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Abstract—We develop S4, a Statistically-Sound Segment
Search framework that combines principled data partitioning
and sound statistical testing to verify common hypotheses in
retail data and return interpretable customer data segments.
Our framework accommodates one-sample, two-sample, and
multiple-sample testing, to provide various aggregations and
comparisons of customer transactions. To control the proportion
of false discoveries in multiple hypothesis testing, we enforce an
FDR-controlling procedure and formulate a unified optimization
problem that returns customer data segments that satisfy the test
for a given significance level, maximize coverage of the input data,
and are within a risk capital. We develop a greedy algorithm to
explore different data partitions and test multiple hypotheses in a
sound manner. Our extensive experiments on four retail data sets
examine the interaction between significance, risk and coverage,
and demonstrate the expressivity, usefulness, and scalability of
S4 in practice.

I. INTRODUCTION

The Internet of Behaviors (IoB) trend1 calls for developing
expressive and robust methods for exploring data about people
to capture changes in their behaviors. Understanding customer
behavior enables actionable insights for social science studies
and marketing campaigns. While several approaches in Mar-
keting and Econometrics were proposed to test hypotheses
from customer data, their applicability is limited as it relies on
carefully choosing groups of customers for the hypothesis test-
ing, which in turn requires domain expertise. The availability
of large amounts of customer data today constitutes a great
opportunity to develop powerful means to test and compare
multiple hypotheses on customer behaviors and preferences.
In this work, we develop S4, a framework that seamlessly
integrates principled data partitioning and hypothesis testing
to find and compare relevant customer groups in a statistically-
sound manner.

Illustrative example. Consider a marketing analyst inter-
ested in running new promotions for customer segments, e.g.,
Young males whose purchase average increased in the month
following a promotion. Figure 1 illustrates this scenario in 3
steps. In Step 1, the analyst seeks to explore how responsive
customers were to previous promotions. A two-sample test
identifies segments whose weekly purchase average remained
the same after a promotion. For each qualifying segment, the
analyst further explores its demographics in Step 2 using a

1https://www.gartner.com/smarterwithgartner/
gartner-top-strategic-technology-trends-for-2021/

two-sample test, to compare whom among males or females
have a lower average. This results in female segments which
are used in a one-sample test (Step 3) to verify if the
proportion of young females among them is higher than 50%
of the overall population. The returned segments are a good
target for new promotions.

Challenges. Realizing our example requires to address
two challenges: (i) identify customer segments flexibly and
exhaustively, and (ii) conduct rigorous multiple hypothesis
testing at each step. The first challenge lies in the lack of
a principled way to explore different data partitionings. The
common practice is to perform data dredging2, a tedious error-
prone process. The second challenge lies in the number and
variety of statistical tests (with requirements on data normality
and independence) to verify if the customer behavior supports
the null or the alternative hypothesis. There are precise criteria
for excluding or not a null hypothesis at a certain significance
level [1], [2]. Those criteria depend on the type of test (e.g.,
one-sample, two-sample, or multiple-sample), the aggregation
function (e.g., mean, variance, proportion), the sample sizes,
whether the samples are paired (same subjects), etc. Existing
work on statistically-sound pattern mining [3], [4] falls short
in addressing those needs as it does not provide an expressive
yet simple way to identify, combine, and test relevant data
partitions.

Our solution. We propose S4, our framework for expressing
Statistically-Sound Segment Search. S4 combines powerful
data partitioning with multiple hypothesis testing. Data par-
titioning is achieved via pivoting and segmentation. We define
promotion-based and demographics-based pivoting as a form
of hold-out evaluation that divides the input data into an
exploratory set and a hold-out set [5], [6]. Segmentation is
then applied to each set to generate candidate partitions. The
common practice in marketing is to segment customers based
on who they are (e.g., demographics such as age), or on what
they do, i.e., their behavior, such as how much they spend
and how often 3. We adopt this practice and propose two
segmentation modalities: a demographics-split and a time-
based or point-based window-split [7]. The combination of
pivoting and segmentation yields candidate data partitions

2https://en.wikipedia.org/wiki/Data dredging
3https://www.qualtrics.com/experience-management/brand/

what-is-market-segmentation/
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Fig. 1: An illustrative scenario of a marketing analyst in 3 steps: (1) explore how responsive customers were to previous
promotions, (2) compare the purchase amounts from male or female customers to find which group has a lower average, and
(3) verify if the proportion of young customers in this group is higher than 50% of the overall population.

which are fed to multiple hypothesis testing to perform one-
sample, two-sample, and multiple-sample tests and return
segments that pass the test.

