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ABSTRACT

The demand for transparency in healthcare and finance has led to interpretable
machine learning (IML) models, notably the concept bottleneck models (CBMs),
valued for their potential in performance and insights into deep neural networks.
However, CBM’s reliance on manually annotated data poses challenges. Label-
free CBMs have emerged to address this, but they remain unstable, affecting their
faithfulness as explanatory tools. To address this issue of inherent instability, we
introduce a formal definition for an alternative concept called the Faithful Vision-
Language Concept (FVLC) model. We present a methodology for constructing
an FVLC that satisfies four critical properties. Our extensive experiments on four
benchmark datasets using Label-free CBM model architectures demonstrate that
our FVLC outperforms other baselines regarding stability against input and con-
cept set perturbations. Our approach incurs minimal accuracy degradation com-
pared to the vanilla CBM, making it a promising solution for reliable and faithful
model interpretation.

“The greatest obstacle to discovery is not
ignorance; it is the illusion of knowledge.”

- Daniel J. Boorstin

1 INTRODUCTION

Contemporary machine learning models, like deep neural networks (DNNs), often rely on intricate
nonlinear structures, making them challenging for end-users to understand and trust. This lack of
interpretability hinders their adoption, especially in critical domains like healthcare (Ahmad et al.,
2018; Yu et al., 2018; Lai et al., 2022) and finance (Cao, 2022), where transparency is crucial. In
response to this demand, interpretable machine learning (IML) models (Doshi-Velez & Kim, 2017)
offer explanations for their behavior and insights into their inner workings. Concept Bottleneck
Models (CBMs) have emerged as a noteworthy IML model, focusing on enhancing system safety
and building trust among stakeholders (Koh et al., 2020). Unlike traditional IML models, CBMs
leverage elevated concepts, featuring a concept layer that aids in downstream tasks and produces eas-
ily understandable deep features, facilitating users’ comprehension of the model’s decision-making
processes and concept relationships with input data.

CBMs have recently advanced significantly, driven by notable studies (Yuksekgonul et al., 2022;
Oikarinen et al., 2023). These advancements are partly attributed to pre-trained large language mod-
els (LLMs) and vision-language models (VLMs) (Menon & Vondrick, 2023; Yang et al., 2024a;b;
Xu et al., 2023b). Traditional CBMs require substantial manual annotation, which label-free CBM
(Oikarinen et al., 2023) effectively addresses by leveraging factual information from pre-trained
models, reducing the need for domain-specific experts. However, this convenience comes with in-
herent instability in pre-trained models, which we investigate in this paper. Instability is a common
issue in deep learning interpretation methods, making it challenging to understand model reason-
ing (Hu et al., 2023c;b), especially with unlabeled data and self-supervised training (Ghorbani et al.,
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Figure 1: This is an example using the Places365 dataset (Zhou et al., 2017). The leftmost fig-
ure displays the input image, while the adjacent one on the left shows the concept output without
perturbations. In contrast, the figure on the right presents the concept output after applying concept
words and input perturbations, resulting in noticeable changes. These alterations include shifts in
concept positioning along the ordinate and adjustments in the ranks of their respective weights, as
exemplified by the concept “surgery”. The prediction has also changed under slight perturbations.

2019; Dombrowski et al., 2019; Yeh et al., 2019). This instability issue also affects Label-free CBM,
as Figure 1 illustrates.

To ensure a “faithful concept” for explaining deep features from the CBMs, we need a precise def-
inition. Ideally, a “faithful concept” should have these four properties within the same concept set,
which is generated by the LLM according to classes: (i) Significant overlap between the top-k in-
dices of the “faithful concept” and the original concept, ensuring interpretability. (ii) Inherent stabil-
ity, with the concept vector remaining robust against random noise1 and perturbations during LLM
concept set generation. (iii) A prediction distribution close to that of the vanilla CBMs, preserving
its outstanding performance. (iv) Stable output distribution, remaining robust during self-supervised
learning and LLM concept set generation, even in the presence of perturbations.

Our Contributions: (1) In-Depth Analysis of Faithfulness in VLMs: We have identified a significant
faithfulness issue in generating textual descriptions from visual data due to unstable alignment be-
tween text and images. (2) Rigorous Definition of FVLC: Building on our findings, we offer a formal
definition of faithful vision-language interpretation with four essential properties, providing a clear
framework for assessing VLM faithfulness. (3) Innovative Faithful Mapping Module: To tackle
VLM faithfulness issues, we present an adaptable and flexible mapping module. It optimizes pa-
rameters minimally, preserving the integrity of the large model’s pre-trained parameters, and aligns
with our faithfulness definition. It smoothly integrates with classifier-free vision-language inter-
pretation models without altering the original model structure, simplifying faithful interpretation
in downstream tasks. (4) Proposed Faithful Evaluation Metric: Alongside the mapping module,
we propose an original metric tailored for evaluating vision-language interpretation faithfulness,
measuring alignment stability between textual information and visual content for more precise as-
sessments. More details about the setting, implementation, and additional experimental results can
be found in Appendix.

2 RELATED WORK

Concept Bottleneck Models. Considerable research has explored Concept Bottleneck Models
(CBMs) recently (Havasi et al., 2022; Kim et al., 2023; Keser et al., 2023). However, CBMs face
two primary challenges. Firstly, their performance often falls short compared to models without the
concept bottleneck layer due to incomplete extraction of information from the original data into bot-
tleneck features. Secondly, CBMs require laborious dataset annotation by human experts. Numerous
studies have tackled these challenges and proposed potential solutions.

Chauhan et al. (2023) extend CBMs to interactive prediction settings by developing an interaction
policy that determines which concepts to request labels for, thereby improving the final prediction.
Post-hoc Concept Bottleneck models (PCBMs) (Yuksekgonul et al., 2022) can be applied to any
neural network without sacrificing model performance while still providing interpretability benefits.

