SDSS color filter4, petroRad_r de-
scribes the size of an object, and redshift records how far an object
is from the Earth. We use 𝐷 to create an instance of our set-based
data model where a set is described with a conjunction of attribute
values. Figure 2 shows a sample from a set of 63,895 galaxies de-
scribed by a conjunction of 4 attribute values.

An exploration pipeline is a sequence of operators. In its general
form, an operator takes a set of objects 𝐷 ′ ⊆ D and returns sets
of objects that are related to objects in 𝐷 ′. Table 1 summarizes
our operators. Since they are applied to sets, we also give in the
second column their equivalent definition in the Region Connection
Calculus 8 (RCC8) formalism [17, 25].

3.1 Modeling Pipelines as Policies

We model an exploration pipeline as a policy and propose to train
a Markov Decision Process to learn a policy of an agent with the
goal to maximize its expected reward such as:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸 [𝑅𝜋 ] (1)

where 𝜋 is a policy and 𝑅𝜋 is the reward obtained by 𝜋 .
Our abstraction is a graph G = ⟨S, 𝐸⟩ where each node is a

state 𝑠𝑖 ∈ S in S and each edge 𝑒𝑖 ∈ 𝐸 is an interaction between
two consecutive states 𝑠𝑖 and 𝑠𝑖+1. Each state 𝑠𝑖 contains several
sets of objects referred to as 𝑠𝑒𝑡𝑠 (𝑠𝑖 ). The exact number of sets
associated to a state 𝑠𝑖 depends on the operator that was applied
to generate 𝑠𝑖 (see Table 1). Our model (S, 𝐸, 𝑅) is a deterministic
discrete MDP [1, 13] with the following properties: (1) States are

4http://skyserver.sdss.org/dr16/en/proj/advanced/color/definition.aspx

the set of nodes S in G; (2) 𝐸 is a set of actions, where each action
𝑒𝑖 ∈ 𝐸 is applied to one set of objects in state 𝑠𝑖 and returns several
sets in state 𝑠𝑖+1. An action induces a transition between two nodes
in G and is represented by an edge. The description of an action
is deterministic, that is, 𝑆 × 𝐸 → 𝑆 ; (3) the function 𝑅(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1) is
the reward obtained from transitioning from 𝑠𝑖 to 𝑠𝑖+1 with taking
action 𝑒𝑖 .

We designed the reward 𝑅(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1) function such that it can
simultaneously capture the notion of data familiarity as an extrinsic
reward (i.e., as an objective score coming from the environment)
and the notion of curiosity as an intrinsic reward determined by
the agent’s past experience and its knowledge of G.

3.2 Data Familiarity and Curiosity as Rewards

To compute rewards, we assume we are given a target set of familiar
objects 𝑇 . Previous work on data exploration [3, 19, 26] defined
familiarity as a function of the number of target objects found.
Objects were "found" when they were contained in a set seen by the
agent, i.e., returned by an operator. This definition is insufficient
when target objects are "drowned" in very big sets, which is the
case when exploring very large data sets such as galaxies.

Extrinsic reward. To manage the exploration of big sets, we
revisit the notion of data familiarity and define the extrinsic reward
as a function of the concentration ratio of target objects in a set. The
data familiarity of a state 𝑠𝑖 is then defined for a target set 𝑇 :

𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 (𝑠𝑖 ,𝑇 ) = Σ𝑂 ∈𝑠𝑒𝑡𝑠 (𝑠𝑖 )
|𝑂 ∩𝑇 |2
|𝑂 | × |𝑇 | (2)

The above formula is a variant of the Jaccard index. It computes
the fraction of objects found in the sets that belong to a state 𝑠𝑖 .
In practice, to prevent the agent from "over-exploiting" a set of
objects it is very familiar with (and going back and forth to reach
the reward), the agent stores a familiarity score for each of the
found target objects. Retrieving a new object increases the reward
only if the agent’s updated familiarity score is higher than before.

Using data familiarity for a scattered target set has proven to be a
good mean to create an exploration tour of the data [26]. Although
a well-defined target set will allow a large exploration of the data,
data familiarity-driven exploration is intrinsically limited by the
prior knowledge of the person designing the target set for training.