Overcoming the problems of multiple hypothesis testing.
When multiple hypotheses are tested, the chance of observing
a rare event increases, and hence, the likelihood of incorrectly
rejecting a null hypothesis (i.e., making a Type I error [8])
increases. A typical way to mitigate this problem is to adjust
the significance threshold of each hypothesis [1], [3], [4].
In our work, we use the Benjamini-Yekutieli False Discov-
ery Rate (FDR) procedure [9] that was designed to adjust
the significance of dependent hypotheses. FDR-controlling
procedures provide less stringent control of errors compared
to Family-Wise Error Rate (FWER) procedures (e.g., the
Bonferroni correction [10]), which controls the probability of
at least one Type I error. FDR not only reduces the number
of false positives, but it also minimizes the number of false
negatives. This makes it better suited to our context where
different segment searches are composed in a scenario and
the result of one identifies ”candidate positives” for subsequent
ones in the pipeline.

The degradation of p-values into significant and non-
significant, is not well-adapted to a large number of hypothe-
ses [11] and has been shown to prevent the acceptance of many
true discoveries [12]. To mitigate that, we propose to use a risk
capital that is computed as the sum of p-values of hypotheses
that pass the test, and to seek segments that cover as much as
possible the input data set. We formulate the S4 Problem, an
optimization problem that admits a data set, a pivot, a segmen-
tation, a significance level, and an upper-bound on risk (i.e., a
risk capital), and returns segments that satisfy the test and are
within the capital. This formulation unifies one-sample tests
where a single segment is compared against a reference value,
two-sample tests where two segments are compared (e.g.,
before and after a promotion), as well as multiple-sample tests
where the statistic measure (e.g. mean, variance, proportion)
of a segment is compared to several others. The S4 problem is
similar to the 0-1 Knapsack problem [13], making it NP-hard.
To solve it, we develop a greedy algorithm. Our algorithm
makes use of a primitive nextCandidate() that returns the next

best candidate hypothesis to test. This primitive has one of
two semantics: p-value scan that returns the candidate with the
next smallest p-value and reflects what is commonly used in
multiple hypothesis testing, and coverage scan that returns the
candidate with the next highest coverage of the input data set.
This allows us to explore the relationship between significance,
risk and coverage.

Our experiments on four real-world data sets RETAIL,
TAFENG, SALES, and AMAZON, clearly demonstrate that
leveraging coverage for hypotheses filtering is useful and
scalable. We show that the number of results is reduced by 1 to
3 orders of magnitude while preserving coverage of the input
data. This has the additional benefit of being highly scalable,
thereby enabling interactive times and the composition of
segment searches in a pipeline.

Our contributions.

1) We develop the S4 framework that combines pivoting,
segmentation, and multiple hypothesis testing in a princi-
pled manner. To enhance the reliability of our hypothesis
testing, we leverage the powerful Benjamini-Yekutieli
FDR procedure to control false discoveries for dependent
hypotheses.

2) We formalize a unified S4 problem that captures one-
sample, two-sample, and multiple-sample tests and re-
turns segments that satisfy the test (i.e, accept the null
hypothesis at a given significance level), cover the input
data, and are within a user-defined risk capital.

3) We develop the S4 algorithm that scans hypotheses either
in increasing p-values or in decreasing coverage.

4) We run extensive experiments showing that S4 addresses
today’s information needs in advanced data analytics
scenarios while mitigating the risk of multiple hypothesis
testing.

Organization. We provide a summary of the related work
in Section II. Section III introduces the S4 framework and
defines the S4 Problem. Section IV contains our solution. Our
experiments are described in Section V and a discussion fol-
lows in Section V-F. The conclusion is provided in Section VI.



#Qi Questions
#Q1 Is the average number of purchases during week-ends greater than 300?

#Q2 Does the average number of purchases of females and males differ ?

#Q3 Is the average number of weekly purchases the same

before or after promotion ?

#Q4 Does the women’s purchase average exceed men’s after promotion ?

#Q5 Is the average number of purchases overall higher after promotion ?

#Q6 Is there a difference between the average number of purchases of

young males, older males, and females ?

#Q7 Is the number of purchases by men and women higher depending on location
?

#Q8 Is the overall purchase average greater than 300?

#Q9 Are the number of purchases of males and females different ?

TABLE I: Examples of questions in marketing handled in S4
with pivot , segmentation , aggregate , and operator

Pivot
before

gender
age

Promotion

Demographics

DemographicsWindow


location

after

None

None

#Q2

#Q8

#Q5 #Q3 #Q4

#Q9 #Q7

#Q6#Q1

Segmentation

Fig. 2: Grid of S4 pivots (Promotions or Demo-
graphics) and segmentation types (Demographics
and Window) with the questions of our example

II. RELATED WORK

Existing work on combining hypothesis testing with pow-
erful customer segment discovery [3], [4] benefits from the
computational and statistical aspects of pattern mining with
an emphasis on controlling the risk of false discoveries, i.e.,
patterns found in the data sample that do not hold in the entire
population. The first step is to find genuine patterns that are
likely to reflect properties of the underlying population and
hold also in the data samples. A variety of statistical tests
have been used to filter out patterns that are unlikely to be
useful, removing uninformative variations of key patterns in
the data [5].