1It’s important to highlight that the noise can originate not only from the input data but also from other
sources like perturbed concept sets (e.g., Figure 1), emphasizing distinctions from adversarial robustness.
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When concept annotations are unavailable, PCBMs demonstrate the ability to transfer concepts from
other datasets or utilize natural language descriptions through multimodal models. Sawada & Naka-
mura (2022) integrate supervised concepts with unsupervised ones trained using self-explaining
neural networks (SENNs) to obtain both types of concepts simultaneously. Oikarinen et al. (2023)
discuss the limitations of existing CBMs and propose a Label-free CBM, which allows any neural
network to be transformed into an interpretable CBM without the need for labeled concept data
while maintaining high accuracy. Label-free CBM achieves state-of-the-art performance against
other CBMs on classification tasks and represents an efficient unsupervised CBM. However, it is
important to note that current CBM models do not consider the instability of concept sets’ words
generated by large language models or the instability caused by self-supervised training. Perturba-
tions to the words in the concept set and input can impact the interpretability of the output. In this
paper, our focus is primarily on enhancing the faithfulness and stability of Label-free CBMs.

Faithfulness in explanation methods. Faithfulness, as a crucial property of explanation models,
entails accurately reflecting the true reasoning process of the underlying model in the explanation
(Wiegreffe & Pinter, 2019; Herman, 2017; Jacovi & Goldberg, 2020; Lyu et al., 2022). It is closely
related to other principles such as sensitivity, implementation invariance, input invariance, and com-
pleteness (Yeh et al., 2019). Completeness, for instance, signifies that an explanation should compre-
hensively encompass all relevant factors contributing to the prediction (Sundararajan et al., 2017).
The remaining three principles pertain to stability concerning different types of perturbations. An
explanation should undergo changes if significant features that influence the prediction are heavily
perturbed (Adebayo et al., 2018) while remaining stable in the face of small perturbations (Yin et al.,
2022). Therefore, stability plays a pivotal role in ensuring explanation faithfulness.

Several preliminary approaches have been proposed to achieve stable interpretations. For example,
Yeh et al. (2019) theoretically analyzes the stability of post-hoc interpretations and proposes the use
of smoothing techniques to improve interpretation stability. Additionally, Yin et al. (2022) design
an iterative gradient descent algorithm to obtain counterfactual interpretations exhibiting desirable
stability characteristics. However, these techniques are primarily designed for post-hoc interpreta-
tion and may not directly apply to CBMs. Novel methodologies need to be explored to address the
stability requirements in CBMs. This paper aims to develop techniques that enhance stability and
faithfulness within the context of CBMs. By considering the unique characteristics and challenges
posed by CBMs, we seek to establish a framework that achieves stable interpretations while ad-
hering to the principles of faithfulness, completeness, and sensitivity. Our proposed approach will
facilitate reliable explanations in CBMs and contribute to the interpretable machine learning field.

3 PRELIMINARY

Concept Bottleneck Models. To introduce the original CBMs, we will adopt the notations used by
Koh et al. (2020). We consider a classification task with a concept set denoted as C = {p1, · · · , pk}
and a training dataset represented as {(xi, yi, ci)}Ni=1, where for i ∈ [N ], xi ∈ Rd is the feature
vector, yi ∈ Rdz denotes the label, where dz corresponds to the number of classes, and ci ∈ Rk

denotes the concept vector whose j-th entry represents the weight of the concept pj . In CBMs, we
aim to learn two representations. One transforms from the input space to the concept space, which
is represented by g : Rd → Rk. The other one maps from the concept space to the prediction space,
which can be denoted by f : Rk → Rdz . For any input x, we aim to make its predicted concept
vector ĉ = g(x) and prediction ŷ = f(g(x)) to be close to its underlying ones.

Label-free CBMs. The label-free CBM proposed by Oikarinen et al. (2023) has four steps:

Step 1: Concept set creation and filtering. In traditional CBMs, the concept set is typically gen-
erated through annotations by human experts. Instead, we propose utilizing the OpenAI API and
leveraging GPT-3 (Brown et al., 2020) to automatically generate the concept set based on the classes,
which are the dataset’s labels. GPT-3 possesses a substantial amount of domain knowledge and can
effectively identify important concepts associated with detecting each class when prompted appro-
priately. To accomplish this, we ask GPT-3 the following: (i) List the most important features for
recognizing something as a {class}; (ii) List the things most commonly seen around a {class}; (iii)
Give superclasses for the word {class}. After Step 1, we get a concept set C = {p1, · · · , pk}. See
the Appendix C for additional details and sample output.
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Step 2 and 3: Learning the Concept Bottleneck Layer (CBL). After obtaining the concept set, the
following step involves acquiring a projection from the feature space of the backbone model into
a space where interpretable concepts correspond to axis directions. To achieve this, we should
learn the projection weights Wc without relying on any labeled concept data by using CLIP-Dissect
(Oikarinen & Weng, 2022; Guo et al., 2023b;a). Initially, we require a concept set that the bottleneck
layer is supposed to represent as C = {p1, · · · , pk}, and a training dataset (such as images) without
ci of the original task. We then calculate and save the CLIP concept activation matrix M , where
Mi,j = EI(xi) · ET (Pj), and EI and ET are the CLIP image and text encoders respectively. Wc

is initialized as a random k × d matrix, where d is the dimensionality of backbone features bf(·)
(Backbone is the part that extracts features from the input image for the network). The concept
set C is created in Step 1, and the training dataset is provided by the downstream task. We define
g(·) = Wcbf(·), We use l ∈ [d] to denote a neuron of interest in the projection layer and its activation
pattern is denoted as ql where ql = [gl(bf(x1)), · · · , gl(bf(xN ))] with ql ∈ RN and gl(x) is the l-th
coordinate of g(x). Our optimization goal is to minimize the defined objective L over Wc, which is
as follows:

L(Wc) =

k∑
i=1

−sim(Pi, qi) =

k∑
i=1

− q̄i
3 · M̄:,i

3

||q̄i3||2||M̄:,i
3||2

. (1)

Here, q̄ indicates vector q normalized to have mean 0 and standard deviation 1.

Step 4: After successfully learning the Concept Bottleneck Layer, the next step involves training
the final predictor using the fully connected layer WF ∈ Rdz×k, where dz represents the number of
output classes. For each input x, we can get the class prediction distribution y(x, c) = WF g(x).
This process allows us to map the extracted concepts to the output classes, enabling the model to
make accurate predictions based on the learned features.