Intrinsic reward. In opposition to extrinsic reward, the RL com-
munity has developed the notion of intrinsic reward, also called
curiosity [7, 24]. Curiosity consists of rewarding the agent when
it reaches states it does not recognize. This type of reward pushes
the agent to always go further in its exploration, creating policies
looking for far away and unknown states.

Previous work on RL applied to games [24] used a complex
intrinsic curiosity module with a double objective: (1) filtering the
visual features that are independent and uninteresting to the agent
and (2) recognizing the states unknown to the agent to reward it.
As our work does not depend on visual items and takes place in a
controlled environment, the feature selection part is not necessary.
Although our problem has a very high number of possible states,
this number is finite which allows us to keep a counter for each
seen state. The curiosity reward for a state 𝑠𝑖 is hence:
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𝐶𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦 (𝑠𝑖 ) =
1

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑠𝑖
(3)

Combining rewards. Applying an action 𝑒𝑖 to a state 𝑠𝑖 causes
a transition to 𝑠𝑖+1 and its reward is calculated with 𝛿 + 𝛽 = 1 as:

𝑅(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1) = 𝛿.Familiarity(𝑠𝑖+1,𝑇 ) + 𝛽.Curiosity(𝑠𝑖+1) (4)

3.3 Problem Statement

Now, we formally define the problem we address to generate EDA
pipelines with balancing curiosity and familiarity as follows.

Problem 1. (BCF Pipeline Generation Problem): Find a pol-
icy 𝜋∗ that maximizes the expected cumulative reward:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 E
[ |𝜋 |∑
𝑖=1

𝛾𝑖𝑅(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1)
]

(5)

where 𝛾 is a discount factor in [0, 1] and |𝜋 | is the length of policy 𝜋
which corresponds to the number of operators in a pipeline.

4 Our Solution

There are many methods for solving MDPs, including value it-
eration and policy iteration. This problem could be solved us-
ing Dynamic Programming [4] or the Monte Carlo method or
a combination thereof using the Temporal Difference based ap-
proach [3, 14, 26, 27]. Policy iteration involves two steps: policy
evaluation and policy improvement that are repeated until conver-
gence. Value iteration consists in finding the optimal value function,
followed by one policy extraction. Once the value function is opti-
mal, the policy is also optimal (i.e., as it converges). While these two
methods appear seemingly close, it has been proved theoretically
and empirically in [23] that policy iteration is computationally more
efficient and requires a smaller number of iterations to converge. So,
we adapt model-free RL [3, 14, 26, 27] with inputs (S, 𝐸, 𝑅) as a pol-
icy iteration method which fits our proposed problem remarkably
well in the absence of logs as training samples.

4.1 Deep Reinforcement Learning Algorithm

Model-free RL allows us to address the problem of finding a policy
that maximizes the discounted cumulative reward. Similarly to [24],
our curiosity reward model can potentially be used by a range of
policy learning methods. In our implementation, we use A3C [20], a
state-of-the-art Deep Reinforcement Learning framework that has

Algorithm 1 Pseudo-code of a worker training loop
Require: 𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑟𝑖𝑡𝑖𝑐 and 𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑐𝑡𝑜𝑟 : Global critic and actor;

𝑤𝑜𝑟𝑘𝑒𝑟𝐶𝑟𝑖𝑡𝑖𝑐 and𝑤𝑜𝑟𝑘𝑒𝑟𝐴𝑐𝑡𝑜𝑟 :Worker critic and actor;𝑚𝑎𝑥𝑍 :
Maximal number of episodes; 𝑒𝑛𝑣 : Pipeline environment; 𝛿 :
Data familiarity weight; 𝛽 : Curiosity weight;𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠: Num-
ber of steps per episode; 𝑧: Global episode counter

1: repeat
2: Initialize step counter 𝑡 ← 0
3: Reset 𝑒𝑛𝑣 and get initial state 𝑠𝑡 ← 𝑒𝑛𝑣 .𝑟𝑒𝑠𝑒𝑡 ()
4: repeat