A statistical hypothesis test compares two models (the null
hypothesis and the alternative hypothesis) and deems the com-
parison statistically significant if, according to a significance
threshold, the data is very unlikely to have occurred under the
null hypothesis. Deciding a significance threshold is hard. In
particular, when a large number of hypotheses are tested, raw
p-values often yield very few significant hypotheses [1]. This
requires the use of powerful p-value correction methods [2],
[11] such as Family-Wise Error Rate (FWER) or False Dis-
covery Rate (FDR) [14]. The idea of controlling risk within a
budget was introduced in [12].

Our work proposes a framework that combines expressive
data partitioning and multiple hypothesis testing, to generate
interpretable customer segments. Additionally, it explores the
intricate relationship between setting a significance level,
aiming to cover the input data, and capping risk. To the best
of our knowledge, this is the first approach of this kind.

III. THE S4 FRAMEWORK

We start with examples to illustrate the types of hypotheses
we support. We then present the S4 model and formalize our
problem.

A. Motivating Examples

Our purpose is to develop a powerful framework to verify
hypotheses on customer transaction data. A hypothesis is
verified when customer segments that are sets of transactions

identified by particular filters, have similar, higher, lower
aggregates with respect to some pivot. An aggregate can be
the mean, variance, or count of purchases. A pivot can be
promotion-based or demographics-based. It separates an input
data set D into an exploratory subset DE and a hold out set
DH such that DE ∪ DH = D and DE ∩ DH = ∅. The
two sets DE and DH are further partitioned using one of
two segmentations: demographics-split or window-split, that
generate subsets to be compared via hypothesis testing.

Table I presents as examples various questions a data analyst
may ask and they will be used throughout the paper to illustrate
the analysis scenarios we consider. Segments are highlighted
in green, pivots in red, aggregates in blue, and operators
in orange. Figure 2 shows a 2D representation of segment
search with the pivots and segmentation types we consider.
We discuss the three examples highlighted in the figure.

Our first example (#Q1 in the figure) is the simple case
where there is no pivot. Segmentation type is based on 2-
day time windows that also include week-ends. The average
number of purchases is compared to a reference value (300).
Here, segments corresponding to week-ends and satisfying the
null hypothesis (using a one-sample t-test) are searched in the
data set returned.

Our second example (#Q4) is a marketing analyst who ex-
amines the impact of a promotion (pivot) on male and female
customers (demographics segmentation). The null hypothesis
is “women’s purchase average is the same as men’s after
promotion”. A (two-sample t-test will compare the average
number of purchases of men and women before and after the
promotion period which will result in accepting or rejecting
the null hypothesis.

Our third example (#Q9)) is a social scientist seeking to
compare the number of transactions by males and females
on week-ends (the null hypothesis) or different. This requires
a demographics pivot on gender coupled with a window-
based segmentation that compares 2-day periods (using a two-
proportion Z-test).
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Fig. 3: Summary of statistical tests considered in S4

B. Our Model

Our data is represented as time series in the form of a
sequence of pairs D = [(d1, s1), . . . , (dn, sn)] (s1 < s2 <
. . . sn−1 < sn), where each di is a triplet 〈ri, ci, pi〉 where ri
is a unique transaction identifier, ci is a customer identifier,
and pi is a product purchased by customer ci at time si, the
timestamp at which di occurs. Each customer is defined by a
set of demographic attributes A = {a1, . . . , an} such as age,
location and gender.

1) Pivots and Segments: We define the notion of pivot V
in the spirit of hold-out evaluation [4]. The pivot breaks down
a data set D ⊆ D into an exploratory set DE and a hold out
set DH . We introduce two types of pivots: promotion-based
where DE is the subset of D containing transactions that
precede the promotion period, and DH is the subset of D that
contains transactions following the promotion period. Other
types of events could be considered such as Christmas and
Chinese New Year; and demographics-based, e.g., gender,
where for instance, DE is the subset of D where every di
contains a male customer ci, and DH is the subset of D where
every di contains a female customer ci.

Following marketing practices, we define two customer
segmentation types that produce non-overlapping partitions
of DE and DH : demographics-split where each partition
represents transactions generated by customers with the same
values for conjunction of attributes in A. For instance, a
partitioning with attributes gender and location generates non-
overlapping subsets of transactions with all combinations of
values of gender and location (e.g., males in the north); and
window-split that partitions data into equal-length segments

of consecutive transactions. This is commonly used in drift de-
tection [7] and can be either time-based resulting in windows
of the same length, or point-based resulting in windows with
the same size (in our case, the same number of transactions).

2) Hypotheses and Segment Search: The choice of a pivot
V determines the two data subsets for which a hypothesis is
tested: the exploratory set DE and the hold-out set DH . The
choice of a segmentation S splits DE (resp., DH ) into non-
overlapping segments s.t.