4 FAITHFUL VISION-LANGUAGE CONCEPT

Faithfulness issues in Label-free CBMs. The Label-free CBM, as currently implemented using
GPT-3, has inherent limitations that can impact its stability and reliability. One such limitation is the
potential introduction of instability and perturbation to the concept sets due to the reliance on GPT-3
for concept generation. Additionally, it is challenging to prevent input images from being perturbed,
which further compounds the issue. These limitations can result in unstable performance, under-
mining the trustworthiness and faithfulness of the model. While Label-free CBM shows promise in
explaining model behavior without relying on labeled training datasets, it suffers from conceptual
instability when faced with slight perturbations in the concept set and input data. This instability
renders it unsuitable for real-world applications where robustness and reliability are crucial. By
addressing these challenges, we can advance the field towards more trustworthy and robust deep
learning models.

What is a “faithful concept”? A “faithful concept” is crucial for model interpretation. A “faithful
concept” encapsulates a weight vector that exhibits stability and reliability, thereby instilling trust in
its ability to offer accurate explanations of model behavior. When we refer to a “faithful concept”,
we mean a concept vector that remains stable even perturbations introduced to the input data or
modifications applied to the concept set itself. These perturbations may arise due to various factors,
such as noise or slight alterations in the wording of the concept set. However, a “faithful concept”
should demonstrate resilience and maintain its explanatory power within an acceptable range despite
these perturbations. By ensuring the stability and reliability of the concept, we can establish a
foundation for faithful interpretable model explanations, thereby enhancing our understanding of
complex deep learning systems. See Appendix A for details intuition of “faithful concept”.
Definition 1 (Top-k overlaps). This definition mainly measures the overlap of the first k concept
weights. We need to use the overlaps of top-k indices to measure the similarity on concept. For
vector x ∈ Rd, we define the set of top-k component Tk(·) as follow,

Tk(x) = {i : i ∈ [d] and {|{xj ≥ xi : j ∈ [d]}| ≤ k}}.
And for two vectors x, x′, the top-k overlap function Vk(x, x

′) is defined by the overlapping ratio
between the top-k components of two vectors, i.e., Vk(x, x

′) = 1
k |Tk(x) ∩ Tk(x

′)|.

Note that, in concept-based models, c could be seen as a function of input x, i.e., c = g(x). Thus,
the faithful concept c̃ can also be seen as a function of x, denoted as g̃(x). Moreover, since our goal
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is to replace the concept vector with a more robust one, we follow the previous model except for the
procedure to produce the vector c̃. We define an FVLC as follows.
Definition 2 (Faithful Vision-Language Concept). Under the same concept space, i.e., under the
set of concepts generated by GPT3 at one time, we call a matrix W̃c is a (D,R, α, β, k1, k2)-Faithful
Vision-Language Concept (FVLC) model for the vanilla concept if it satisfies for any input x:

• (Similarity of Explanation) Vk1(g̃(x), g(x)) ≥ β1 for some 1 ≥ β1 ≥ 0;

• (Stability of Explanation) Vk2
(g̃(x), g̃(x) + ρ) ≥ β2 for some 1 ≥ β2 ≥ 0 and all ∥ρ∥ ≤

R1, where ∥ · ∥ is a norm and R1 ≥ 0;

• (Closeness of Prediction) D(y(x, c̃), y(x, c)) ≤ α1 for some α1 ≥ 0, where D is some
probability distance or divergence;

• (Stability of Prediction) D(y(x, c̃), y(x, c̃+ δ)) ≤ α2 for all ∥δ∥ ≤ R2, where D is some
probability distance or divergence, ∥ · ∥ is a norm and R2 ≥ 0,

where g̃(x) = W̃cbf(x), y(x, c) = WF g(x), and y(x, c̃) = WF g̃(x), y(x, c̃+δ) = WF (g̃(x)+δ).
Moreover, for any given x, c̃ = g̃(x) is a (D,R, α, β, k1, k2)-Faithful Vision-Language Concept
(FVLC). Here, α = min{α1, α2}, β = max{β1, β2}, and R = min{R1, R2}.

5 FVLC FRAMEWORK

Sensitivity. In the above definitions, two properties are considered: similarity and stability, relevant
to both prediction and explanation. Notably, within the domain of explanation, our aim extends
beyond ensuring explanation stability alone. We also strive for explanation sensitivity, a distinct
criterion from that of prediction. The concept should demonstrate sensitivity when crucial features
are excluded while maintaining stability when subjected to minor perturbations.

The top-k approach. To achieve this, we employ the top-k approach to preserve these crucial fea-
tures, ensuring that the modified concept c̃ maintains similar explainability to the original concept.
The top-k approach involves two parameters, k1 and β1. k1 can be considered as prior knowledge,
indicating that we believe the top-k1 indices of the concept play the most crucial role in making the
prediction or that their corresponding features almost entirely determine the prediction. On the other
hand, β1 quantifies the extent to which c̃ inherits explainability from the original concept. When
β1 = 1, it signifies that the top-k1 order of the entries in g̃(x) remains the same as in the original
concept. Therefore, it is desirable for β1 to be close to 1.

Stability. The stability condition involves two parameters, R1 and β2, representing the robust region
and level of stability, respectively. Ideally, if c̃ satisfies this condition with R1 = ∞ and β2 = 1, it
indicates an extremely stable concept, resilient to any randomness or perturbations. In practice, we
strive to have R1 as large as possible and β2 sufficiently close to 1.

Prediction. The last two conditions pertain to the similarity and stability of concept-based predic-
tion. In the third condition, α1 quantifies the proximity between the prediction distribution based on
c̃ and that based on the original concept. A value of α1 = 0 implies that c̃ = c. Therefore, our goal
is to minimize α1 as much as possible. Similarly, the stability condition involves two parameters,
R2 and α2, representing the robust region and level of stability, respectively. Ideally, if c̃ satisfies
this condition with R2 = ∞ and α2 = 0, it indicates an extremely stable concept, resistant to any
randomness or perturbations. In practice, we aim for R2 to be as large as possible and α2 to be
sufficiently small. Based on these discussions, it is evident that Definition 2 provides a reasonable
and consistent definition for ensuring the required properties of a faithful concept.