5: 𝑒𝑡 ←𝑤𝑜𝑟𝑘𝑒𝑟𝐴𝑐𝑡𝑜𝑟 .𝑠𝑒𝑙𝑒𝑐𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑠𝑡 )
6: 𝑓𝑡 , 𝑠𝑡+1← 𝑒𝑛𝑣 .𝑒𝑥𝑒𝑐𝑡𝑢𝑡𝑒 (𝑒𝑡 ) ⊲ returns extrinsic reward

and next state
7: 𝑐𝑡 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑 (𝑠𝑡 , 𝑒𝑡 , 𝑠𝑡+1)
8: 𝑟𝑡 ← 𝛿 ∗ 𝑓𝑡 + 𝛽 ∗ 𝑐𝑡
9: 𝑎𝑑𝑣 ←𝑤𝑜𝑟𝑘𝑒𝑟𝐶𝑟𝑖𝑡𝑖𝑐 .𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝑠 (𝑠𝑡+1, 𝑟𝑡 )
10: 𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑐𝑡𝑜𝑟 .𝑡𝑟𝑎𝑖𝑛(𝑠𝑡 , 𝑒𝑡 , 𝑎𝑑𝑣)
11: 𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑟𝑖𝑡𝑖𝑐 .𝑡𝑟𝑎𝑖𝑛(𝑠𝑡+1, 𝑟𝑡 )
12: 𝑤𝑜𝑟𝑘𝑒𝑟𝐴𝑐𝑡𝑜𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑐𝑡𝑜𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠

13: 𝑤𝑜𝑟𝑘𝑒𝑟𝐶𝑟𝑖𝑡𝑖𝑐 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑟𝑖𝑡𝑖𝑐 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠

14: 𝑡 ← 𝑡 + 1
15: until 𝑡 ==𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠

16: 𝑧← 𝑧 + 1
17: until 𝑧 ==𝑚𝑎𝑥𝑍

Ensure: A policy 𝜋 maximizing reward

been shown to outperform other critic-based methods on a wide
range of applications [20].

Actor-critic methods combine policy gradient methods with a
learned value function. Each learning episode contains action prob-
abilities and values that get periodically updated as the agent learns
from the environment based on the reward function (defined in
Eq. (4)). The policy (the actor) adjusts action probabilities based on
the current estimated advantage of taking that action; the value
function (the critic) updates this advantage based on the rewards
such as: Advantage(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1) ≈ 𝑅(𝑠𝑖 , 𝑒𝑖 , 𝑠𝑖+1) + 𝛾𝑉 (𝑠𝑖+1) − 𝑉 (𝑠𝑖 )
where 𝑉 (.) is the expected reward function. Several workers run
in parallel (see Figure 3) and update the actor and critic values. A
simplified version of the training loop of a worker is presented in
Algorithm 1. Lines #1-17 present an episode and lines #5-16 present
an operator execution step within which the action is selected (line
#5) and the reward is computed (lines #6-8). This serves the ad-
vantage computation step (line #9). The value network learns a
baseline state value to which the current reward estimate is com-
pared to obtain the “advantage”. The policy network adjusts the log
probabilities of the actions based on the advantage via the classic
RL algorithm. Line #10 trains the policy with the newly computed
advantage values and line #11 trains the value function with the
obtained reward. Lines #12-13 return the weights of the updated
policy. This process is completed in parallel by each worker as
presented in Figure 3.

4.2 Our System

The overall architecture of dora the explorer is shown in Figure 4.
The purpose of model training is to generate exploration pipelines.
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Figure 4: Overall Architecture of dora the explorer

To train our models, we first preprocess data and instantiate our set-
based model. Equi-depth binning is applied to numerical attributes
and we use the LCM closed frequent pattern mining algorithm [28]
to generate sets of objects.

The appeal of A3C comes from its parallelized and asynchronous
architecture: multiple actor-learners are dispatched to separate
instantiations of the environment; they all interact with the en-
vironment and collect experience and asynchronously push their
gradient updates to a central target network. We use a Tensorflow-
based implementation of A3C5.