⋃
sE

= DE (resp.,
⋃
sH

= DH ).

A hypothesis H is defined as a quadruple (H0, Ha, AGG, OP)
where H0 is the null hypothesis, Ha the alternative hypothesis,
AGG is an aggregate measure applied to customer purchases
(average, variance, proportion), and OP the operator used to
compare aggregates (=, <>,>, and <). Figure 3 summarizes
the aggregates and statistical tests considered in this work,
along with examples from Table I.

In our framework, a statistically-sound segment search Q
is a quadruple (H,D, V, S) that explores all data segments,
noted allSegments to test the hypothesis. Table II provides
the exact definition of allSegments for each test type used in
Q.

3) Statistical Testing: The S4 framework is aimed to be
generic and accommodate various tests. Different statistical
tests qualify depending on sample size, the subjects they
contain (paired or unpaired), and the aggregation function
AGG. Normality and independence of candidate segment pairs,



S4 Segment Search Definitions and Coverage

with one-sample test allSegments = {sE}
Candidates = {(sE , pval)}
cover(R,D) =

ΣsE∈R|sE |
|DE |

with two-sample test allSegments = {(sE , sH)}
Candidates = {(sE , sH , pval)}
cover(R,D) = Σ(sE ,sH )∈R(

|sE |
|DE |

+
|sH |
|DH |

)/2

with multiple-sample test allSegments = {(sE , {sH})}
Candidates = {(sE , {sH}, pval)}
cover(R,D) = Σ(sE ,{sH})∈R(

|sE |
|DE |

+
|
⋃

sH
|

|DH |
)/2

TABLE II: Summary of our definitions

noted Candidates are checked4 before testing and computing
their p-value. Figure 3 summarizes our definitions for each test
type. For instance, a one-sample t-test is used to compare a
mean to a hypothetical value (row #1 of Figure 3) and the p-
value is computed for individual segments sE . For comparing
two means, two-sample t-tests are computed for (sE , sH) pairs
(row #2). For comparing multiple means, an F-test for one
way ANOVA is applied to (sE , {sH}) pairs (row #4). In all
cases, we adopt a common protocol to compute p-values [15]
as described as follows for comparing two means as AGG with
a two-sample t-test.

P-value Computation Protocol:

1) Normality check: Verify that the data distributions of
each segment sE and sH is normal, normalize it other-
wise;

2) Independence filtering: Verify that the distributions of
sE ad sH are independent using χ2 test; Keep indepen-
dent pairs;

3) P-value computation: Compute the p-value of indepen-
dent (sE , sH) pairs wrt to hypothesis H and add them to
the set of candidate hypotheses Candidates .

The set Candidates along with their p-values (see Table II) is
given as input to a subsequent step to control false discoveries.

4) Controlling false discoveries: As the number of candi-
dates increases, the likelihood that spurious hypotheses pass
the test increases, causing Type I errors [8]. The significance
level of p-values can be adjusted to control the expected pro-
portion of incorrectly rejected null hypotheses. The simplest
way to do so is to use the conservative Bonferroni correc-
tion [10], a Family-Wise Error Rate (FWER) control method.
The Bonferroni correction is preferred when false discoveries
are not acceptable (in particular for critical decision-making,
e.g., accepting a new medical treatment) or when it is expected

4See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116565/ for applica-
bility conditions of statistical tests.

that most null hypotheses would be true. A different and
more powerful adjustment method is the Benjamini-Yekutieli
False Discovery Rate (FDR) procedure [9] that was designed
for dependent hypotheses and allows to control the expected
proportion of incorrectly rejected null hypotheses. FDR control
is preferred in exploratory research, where the number of
potential hypotheses is large and false discoveries are not so
critical [4].

Both FWER and FDR methods use a significance level α.
A value of 0.05 for α indicates a 5% risk of concluding that
a difference exists between the two means when there is no
actual difference. When the p-value is less than or equal to
the significance level α, the null hypothesis is rejected (means
are not equal). FWER and FDR control methods readjust the
significance threshold α to be more stringent. In this paper, we
advocate the use of Benjamini-Yekutieli and we will compare
it to the Bonferroni correction in our experiments.

Additionally, we conjecture that re-adjusting the signifi-
cance level α may return segments that constitute ”micro-
phenomena” [4], [11] due to the large number of hypotheses to
test. Therefore, we propose two additional mechanisms tested
in our experiments. First, we control risk by setting an upper-
bound (i.e., a risk capital allocated to the sum of p-values of
hypotheses that pass the test), as it was defined for multiple
hypothesis testing [12]. Second, we select hypotheses that
cover D as much as possible. Table II provides the definition
of cover(R,D) for R ⊆ Candidates .