Framework. We have proposed a strict definition of FVLC. To build the FVLC, we freeze the
image encoder and derive a minimum-maximum optimization problem with four conditions in the
Definition 2. Specifically, the formula optimization problem targets the third condition (predicted
proximity) and makes it subject to the other three conditions. So, by definitions, we can get a rough
optimization problem and derive the following overall objective function:

min
W̃c

Ex[λ1D(y(x, c̃), y(x, c))− λ2Vk1
(g̃(x), g(x)) + λ3 max

||δ||≤R2

D(y(x, c̃), y(x, c̃+ δ))

− λ4 max
||ρ||≤R1

Vk2
(g̃(x), g̃(x) + ρ)],
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Figure 2: An overview of our pipeline for creating FVLC. For the concept set C output by GPT-3,
it is input into the text encoder of CLIP to obtain ET . The input image is processed by the image
encoder of CLIP to obtain EI . To accomplish the image classification task, the image is fed into
the backbone to extract image features. The obtained activation matrix M from EI and ET is used
to learn the mappings g(·) and Wc from the feature space to the concept space. Furthermore, the
mapping WF from the concept space to the image category is learned. Then L1/L2/L3/L4 are
employed to enhance the model’s faithfulness (Wc → W̃c, g(x) → g̃(x)). We introduce noise
interference in the concept set, text encoder, and input image to validate the faithfulness of our
model. The box mixed with black and white dots represents the noise, and snowflakes represent the
freezing parameters.

where λi, i ∈ [4] are hyperparameters. To solve this min-max optimization problem, we can gener-
ally use stochastic gradient descent-based methods to obtain the solution for the outer minimization
and use PSGD (Projected Stochastic Gradient Descent) to solve the inner maximization. However,
a major challenge is that the top-k overlap functions Vk1

(g̃(x), g(x)) and Vk2
(g̃(x), g̃(x) + ρ) are

non-differentiable, which makes it difficult to use gradient descent. Therefore, we need to consider
a surrogate loss for −Vk(·, ·). In Appendix B, we show details on such a surrogate loss and the
optimization procedure. Finally, we have the following objective function:

min
W̃c

Ex[λ1 D(y(x, c̃), y(x, c))︸ ︷︷ ︸
L1

+λ2 Lk1
(g̃(x), g(x))︸ ︷︷ ︸

L2

+λ3 max
||δ||≤R2

D(y(x, c̃), y(x, c̃+ δ))︸ ︷︷ ︸
L3

+ λ4 max
||ρ||≤R1

Lk2
(g̃(x), g̃(x) + ρ)]︸ ︷︷ ︸

L4

, (2)

where Lk is the surrogate loss and D is Kullback-Leibler Divergence.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We conducted a comprehensive evaluation of our approach by training our model on
four diverse datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), CUB (Wah et al., 2011),
and Places365 (Zhou et al., 2017). See Appendix D for more details, such as datasets, backbone,
baselines, and other settings.

Perturbations. First, word perturbation. For the concept set generated by Step 1 in LCBM, we
perform word perturbation. Taking advantage of the power of GPT-3 (Brown et al., 2020), we enter
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Figure 3: The visualizations for concept weights and final layer weights on one sample from each
dataset. The sequence, from left to right, includes the input image x, concept weight visualization
without perturbation (c), concept weight visualization with perturbation (c+ δ), and optimized con-
cept weight visualization with perturbation (c̃ + δ). See Appendix E for a larger version of these
subfigures.

Method CIFAR10 CIFAR100 CUB Places365

Standard (No interpretability) 88.80% 70.10% 76.70% 48.56%

P-CBM (CLIP) 84.50% 56.00% N/A N/A
Label-free CBM 86.32% 65.42% 74.23% 43.63%

WP1(5%) - base 86.47% 65.13% 74.08% 43.57%
WP1(5%) - FVLC 86.34% 65.43% 73.96% 43.67%
WP1(10%) - base 86.25% 65.09% 73.97% 43.67%
WP1(10%) - FVLC 86.39% 64.90% 73.92% 43.62%

WP2 - base 86.41% 65.16% 73.96% 43.54%
WP2 - FVLC 86.22% 65.34% 74.44% 44.55%

IP - base 86.62% 65.36% 74.39% 43.64%
IP - FVLC 86.88% 65.29% 74.01% 43.71%

WP1(5%)+WP2 - base 86.49% 65.17% 73.90% 43.67%
WP1(5%)+WP2 - FVLC 86.43% 65.33% 73.92% 43.49%
WP1(10%)+WP2 - base 86.30% 64.87% 73.82% 43.61%
WP1(10%)+WP2 - FVLC 86.38% 65.06% 74.01% 43.44%
WP1(10%)+WP2+IP - base 85.96% 64.41% 73.74% 43.32%
WP1(10%)+WP2+IP - FVLC 86.70% 65.14% 74.36% 43.46%

Table 1: The table presents accuracy for baselines and FVLC before and after the perturbations
across four benchmark datasets. In the first row, we have the standard backbone image classifica-
tion model, which lacks interpretability. The latest CBM models with interpretability are P-CBM
(Yuksekgonul et al., 2022) and Label-free CBM (Oikarinen et al., 2023), both of which employ an
unsupervised process for generating concept sets, eliminating the need for manual labeling. The
accuracy of Label-free CBM under various perturbations is displayed in while row color. The per-
centages in parentheses indicate the degree of added WP1 (The same as below).

the full concept set into GPT-3 and ask it to replace 5%, and 10% of words with synonyms. By this
operation, we obtain the concept set with 5%, and 10% word perturbation. We name this perturbation
WP1 (Word Perturbation 1). Second, word embedding perturbation. Specifically, we choose the
embedding x of the last layer of the text encoding layer and then embed x′ = x + N (0, σ) with a
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perturbation of a certain radius σ = 0.001. We name this perturbation WP2 (Word Perturbation 2).
Third, input perturbation. We add the perturbation of a certain radius σ = 0.001 in input images
(Input image pixels have been normalized). We name this perturbation IP (Input Perturbation).