Similarly to [3], we were confronted to a relatively large action-
space while combining the choice of the input set, operators, and
parameters, so we split the problem in two, both parts handled
by different actors. The first actor selects on which set the next
operator should be executed and the second selects the operator and
its parameters. The states the agent goes through are evaluated by
a single critic model, producing the advantage evaluations to train
both actors. The DRL agent is trained based on parameters of the
environment: (1) the Target Set; (2) a Set Encoder that generates
a feature vector for each set of objects. The features are the set
size, the set description, the number of distinct values in the set,
and the entropy of the values in the set, and (3) a State Encoder
that concatenates the encoded vectors of every displayed set. For
each training, the system chooses different weights for intrinsic and
extrinsic rewards. The outcome of the training step is saved in a
storage unit that contains all our pre-trained models, i.e., pipelines.

5 Experiments

The purpose of our experiments is twofold: (i) Study familiarity
and curiosity rewards with different training variants (i.e., weights);
(ii) Examine the interplay between our curiosity-based RL and
expressive data exploration operations.

5.1 Experimental Setup

Data set. SDSS6 is a large sky survey data set containing images
and metadata about hundreds of millions of astronomical objects.
We selected the data from the 2.6 million galaxies having clean
photometry and spectral information. Each galaxy is described
with 7 attributes (commonly used in Astronomy) from two join

5https://github.com/marload/DeepRL-TensorFlow2/
6https://www.sdss.org/

tables named photoobj and specobj. Each column was binned into
10 equi-depth bins. We used LCM [29] with a support value of 10,
and generated 348,857 sets whose size ranges from 10 to 261,793
galaxies. The data was used as an in-memory pandas dataframe7,
to have a sufficiently fast data manipulation to train the agents in a
reasonable time. The pipeline operators and item set representations
were implemented in python, in a library shared with dora the
explorer.

Pipeline starting point. The agents were trained and incor-
porated into dora the explorer under the partial/full guidance
modes. The input set of an episode is always the complete data
set which requires to start with a by-facet (other operators are not
meaningful on the full set).

Training setting. The agents were trained on multiple servers
and desktop computers. Training took 100 hours for about 1,700
episodes with 250 steps (operator selection and execution) per
episode. Each agent used 6 workers in parallel; the update interval
(i.e., number of steps before a policy update) was set to 20 steps and
we concatenated five successive states for the LSTM8 layers of the
networks. Training data was stored using wandb [5].

Exploration policies. We compare 5 training variants: FAMO
for familiarity-only (this mimics exiting data exploration work),
CURO for curiosity-only, 50FAM-50CUR for 50% familiarity and 50%
curiosity, 75FAM-25CUR for 75% familiarity and 25% curiosity, and
25FAM-75CUR for 25% familiarity and 75% curiosity.

Exploration operator modes. Our models are trained with
two operator modes: (1) traditional mode that is limited to drill-
down operations with by-facet and roll-up operations with by-
superset and (2) all-operator mode that extends the previous
mode with by-neighbors and by-distribution operators (see Table 1).

Familiaritywith the target set. To incite agents to visit a max-
imum number of galaxy types during the exploration, we designed
the target set used for training to be "scattered" in the data space.
The set was composed by picking 100 samples from 170 classes de-
fined in the Galaxy Zoo classification [30] (a citizen science project
with over 16 million morphological classifications of 304,122 galax-
ies drawn from the Sloan Digital Sky Survey), resulting in a target
set containing 17,000 heterogeneous objects (0.65% of the total data).

Metrics. We study the offline training phase of our agents and
the online exploration phase using the learned policies. We measure
the evolution of extrinsic and intrinsic rewards and the operators
chosen for different learning variants.

Online evaluation. We run 20 pipelines composed of 250 op-
erations for each of the trained agents.

5.2 Offline Training Phase

Figures 5 and 6 show the evolution of extrinsic and intrinsic rewards
respectively with traditional mode for Figures 5(a) and 6(a) and
all-operator for Figures 5(b) and 6(b).