C. Problem Statement

We are now ready to formally define the S4 problem.
Given

- Q a segment search (H,D, V, S), with hypothesis H to
be tested with significance level α on a data set D pivoted
and segmented according to V and S respectively,

- κ, a user-defined risk capital, and
- m, the total number of candidates that passed the nor-

malization and independence protocol wrt H , (m =
|Candidates|),

our problem is to find a set R∗ such that:

R∗ = argmax
R⊆Candidates

cover(R, D)

subject to

r .pval ≤ αn

m

(
n∑

i=1

1/i

)−1

and
∑
r∈R

r .pval ≤ κ

(1)

with r is the nth element in R.
This formulation relies on Benjamini Yekutieli’s signifi-

cance adjustment and captures the tests presented in Figure 3.
The S4 problem is a variant of the 0-1 Knapsack problem
where coverage is akin to the value and the p-values are akin
to the weights in the original formulation [13].

IV. OUR SOLUTION

We present Algorithm 1, our greedy solution to solve
the S4 Problem. Initially, the input data D is divided into
DE and DH subsets based on the specified pivot V (line



Algorithm 1: Pseudo-code of the S4 algorithm
Input: H , D, V , S, α, κ
Output: (R,P ) Results with their p-values satisfying

H for α and κ.
1 pivot(D,V ) := (DE , DH)
2 allSegments := genSegments(H,DE , SH , S)
3 Candidates := computePvals(H, allSegments)
// Applies the p-value computation protocol

4 m := |Candidates|;R,P := ∅; i := 0
5 while ((Candidates <> ∅) ∧ (κ > 0)) do
6 best := nextCandidate(Candidates)
7 n := |R|; i := i+ 1
8 if best.pval ≤ αn

mΣn
i=1(1/i)// According to Eq.(1)

9 then
10 R := R ∪ best; P := P ∪ best.pval
11 Candidates := Candidates \ best
12 κ := κ - best.pval
13 else
14 Break // for p-value scan

15 Continue // for coverage scan

16 return (R,P )

#1). Then, the algorithm applies a segmentation (function
genSegments() in line #2) to partition DE and DH into all
segments, allSegments, to be tested wrt the hypothesis H . The
next step applies the p-value computation protocol (line #3)
and is followed by finding the best results along with their
p-values (lines #5 to #15). To save space, we refer the reader
to an extended version of our paper for more details.

As discussed in Section III-B4, there are many correction
methods to adjust the p-value significance threshold. An
important aspect when designing an algorithm for multiple
hypothesis testing is that its outcome and power largely depend
on the order in which candidates and their p-values are
tested [4]. Bonferroni and Sidak corrections [10] are examples
of single-step methods, where the same adjusted significance
level is applied to all hypotheses (i.e., pairs of segments). Other
methods are step-wise and determine individual significance
levels for each hypothesis, depending on the order of p-
values and rejection of other hypotheses. In general, single-
step methods are considered to be the least powerful, and step-
wise methods, where hypotheses are scanned in increasing
order of their p-values, are the most powerful [4].

In this paper, we face an additional challenge that stems
from the need to stay within risk capital and to cover the
input set D. We propose a step-wise method where the next
best candidate result is generated and its p-value is tested.
Step-wise methods are computationally expensive because
they require all hypotheses to be sorted based on their p-
values. However, they can be applied in multi-stage procedures
(e.g., [5], [6]) that first select constrained sets of candidates
which are subsequently tested. To implement that, we use
nextCandidate() (line #6) that encapsulates two semantics: p-
value scan that returns candidates in increasing p-values to

mimic step-wise methods; coverage scan that returns candi-
dates in decreasing coverage to maximize coverage over D.
This second approach is effectively solving the problem in
Eq.(1) while the one based on p-value scan is the traditional
method.

At each iteration, the algorithm uses the Benjamini-
Yekutieli test with an adjusted significance level and decides
to retain or not the current candidate (line #8). If retained, it
removes its p-value from the risk capital κ (line #12). The
algorithm iterates until either there is no result left to test
in Candidates, or when adding the best candidate’s p-value
exceeds the risk capital.

In the case of p-value scan, the algorithm stops scanning
candidates as soon as it encounters a candidate whose p-
value does not satisfy the Benjamini Yekutieli condition
(line #14). In the case of coverage scan, the algorithm is
expected to reach higher values of coverage earlier. These
two cases will be examined empirically. The overall worst-
case complexity of our algorithm (line #3 onward) is O(m2)
where m = |Candidates|. The complexity of segmentation is
variable. For window-based, it is O(|DE | + |DH |) since the
sets are scanned once to create segments. For demographics-
based, we use a partition decision tree to favor larger segments.
Its complexity is O(|DE |× |A|) (resp. O(|DH |× |A|)) where
A is the number of customer data attributes. The complexity
of the p-value computation protocol is O(|allSegments|). The
worst-case complexity of nextCandidate() is O(mlogm) for
both semantics since it relies on sorting the candidates either
on p-value or on coverage.