Method CIFAR10 CIFAR100 CUB Places365
TCPC TOPC TCPC TOPC TCPC TOPC TCPC TOPC

WP1(5%) - base 1.55E-01 6.32E-02 1.01E-01 7.17E-02 1.26E-01 1.85E-01 1.59E-01 6.40E-02
WP1(5%) - FVLC 1.12E-03 8.55E-03 2.81E-03 4.51E-03 1.05E-02 1.50E-03 1.38E-03 1.30E-03
WP1(10%) - base 1.99E-01 8.36E-02 1.94E-01 1.31E-01 2.32E-01 3.41E-01 2.26E-01 1.14E-01
WP1(10%) - FVLC 1.19E-03 7.40E-03 3.67E-03 4.55E-03 1.19E-02 1.53E-03 1.39E-03 1.25E-03
WP2 - base 1.53E-01 4.99E-02 1.36E-01 6.67E-02 1.43E-01 1.73E-01 1.40E-01 6.37E-02
WP2 - FVLC 1.10E-02 8.72E-03 3.35E-03 4.55E-03 1.05E-02 1.53E-03 1.55E-03 1.29E-03
IP - base 1.68E-01 6.28E-02 1.38E-01 8.81E-02 1.71E-01 2.23E-01 1.73E-01 8.09E-02
IP - FVLC 8.02E-03 8.29E-03 3.24E-03 4.56E-03 1.04E-02 1.59E-03 1.50E-03 1.25E-03
WP1(5%)+WP2 - base 1.85E-01 3.50E-02 1.28E-01 6.65E-02 1.44E-01 1.79E-01 1.60E-01 6.32E-02
WP1(5%)+WP2 - FVLC 1.20E-02 7.46E-03 3.67E-03 4.55E-03 9.81E-02 1.51E-03 1.54E-03 1.28E-03
WP1(10%)+WP2 - base 1.17E-01 8.62E-02 1.93E-01 1.32E-01 1.76E-01 3.45E-01 2.52E-01 1.17E-01
WP1(10%)+WP2 - FVLC 1.18E-02 9.41E-03 2.06E-02 1.44E-02 1.87E-02 3.79E-02 2.74E-02 1.18E-02
WP1(10%)+WP2+IP - base 1.36E-01 1.05E-01 2.22E-01 1.55E-01 1.95E-01 3.54E-01 2.62E-01 1.44E-01
WP1(10%)+WP2+IP - FVLC 1.43E-02 1.11E-02 2.39E-02 1.77E-02 2.21E-02 4.54E-02 3.35E-02 1.34E-02

Table 2: The table demonstrates the stability (TCPC and TOPC) results for both the baselines and
FVLC approaches across four benchmark datasets subjected to various perturbations.
Evaluation metrics. In our experiments, we assessed the stability of our model using two metrics:
Total Concept Perturbation Change (TCPC) and Total Output Perturbation Change (TOPC).

TCPC measures the stability of model interpretability between two concept weight vectors, namely
c1 (the concept weight vector before perturbation) and c2 (the concept weight vector after pertur-
bation). It is calculated as TCPC(c1, c2) = ∥c1 − c2∥/∥c1∥, where c1, c2 represents the complete
concept weight vectors. TOPC assesses the stability of the model’s output results by comparing two
sets of outputs: y1 (the output results before perturbation) and y2 (the output results after perturba-
tion). It is defined as TOPC(y1, y2) = ∥y1 − y2∥/∥y1∥, where y1, y2 represents the complete last
layer output vector (i.e. the classes prediction output vector).

6.2 UTILITY EVALUATION

Table 1 presents the accuracy results of our proposed FVLC method and the baseline approach on
four datasets with different levels of perturbations. The table clearly demonstrates that our method
maintains a consistent and high accuracy across all datasets without any significant changes or
losses. This highlights the robustness of our approach in terms of accuracy preservation. More-
over, our FVLC method outperforms the baseline approach in terms of accuracy in some cases. This
indicates that our approach not only maintains stability but also achieves improved accuracy com-
pared to the baseline method. Overall, the results presented in Table 1 affirm the effectiveness of our
FVLC method, which successfully combines high accuracy with interpretability while preserving
stability across various datasets.

6.3 STABILITY EVALUATION

Table 2 analyzes the TCPC and TOPC values, which measure the stability of the CBMs under
various perturbations. The table demonstrates that, in comparison to the baseline approach, FVLC
exhibits higher stability in terms of concept weights and smaller differences in the output result
matrix before and after perturbation. These findings indicate that FVLC combines interpretability
with strong perturbation resistance, making it a faithful model. The experimental results reveal
that, on average, FVLC outperforms the baseline model in terms of both TCPC and TOPC, with an
average reduction of 90%.

For brevity, Figure 3 presents visualizations of the concept set differences and concept weight
changes, both with and without fine-tuning, before and after perturbation for each dataset. These
visualizations provide additional insights into the effectiveness and stability of FVLC in handling
perturbations. The results presented in Table 2 and Figure 3 collectively demonstrate the superior
stability of FVLC compared to the baseline model. FVLC successfully achieves faithful interpre-
tation, making it a promising approach for concept-based modeling. We also carried out repeated
experiments in multiple concept spaces to further verify that our method conforms to Definition 2.
More experiments are in the Appendix F.
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Method Setting CIFAR10 CIFAR100 CUB Places365
L2 L3 L4 TCPC TOPC TCPC TOPC TCPC TOPC TCPC TOPC

WP1(10%) - FVLC 1.99E-01 8.36E-02 1.94E-01 1.31E-01 2.32E-01 3.41E-01 2.26E-01 1.14E-01
✓ 2.09E-02 3.14E-02 2.81E-02 4.88E-02 4.08E-01 7.56E-02 4.69E-02 6.14E-02

✓ 1.80E-02 1.79E-02 2.01E-02 2.85E-02 3.77E-01 4.50E-02 4.48E-02 3.68E-02
✓ 4.78E-03 3.11E-02 1.67E-02 2.19E-02 5.69E-02 5.52E-03 6.04E-03 4.98E-03

✓ ✓ 1.67E-02 1.11E-02 5.39E-02 6.85E-02 1.69E-01 2.12E-02 1.98E-02 1.81E-02
✓ ✓ 1.65E-03 1.01E-02 5.08E-03 6.43E-03 1.61E-02 2.14E-03 1.95E-03 1.72E-03

✓ ✓ 1.63E-03 1.02E-02 5.04E-03 6.27E-03 1.63E-02 2.10E-03 1.94E-03 1.71E-03
✓ ✓ ✓ 1.19E-03 7.40E-03 3.67E-03 4.55E-03 1.19E-02 1.53E-03 1.39E-03 1.25E-03