7https://pandas.pydata.org/
8https://en.wikipedia.org/wiki/Long_short-term_memory

https://github.com/marload/DeepRL-TensorFlow2/
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(a) traditional (b) all-operator

Figure 5: Evolution of extrinsic reward (familiarity-based) during training

(a) traditional (b) all-operator

Figure 6: Evolution of intrinsic reward (curiosity-based) during training

5.2.1 Familiarity and Curiosity-driven Policies. Our first observa-
tion is that both FAMO and CURO policies produce a mix of extrinsic
and intrinsic rewards. FAMO produces some intrinsic reward at the
beginning of the training (Figures 6), as every state it goes through
is unknown. This reward quickly decreases as FAMO focuses on
refining its data familiarity strategy to tour data. On the other
hand, as CURO explores the data, it finds target objects fortuitously,
generating a moderate amount of extrinsic reward.

Secondly, although FAMO gets the best results for familiarity
with traditional operators, in every other case, both CURO and
FAMO under-perform when compared to other learning variants. For
both reward types, and both operator modes, the highest rewards
are reached by agents with mixed intrinsic and extrinsic rewards.
It is particularly noticeable with traditional operators, where
CURO rapidly runs out of reward and lacks motivation to develop a
working policy (Figure 6(a)), while 50FAM-50CUR and 75FAM-25CUR
end up with relatively successful curiosity-driven strategies. Sim-
ilarly, for familiarity with all-operator mode, we observe that
75FAM-25CUR and 50FAM-50CUR largely outperform FAMO.

While looking at the details of the intrinsic and extrinsic rewards
for 75FAM-25CUR with all-operator, we notice that it begins by
favoring data familiarity, focusing on the first target objects it found.
To do so, it keeps returning to the same states; this results in a
steadily decreasing intrinsic reward until episode #450. Then, it
loses interest and starts exploring new states, resulting in a high
intrinsic reward and a slight decrease in extrinsic reward. It switches
back to extrinsic reward around episode #900, with a steady increase
until a last temporary switch to intrinsic reward around episode
#1500 (Figures 5(b) and 6(b)).

In summary, when both reward sources are available, the agents
tend to alternate between curiosity- and familiarity-based policies
that prioritize one over the other and as the amount of total reward
evolves during training, priorities shift. This illustrates the importance
of optimizing for familiarity and curiosity in tandem.

5.2.2 Impact of Operators. The first remarkable difference between
the two operator modes is the apparent difficulty faced by the agents
using only traditional operators to produce an intrinsic reward.

Unlike in all-operator mode, where the agents instantly man-
age to produce a constant amount of curiosity-based intrinsic re-
ward (until some of them shift their focus to familiarity-based
reward), it takes them a relatively long time in traditional mode
to learn a strategy that produces curiosity-based reward. With
traditional operators, the policies can only explore via set gen-
eralization and specialization, while with by-neighbors and by-
distribution operators, they can explore all sets at the same level,
yielding reachable new states more easily. This is substantiated by
Figure 8 where the agent favors by-neighbors and by-distribution
during the intrinsic reward ones (episodes #500 to 900, #1300 to
1350 and #1400 to 1500) and by-facet and by-superset operators
during the extrinsic reward production phases (the rest of the time).

It is quite the opposite for familiarity-driven policies that does
not benefit from more expressive operators. Indeed, we can see
that FAMO reaches much higher performances with traditional
operators than with all-operator, where it is outperformed by
agents with a mixed reward.

These observations suggest that the traditionalmode is adapted
to familiarity-driven policies, which could justify why the database
community has mainly focused on FAMO and traditional oper-
ators. But they do also show that traditional mode is not fit
for curiosity-driven EDA. That is illustrated by CURO which never
manages to learn due to a long absence of reward (which can be
interpreted as boredom).

Wealso observe that adding new operators benefits data familiarity-
driven strategies for agents with a mixed reward, as they learn to
choose the most efficient operators to produce the reward they seek.

5.2.3 Training Summary. We can conclude that, unlike in games [24],
where exploring all possible states inevitably helps moving towards
the output of a maze, a full curiosity-based intrinsic reward is not
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Figure 7: Fragments of pipelines generated by 75FAM-25CUR (top) and 25FAM-75CUR (bottom) with all-operatormode

Figure 8: Operator distribution evolution during training for

75FAM-25CUR with all-operatormode

adapted and sufficient for EDA. We see that CURO produces a very
limited amount of data familiarity, which means that it does not
even get close to the objects of interest that we are familiar with.
On the other hand, we saw that the best familiarity-driven results
were attained by agents with some level of curiosity reward and
that the production of curiosity-based intrinsic reward is easier in
the all-operator mode. This dictates the use of a moderate level
of curiosity with additional operators, instead of familiarity only
with the usual drill-down and roll-up operations.