V. EXPERIMENTS

The purpose of the experiments is to: (1) Demonstrate the
expressivity of S4 on a variety of data sets and hypotheses
(Section V-B); (2) Examine the relationship between signifi-
cance, risk capital and coverage for different data partitionings
(Section V-C); (3) Report the scalability of our algorithm as
a function of data size (Section V-E).

A. Experimental Setup

Data sets. We chose real-world data sets that offer different
opportunities for data partitioning. Due to space limitations,
we have carefully chosen a subset of our results to report
in this paper. We refer the reader to our GitHub repository5

where our code, complete results, and all our segment search
examples are made available.
RETAIL is a proprietary data set from an industrial partner,

containing 250,208 transactions generated by 32,160 unique
customers and 7,404 products and spanning a period of 34
months from Feb. 2017 to Dec. 2019. The data includes
information on customer location and gender, and a 10-week
Prom period (from Dec. 17, 2018 to Feb. 28, 2019) that we
used as a pivot. The period preceding the Prom has a total
of 90K transactions and the period following it contains 71K
transactions.

5https://bit.ly/3ruMEgz



Data set Description Pivots Segmentations
RETAIL Period: [2017/2/28-2019/12/30] Promotion: [2018/12/17-2019/2/28] PWindow: 200, 500, 1K, 2K, 5K, 10K

250,208 transactions Demographics: location, gender Demographics: location, gender
TAFENG Period: [2000/11/01-2001/02/28] Promotion: Chinese New Year [2001/1/24] PWindow: 10K

817,741 transactions Demographics: age Demographics: age
SALES Period: [2010/02/05-2012/11/01] Promotion: isHoliday weeks PWindow: 500,2k, 3k, 10k

421,570 transactions
AMAZON Period: [2015/01/01-2018/01/01] Promotion: Christmas [2016/11/20-2017/01/01] PWindow: 500, 1K, 2K, 5K, 10K

747,804 reviews

TABLE III: Data sets, pivots, and segmentations used in the experiments

TAFENG6 is a Kaggle Chinese store transactions data from
Nov. 2000 to Feb. 2001. The data contains 10 customer age
groups.
SALES7 is a Kaggle sales data from 45 stores in different

departments (anonymized). It contains 421,570 transactions
from Feb. 2010 to Nov. 2012. The data contains weekly
sales and a special attribute isHoliday indicating whether
a week is a holiday week. There are 29,661 holiday weeks
and 391,909 non-holiday weeks.
AMAZON8 product data contains 747,804 digital music re-

views generated by 425,671 customers for 261,950 tracks.
Pivots, Segmentations, and Tests. To simplify exposition,

we focus on hypothesis testing of the form (H0, HA, Mean,=)
for the one-sample and two-sample questions in Figure I. Ex-
periments with other aggregations, comparisons, and multiple-
sample questions are left for future work. Table III summarizes
the pivots and segmentations we used in our examples.

Parameters. To measure performance, we examine the
number of segments found, their coverage of the input data
set, the rate at which risk capital is consumed, and response
time. We vary: (1) the pivot and type of segmentation; (2)
the statistical test referred to as #Qi in Figure I and the
control method (i.e., Bonferroni correction [10] or Benjamini-
Yekutieli); (3) the significance level α; (4) the size of the
segmentation windows (measured as a number of transactions
they contain); (5) the risk capital κ; and for the scalability
experiment, (6) the size of the input data.

Setup. Experiments were executed on a Linux computer
with an Intel® Core™ i7-8650U CPU @ 1.90GHz × 8, and
16GB memory.

B. Segment Search and Significance Adjustment

This first experiment aims to demonstrate the expressivity
of S4. Table IV summarizes our results on RETAIL for the
examples in Figure 2. In this experiment, we do not constrain
risk capital to examine the whole range of p-values. We omit
#Q2, #Q5 and #Q8 (no segmentation).

Our first observation is that S4 is applicable to a wide
range of scenarios involving one- and two-sample tests with
various data partitionings and α values (.05 or .01). The second
observation is that S4 (with nextCandidate() based on p-value
scan) is able to identify more hypotheses than Bonferroni [10]

6https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
7https://www.kaggle.com/manjeetsingh/retaildataset?select=sales+data-set.

csv
8https://nijianmo.github.io/amazon/index.html

Fig. 4: Risk capital consumption for two α values for #Q3
and #Q9 with PWindow[500] on RETAIL

for the same α. Recall that the Bonferroni correction is
sensitive to hypothesis dependence and is hence prone to
errors. The third observation is that S4 with a nextCandidate()
based on coverage scan has the fewest number of results. The
fourth observation is that due to the range of p-values (last
two columns), setting a risk capital is a difficult task.