WP2 - FVLC 1.53E-01 4.99E-02 1.36E-01 6.67E-02 1.43E-01 1.73E-01 1.40E-01 6.37E-02
✓ 7.62E-02 2.29E-02 2.02E-02 2.08E-02 6.09E-02 5.22E-03 1.04E-02 5.31E-03

✓ 5.37E-02 1.84E-02 1.46E-02 1.16E-02 6.80E-02 2.95E-03 1.06E-02 2.36E-03
✓ 5.19E-02 1.46E-02 1.31E-02 9.34E-03 5.30E-02 3.24E-03 6.83E-03 2.12E-03

✓ ✓ 4.57E-02 1.82E-02 1.45E-02 1.01E-02 5.01E-02 3.46E-03 6.30E-03 2.94E-03
✓ ✓ 2.73E-02 6.96E-03 7.10E-03 4.60E-03 2.42E-02 1.91E-03 3.97E-03 2.36E-03

✓ ✓ 2.47E-02 8.00E-03 5.29E-03 5.25E-03 2.40E-02 1.70E-03 3.82E-03 1.96E-03
✓ ✓ ✓ 1.10E-02 8.72E-03 3.35E-03 4.55E-03 1.05E-02 1.53E-03 1.55E-03 1.29E-03

IP - FVLC 1.68E-01 6.28E-02 1.38E-01 8.81E-02 1.71E-01 2.23E-01 1.73E-01 8.09E-02
✓ 6.39E-02 2.55E-02 2.56E-02 3.57E-02 8.04E-02 1.27E-02 1.16E-02 9.80E-03

✓ 3.82E-02 3.91E-02 1.53E-02 2.16E-02 4.77E-02 7.66E-03 6.99E-03 5.88E-03
✓ 1.63E-02 1.73E-02 6.35E-03 9.35E-03 2.14E-02 3.30E-03 3.01E-03 2.59E-03

✓ ✓ 2.04E-02 2.10E-02 8.35E-03 1.15E-02 2.67E-02 4.04E-03 3.77E-03 3.18E-03
✓ ✓ 1.23E-02 1.27E-02 5.09E-03 6.94E-03 1.65E-02 2.45E-03 2.35E-03 1.94E-03

✓ ✓ 1.26E-02 1.09E-02 5.07E-03 7.00E-03 1.59E-02 2.53E-03 2.29E-03 1.95E-03
✓ ✓ ✓ 8.02E-03 8.29E-03 3.24E-03 4.56E-03 1.04E-02 1.59E-03 1.50E-03 1.25E-03

WP1(10%)+WP2 - FVLC 1.17E-01 8.62E-02 1.93E-01 1.32E-01 1.76E-01 3.45E-01 2.52E-01 1.17E-01
✓ 5.97E-02 6.28E-02 1.43E-01 9.94E-02 1.24E-01 2.58E-01 1.86E-01 8.24E-02

✓ 3.76E-02 6.34E-02 1.48E-01 1.03E-01 1.21E-01 2.63E-01 1.90E-01 8.13E-02
✓ 3.52E-02 2.54E-02 6.03E-02 4.13E-02 5.08E-02 1.07E-01 7.63E-02 3.31E-02

✓ ✓ 9.21E-02 5.45E-02 1.28E-01 8.56E-02 1.04E-01 2.24E-01 1.60E-01 6.82E-02
✓ ✓ 3.15E-02 2.90E-02 6.88E-02 4.71E-02 5.76E-02 1.21E-01 8.86E-02 3.72E-02

✓ ✓ 1.53E-02 1.18E-02 2.78E-02 1.89E-02 2.37E-02 4.88E-02 3.62E-02 1.55E-02
✓ ✓ ✓ 1.18E-02 9.41E-03 2.06E-02 1.44E-02 1.87E-02 3.79E-02 2.74E-02 1.18E-02

WP1(10%)+WP2+IP - FVLC 1.36E-01 1.05E-01 2.22E-01 1.55E-01 1.95E-01 3.54E-01 2.62E-01 1.44E-01
✓ 7.37E-02 5.75E-02 1.29E-01 9.24E-02 1.21E-01 2.34E-01 1.74E-01 7.30E-02

✓ 7.85E-02 5.85E-02 1.23E-01 9.17E-02 1.14E-01 2.43E-01 1.70E-01 6.80E-02
✓ 4.59E-02 3.67E-02 7.62E-02 5.57E-02 6.74E-02 1.41E-01 1.08E-01 4.23E-02

✓ ✓ 5.81E-02 4.52E-02 9.69E-02 7.11E-02 8.99E-02 1.83E-01 1.34E-01 5.49E-02
✓ ✓ 5.84E-02 4.53E-02 9.75E-02 7.17E-02 8.94E-02 1.85E-01 1.36E-01 5.41E-02

✓ ✓ 2.91E-02 2.31E-02 4.85E-02 3.56E-02 4.46E-02 9.33E-02 6.78E-02 2.81E-02
✓ ✓ ✓ 1.43E-02 1.11E-02 2.39E-02 1.77E-02 2.21E-02 4.54E-02 3.35E-02 1.34E-02

Table 3: The ablation study of FVLC. We assess the efficacy of L2, L3, and L4 in Equation (2)
when applied alongside perturbations to both the word and input.

6.4 ABLATION STUDY

In the ablation study, we conducted a thorough evaluation of each module (regularization) outlined
in Equation (2). Our evaluation aimed to assess the significance and effectiveness of each module
in enhancing the performance of our model. To accomplish this, we initially designated L1 as the
primary loss function, which is defined as the first term in Equation (2). Subsequently, we systemat-
ically examined various combinations by selectively removing L2, L3, and L4. The outcomes of our
study, presented in Table 3, unequivocally demonstrate that each regularizer incorporated in our ob-
jective function is both indispensable and effective. Each module contributes uniquely to the overall
performance improvement of the model. Of particular significance is the inclusion of L4, which sig-
nificantly enhances the model’s stability. By ensuring the preservation of important concepts even
under certain perturbations, the addition of L4 guarantees a higher level of robustness and stability
in the model’s predictions. This finding showcases the critical role played by this regularization
module in refining the model’s performance.