5.3 Online Exploration Phase

We now turn to examining the execution of our pipelines in the
online exploration phase.

Figure 9: Operator distribution in online pipelines.

5.3.1 Operator Selection. We observe in Figure 9 that by-facet and
by-superset operators are predominantly selected in familiarity-
driven policies such as FAMO and 75FAM-25CUR, whereas by-neighbors
and by-distribution operators are preferred in pipelines generated

by curiosity-driven policies such as CURO and 25FAM-75CUR. This
can also be seen in the two pipeline fragments below extracted
from the two variants (Figure 7). This confirms that, for different
weights, the agents will adopt the operators that best support their
strategy. This further motivates studying the interplay between
data exploration operators and curiosity-driven DRL of EDA.

Figure 10(a) (resp. 10(b)) shows the order in which operators are
executed in a pipeline using traditional (resp. all-operator)
mode. Both figures show that our policies make full use of the op-
erators at their disposal. Figure 10(a) shows that policies oscillate
between by-facet and by-superset operators, the only two available
operators in traditional mode. The flat lines in Figure 10(b) illus-
trate the exploration of sets at the same level using by-neighbors
and by-distribution operators.

(a) traditional (b) all-operator

Figure 10: Evolution of input set sizes in their order of execution in

online pipelines (log scale)

(a) traditional (b) all-operator

Figure 11: Evolution of the cumulative extrinsic reward during on-

line pipelines

5.3.2 Reward Evolution. Figures 11 and 12 show the evolution of
extrinsic and intrinsic rewards respectively. The results are largely
compatible with the offline phase. We can see in Figure 11 that in
both operator modes, mixed reward agents clearly outperform FAMO
and that CURO is the worst performer on cumulated familiarity. Fig-
ure 12 corroborates that curiosity-based reward is widely produced
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(a) traditional (b) all-operator

Figure 12: Evolution of the cumulative intrinsic reward during on-

line pipelines

by every variant with all-operator, while only 50FAM-50CUR
manages to produce intrinsic reward with traditional.

6 Conclusion and Discussion

We presented a formalism and an empirical study of the interplay
between expressive data exploration operators and curiosity-based
RL. Our framework learns pipelines in the form of policies with
a combination of curiosity and data familiarity as reward. Our
findings set the stage for exploiting AI methods for data exploration.

An immediate future investigation is to examine the relation
between curiosity/familiarity and the scattering of target objects in
the data. Another immediate investigation is to control the overlap
between the sets used in the exploration and examine its effect on
the utility of each operator. For instance, if the sets constitute a
partition of the data, the use of by-facet and by-superset is not
necessary and other operators such as by-neighbors are needed.

In this work, we learned an end-to-end policy with no user inter-
ventions. In the medium/longer term, we would like to investigate
the role of user feedback. For instance, users may only be allowed
to modify the parameters of an operator such as the input set and
attribute of by-facet or replace an operator altogether. Interestingly,
accounting for feedback will necessitate a mix of policy learning
and operator recommendation. For policy learning, we would like
to learn the weights of intrinsic and extrinsic rewards based on
feedback and re-adjust the policy as users are exploring data. For
operator recommendation, feedback will help break ties between
operators with very similar reward values and favor those for which
users have provided positive feedback.

The new research directions outlined above will only be pos-
sible if both real-world and synthetic data are available. It has
become a wide practice to work with semi-synthetic data and
we would like to contribute to that trend toward a benchmark.
We have started with an application that we made available at
https://bit.ly/dora-application, and our code and data at https://
github.com/apersonnaz/rl-guided-galaxy-exploration. By focusing
on the effectiveness of applying learning techniques for data ex-
ploration, our benchmark will complement existing efforts in our
community that mainly focus on performance [10].
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