We also observe that increasing the number of transactions
in point-wise segmentation, as shown in #Q3 and #Q9,
generally decreases the number of candidate segments, and
de facto the number of retrieved segments that satisfy the
test. Finally, reducing α from .05 to .01 decreases the number
of retrieved segments for #Q3 PWindow[500] and [1K] and
#Q9 PWindow[500], [1K], and [2K] (the other queries have
identical results). These cases show that the type of point-
wise segmentation and the value of α should be carefully and
jointly chosen depending on the priorities of the application
to favor either the number of results or the test significance.

C. Significance, Risk, and Coverage

We now propose a deeper dive to examine (i) the relation-
ship between setting a significance level and risk consumption,
and (ii) the impact of various data partitionings on coverage.

Figure 4 shows risk consumption (Y-axis) as a function
of the number of results (X-axis) for two values of α, 0.01
and 0.05. We choose #Q3 and #Q9 with PWindow[500]
on RETAIL as they have a high number of results. Not
surprisingly, a lower value for α reduces the final number
of retrieved segments that satisfy the hypothesis. After a



α #Qi Pivot Segmentation #Candidates #Results #Results #Results min Σ
S4 S4 Bonferroni p-value p-values
p-value coverage S4
scan scan (p-value)

.05

#Q1 None PWindow[2K] 74 74 11 10 0 2.14E-276
#Q3 Prom PWindow[500] 16 058 4313 26 4122 1.38E-80 0.109
#Q3 Prom PWindow[1K] 4033 497 10 493 2.19E-107 0.006
#Q3 Prom PWindow[2K] 867 0 0 0 0 0
#Q4 Prom Dem[loc] 2 622 97 19 56 1.44E-141 0.040
#Q4 Prom Dem[loc&gen] 6461 112 26 60 1.21E-121 0.093
#Q6 None Dem[loc] 59 48 48 48 0 4.36E-08
#Q7 Dem[gen] Dem[loc&gen] 2 124 16 00 10 4.25E-10 0.002
#Q7 Dem[gen] Dem[loc] 2 124 16 8 10 4.25E-10 0.002
#Q9 Dem[gen] PWindow[500] 9 360 1229 11 630 2.92E-23 0.37
#Q9 Dem[gen] PWindow[1K] 2340 442 10 306 3.84E-29 0.110
#Q9 Dem[gen] PWindow[5K] 104 38 4 35 3.65E-27 0.013
#Q9 Dem[gen] PWindow[10K] 26 19 2 18 7.85E-39 0.005

.01

#Q3 Prom PWindow[500] 16 058 4 280 23 4 058 1.38E-80 0.025
#Q3 Prom PWindow[1K] 4 033 495 10 492 2.19E-107 0.001
#Q9 Dem[gen] PWindow[500] 9 360 935 11 492 2.92E-23 0.041
#Q9 Dem[gen] PWindow[1K] 2 340 383 9 270 3.84E-29 0.021
#Q9 Dem[gen] PWindow[2K] 585 109 7 78 1.43E-22 0.009

TABLE IV: Results on RETAIL with two control methods: Bonferroni and Benjamini-Yekutieli (S4)

(a) PWindow[500] (b) Demographics (c) PWindow[500] (d) Demographics

Fig. 5: Evolution of risk capital and p-value distribution on RETAIL with Prom as pivot and 2 segmentations: Demographics
(location), PWindow[500] and nextCandidate() based on p-value scan (a-b) and on coverage scan (c-d)

plateau due to very low p-values, risk consumption decreases
steeply which means that the cumulated risk increases with
the number of tested p-values. One can clearly see that using
a significance threshold is not enough for multiple hypothesis
testing, and that capping risk is crucial to control significance.
An important observation is that coverage scan returns 2
orders of magnitude fewer results than p-value scan.
Despite that, coverage of the input data set is at least as good.
This clearly justifies the benefit of returning fewer hypotheses
while maintaining and sometimes improving their coverage of
the input data set.

We now examine the dependence of coverage risk con-
sumption on data partitioning and on nextCandidate(). We run
#Q3 and #Q4 on RETAIL and #Q3 on AMAZON. Figures 5a
and 5b (resp., 5c and 5d) report risk consumption and p-
value distribution, for different pivots and segmentation types,
with p-value scan (resp., coverage scan). Figures 6a and 6b
reports similar results on AMAZON. The figures clearly show
that different segmentations attain different coverage values,
and that coverage scan returns 1 to 3 orders of magnitude
fewer results than p-value scan while maintaining their
coverage of the input data. One can also see that different

(a) p-value scan (b) coverage scan

Fig. 6: Risk capital consumption and p-value distribution on
AMAZON with Christmas pivot and 2 segmentations: PWin-
dow[1K] with p-value scan (a) and coverage scan (b); Other
PWindow[2K], [5K] or [10K] returned too few results.

segmentations consume risk at different rates. Risk is con-
sumed more quickly with coverage scan. That is particularly
true for demographics-based segmentations where the size of
segments is variable (Figures 5a and 5d).