7 CONCLUSION

In this paper, we present a comprehensive definition of the Faithful Vision-Language Concept
(FVLC), which establishes a robust and accurate interpretation of deep learning predictions. Our
definition encompasses four key properties: similarity of explanation, stability of explanation, close-
ness of prediction, and stability of prediction. To obtain FVLC, we propose a novel method and
evaluate it extensively through comprehensive experiments. Experimental results demonstrate that
FVLC achieves comparable accuracy to the baseline while exhibiting stronger concept stability,
indicating that FVLC is a more faithful explanation tool.
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A MORE DISCUSSION ON FAITHFUL CONCEPT

What is a “faithful concept”? As we can see from the previous discussion since the key component
of Label-free CBM is the concept bottleneck layer, to get above faithful Label-free CBM, it is
sufficient for us to get a faithful concept bottleneck layer, which is called “faithful concept”. Before
diving into our rigorous definition of “faithful concept”, we first need to intuitively think about what
properties it should have.

The first one is keeping an interpretability similar to the vanilla CBL. In the vanilla CBL for an
input image, we can easily see that the rank of entries in the output of CBL, i.e., concept vector, can
reflect the importance of each concept in the concept set. Thus, the “faithful concept” should also
have almost the same order for each entry as in the vanilla one. However, keeping the rank for all
entries is too stringent, motivated by the fact that the interpretability and the prediction always rely
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on the most important entries. Here, we can relax the requirement to keep the top-k indices almost
unchanged.

In fact, such a property is not enough as its interpretability could also be unstable to different per-
turbations. Modeling such instability is challenging as the perturbation could be caused by multi-
resources, which is significantly different from the adversarial robustness. Our key observation is
that wherever a perturbation comes from, it will subsequently change the output of CBL. Thus, if
the interpretability of “faithful concept”, i.e., the top-k indices, is resilient to noise, we can naturally
think it is robust to those different perturbations.

However, even with the previous two properties, it is still insufficient. The main reason is that keep-
ing interpretability does not indicate keeping the prediction performance. This is because keeping
interpretability can only guarantee the rank of indices unchanged, but cannot ensure the magnitude
of these entries, which determine the prediction unchanged. For example, suppose the vanilla con-
cept vector is (0.5, 0.3, 0.2), then the above “faithful concept” vector might be (0.9, 0.051, 0.049),
which is significantly different from the original one. Based on these, we should also enforce the
prediction performance, i.e., the output distribution, to be almost the same as the vanilla one. More-
over, its output distribution should also be robust to perturbations motivated by Figure 1.

Based on our above discussion, our takeaway is that the “faithful concept” vector should make its
top-k indices and output distribution almost the same as the vanilla concept vector while also being
robust to perturbations. Based on the above intuitions, we can translate the previous intuitions into
rigorous mathematical definitions. Specifically, we call the above “faithful concept” as Faithful
Vision-Language Concept (FVLC).

Differences with adversarial robustness. While both FVLC and adversarial robustness consider
perturbations or noises on input data. There are many critical differences: (1) Not only the predic-
tion, we should also make the interpretability stable and close to the vanilla concept vector. Due
to these additional conditions, our method for achieving FVLC is totally different from the meth-
ods in adversarial robustness, such as certified robustness or adversarial training. See Section B
for details. (2) The way of modeling robustness in FVLC is also totally different from adversarial
robustness. In adversarial robustness, it usually models the robustness to perturbation on input data.
However, in FVLC, due to the requirement on interpretability, i.e., the top-k indices of the vector,
we cannot adopt the same idea. Firstly, directly requiring the top-k indices robust to perturbation on
the input will make the optimization procedure challenging (which is a minimax optimization prob-
lem) as the top-k indices function is non-differentiable, and calculating the gradient of the backbone
neural network is costly. Secondly, rather than perturbation on input data, as we mentioned, the
perturbation could come from multi-resources, such as embedding perturbation or a combination
of perturbations. Thus, from this perspective, our stability of interpretability is more suitable for
“faithful concept”.

B OPTIMIZATION FOR FVLC LAYER

In the last section, we presented a rigorous definition of FVLC. To find such an FVLC, we propose
to formulate a min-max optimization problem that involves the four conditions in Definition 2.
Specifically, the formulated optimization problem takes the third condition (closeness of prediction)
as the objective and subjects it to the other three conditions. Thus, we can get a rough optimization
problem according to the definition. Specifically, we first have

min
W̃c

ExD(y(x, c̃), y(x, c)) (3)

Equation (3) is the basic optimization goal, that is, we want to get a vector which has similar output
prediction with the vanilla CBM for all input x. If there is no further constraint, then we can see the
minimizer of (3) is just the vanilla CBM matrix Wc that optimizes 1. We then consider constraints
for this objective function:
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Notation Remark Notation Remark
C concept set x an input data
ci concept vector g : Rd → Rk representation which transforms

from the input space to the con-
cept space

f : Rk → Rdz representation which maps from
the concept space to the prediction
space

ĉ g(x)

ŷ f(g(x)) M concept activation matrix
EI image encoder ET text encoder
bf(·) backbone features extractor Wc original concept embedding matrix
WF weight matrix of the output layer W̃c FVLC
Vk top-k overlap function Lk a surrogate loss of −Vk

D divergence metric g̃(x) W̃cbf(x)
c̃ g̃(x) y(x, c) WF g(x)

y(x, c̃) WF g̃(x) y(x, c̃+ δ) WF (g̃(x) + δ)
λ1, λ2, λ3, λ4 regularization parameters R,α, β, k1, k2 parameters in FVLC

Table 4: Table of notations.

∀x s.t. max
||δ||≤R2

D(y(x, c̃), y(x, c̃+ δ)) ≤ α2, (4)

Vk1
(g̃(x), g(x)) ≥ β1, (5)

max
||ρ||≤R1

Vk2(g̃(x), g̃(x) + ρ) ≥ β2; (6)

where g̃(x) = W̃cbf(x), and y(x, c̃) = WF g̃(x), y(x, c̃+ δ) = WF (g̃(x) + δ).