D. Addressing Information Needs

We describe two scenarios that leverage our data sets to
demonstrate how to compose segment search into pipelines to
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Fig. 7: Breakdown of response times of selected segment searches on our data sets

address information needs. We only present results of p-value
scan since coverage scan showed similar output.

Retargeting. We start with a two-step example on RETAIL.
The first step runs a one-sample search that identifies highly
active customers (H0 is ”average daily purchases = 10” with
pivot = NONE and segmentation on location. The alternative
hypothesis is ”average daily purchases ¿ 10”. The number of
candidate segments is 61 (locations) that are fed to a one-
sample test that returns 48 qualifying segments containing
23,392 customers. In the second step, we consider all resulting
customers and run a two-sample test with a Prom pivot and
a (location, gender) segmentation, where H0 is ”average
daily purchases before Prom = after” and Ha is ”before
Prom ¡ after”. The total number of candidate segments is 2
(gender) × 48 (qualifying segments from the previous step).
This test returns 37 segments that contain 25,216 customers
who constitute good candidates for retargeting, a strategy that
focuses on advertising to customers who are already familiar
with a brand and have recently demonstrated interest.9

Risk Aversion. Our second scenario is a two-step example
on TAFENG that seeks to verify a longstanding hypothesis
in Psychology according to which young customers are less
prone to risk aversion, i.e., the feeling of missing out if they
do not buy a product at a reduced price [16]. Our first step
is to find segments whose purchase average remained the
same after a Prom (pivot) using a window-based segmenta-
tion (PWindow[5K]). This segmentation returns 14 qualifying
segments (containing 8,634 out of 32,266 customers), the
highest number among all segmentations. For each output
segment, we explore its demographics with an age-based
segmentation and no pivot using a one-sample test to verify
which ones have weekly purchases equal to 150. The test
returns customers aged [35-39], [45-49], [50-54], and [60-64].
This confirms the original hypothesis.

E. Scalability Analysis

All scalability measures are averaged over 5 runs. Figure 7
reports a breakdown of the time to evaluate #Q3, #Q4, and
#Q9 on different data sets, pivots and segmentations (α =

9https://en.wikipedia.org/wiki/Behavioral retargeting

.05 and default is p-value scan). Most of the time is spent
in the p-value computation protocol. Overall response time is
reasonable. For AMAZON, p-value scan is more expensive than
coverage scan.

We now study response time as a function of data size (#Q3
PWindow[500] on AMAZON in Figure 8). The original data
was replicated to generate increasing data sizes. The graph
shows that coverage scan outperforms p-value scan (with 1M
candidates, coverage scan took only 1.84 seconds while p-
value scan did not terminate after 90 minutes). This makes
coverage scan the method of choice for composing segment
searches into advanced pipelines and for interactive multiple
hypothesis testing.

Fig. 8: Scalability on AMAZON for #Q3 PWindow[500]

F. Discussion

Due to limited space, and to build a coherent narrative,
we intentionally only covered mean, and equality in our ex-
periments. An immediate empirical investigation would be to
run all other variants. We now discuss new research questions
raised by our work.

On Data Partitioning. While our conclusions are not
limited to a single data set, the same segment search may
yield contradicting results on different data sets, by rejecting
or not the null hypothesis. That could happen even if the
data sets are comparable in content and size and the segment
search uses the same partitioning. A natural question is how
to account for evidence found in different data sets? Existing
work on multiple test correction in pattern mining (e.g.,
LAMP: Limitless Arity Multiple-testing Procedure) [6] could



be leveraged with data partitioning and additional pivots.10

On Filtering and Composing Hypotheses. To reduce
the number of hypotheses, we adopted coverage-based fil-
tering [17]. Another promising filtering method would be to
revisit segmentation. For instance, demographics-based seg-
mentation can use a partition decision tree where the gain
function leverages α to prune unpromising segments [18].
Another possibility is to leverage drift detection [19], and use
α to determine window length in window-based segmentation.

As shown in our experiments, segment search can be
composed to address complex information needs where a
pipeline of hypotheses are tested. This raises new challenges
on combining statistical tests in a pipeline. In particular, one
may allow the decision of whether to reject a null hypothesis
to be reconsidered in light of null hypotheses rejected in
subsequent steps. This needs to be considered in conjunction
with setting a risk capital.

VI. CONCLUSION

We developed S4, the first framework that combines expres-
sive data partitioning with powerful statistical testing, to verify
common hypotheses in retail and find relevant data segments.
To the best of our knowledge, ours is the first extensive
experiments of data partitioning and hypothesis testing. Our
work also laid the ground for many new research questions
discussed in Section V-F.

Our framework is aimed as a first step toward developing
a benchmark for combining powerful data partitioning and
hypothesis testing. The grid presented in Figure 2 (along with
our available code and set of segment search queries) can serve
as a basis to define other specific questions that are relevant
to a particular domain of interest. Such a benchmark would
contribute to building a community around the topic and en-
couraging experimental repeatability and result reproducibility.
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