Equation (4) is the constraint of stability, Equation (5) corresponds to the condition of similarity
of explanation, and Equation (6) links to the stability of explanation. Combining equations (3)-
(6) and using regularization to deal with constraints, we can get the following min-max stochastic
optimization problem.

min
W̃c

Ex[D(y(x, c̃), y(x, c))− λ1Vk1
(g̃(x), g(x)) + λ2 max

||δ||≤R2

D(y(x, c̃), y(x, c̃+ δ))

− λ3 max
||ρ||≤R1

Vk2
(g̃(x), g̃(x) + ρ)],

where λ1 > 0, λ2 > 0, and λ3 > 0 are hyperparameters.

To solve this min-max optimization problem, we can generally use stochastic gradient descent-
based methods to obtain the solution for the outer minimization and use PSGD (Projected Stochastic
Gradient Descent) to solve the inner maximization. However, a major challenge is that the top-k
overlap functions Vk1

(g̃(x), g(x)) and Vk2
(g̃(x), g̃(x) + ρ) are non-differentiable, which makes it

impossible to use gradient descent. Therefore, we need to consider a surrogate loss for −Vk(·).
Our goal is to design a surrogate loss function Lk(·) for −Vk(·) that can be used in training. We
focus on the example of Lk(c̃) for −Vk(c̃, c). One possible naive surrogate objective is to use a
distance metric, such as the ℓ1-norm, between c̃ and c, i.e., L(c̃) = ||c̃ − c||1. While this objec-
tive can preserve the top-k overlap when we obtain the optimal or near-optimal solution, it lacks
consideration of the top-k information, making it a loose surrogate loss.

To address this issue, we propose minimizing the distance between c̃ and c constrained on the top-k
entries only. Specifically, we minimize ||cSk

c
− c̃Sk

c
||1, where cSk

c
, c̃Sk

c
∈ Rk are the vectors c and

c̃, respectively, constrained on the top-k indices set Sk
c of c. We use both top-k indices sets for both

vectors to involve the top-k indices formation. Therefore, our surrogate loss function is:

Lk(c, c̃) =
1

2k
(||cSk

c
− c̃Sk

c
||1 + ||c̃Sk

c̃
− cSk

c̃
||1). (7)

Note that besides the ℓ1-norm, we can use other norms. However, in practice, we find that ℓ1-norm
achieves the best performance. Thus, throughout the paper, we only use ℓ1-norm. By using this
surrogate function, we have our relaxed function:

14
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min
W̃c

Ex[D(y(x, c̃), y(x, c)) + λ1 Lk1
(g̃(x), g(x))︸ ︷︷ ︸

L2

+λ2 max
||δ||≤R2

D(y(x, c̃), y(x, c̃+ δ))︸ ︷︷ ︸
L3

+ λ3 max
||ρ||≤R1

Lk2(g̃(x), g̃(x) + ρ)]︸ ︷︷ ︸
L4

.

Inspired by PGD in Madry et al. (2018), to solve the above optimization problem, in each iteration,
with fixed current model W̃ t−1

c (thus fixed g̃(x)) we have to first update δ and ρ. Specifically, in
the p-th iteration for updating current noise δ∗p−1 we have:

δp = δ∗p−1 +
γp

|Ap−1|
∑

x∈Ap−1

∇δD(y(x, c̃), y(x, c̃+ δ∗p−1));

δ∗p = arg min
||δ||≤R

||δ − δp||,

where Ap−1 is a batch and γp is a step size parameter for PGD.

Similarly, we can use the PGD and the surrogate loss of Lk(·) to get the optimal ρ∗ in the t-th
iteration of outer SGD.

ρq = ρ∗
q−1 +

τq
|Bq−1|

∑
x∈Bp−1

∇ρLk2(c̃, c̃+ ρq−1);

ρ∗
q = argmin

||ρ||≤R

||ρ− ρq||,

where Bp−1 is a batch and τq is a parameter of step size for PGD.

After we find δP with P iterations and ρQ with Q iterations, we then update W̃ t−1
c to W̃ t

c by using
a batched gradients. Details are given in Algorithm 1. By using this algorithm, we obtain a stable
and faithful concept that can be trained in a self-supervised way on unlabeled data.

C EXAMPLE OF STEP 1

We apply various filters to enhance the quality and reduce the size of our concept set. The filters
include:

• Removing concepts longer than 30 characters.

• Eliminating concepts that are too similar to target classes using cosine similarity in a text
embedding space, with a similarity threshold of 0.85.

• Removing duplicate or synonymous concepts with cosine similarity threshold > 0.9.

For more information about the filters, please refer to Oikarinen et al. (2023).

In Figure 4, we show examples of the full prompt used for GPT-3 and partial output examples.

D MORE EXPERIMENTAL SETTINGS

D.1 DATASETS

To evaluate the effectiveness of our approach, we conducted training using the FVLC framework
on four distinct datasets: CIFAR-10, CIFAR-100, CUB, and Places365. These datasets offer a di-
verse range of tasks and challenges. CIFAR-10 and CIFAR-100, introduced by Krizhevsky et al.
(2009), are widely used for general image classification. They provide a comprehensive set of la-
beled images for training and evaluation purposes. CUB, on the other hand, focuses specifically
on fine-grained bird-species classification. It comprises a dataset of 5900 training samples, each

15
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Algorithm 1 Faithful Vision-Language Concept
1: Input: Weight matrix WF of the fully connected layer in a Label-Free CBM; Weight matrix Wc

for concept layer in a Label-Free CBM; backbone network bf(·); Training data D; parameters
R1, R2, k2, k3, λ1, λ2, λ3. Iterations number T, P,Q.

2: Initialize W̃ 0
c via random sampling from the standard Gaussian matrix.

3: for t = 1, 2, · · · , T do
4: Initialize δ∗0 and ρ∗

0.
5: for p = 1, 2, · · · , P do
6: Randomly sample a batch Ap−1 ⊂ D.
7:

δp = δ∗p−1 +
γp

|Ap−1|
∑

x∈Ap−1

∇δD(y(x, c̃), y(x, c̃+ δ∗p−1));

δ∗p = arg min
||δ||≤R

||δ − δp||.

8: end for
9: for q = 1, 2, · · · , Q do

10: Randomly sample a batch Bp−1 ⊂ D.
11:

ρq = ρ∗
q−1 +

τq
|Bq−1|

∑
x∈Bp−1

∇ρLk2
(c̃, c̃+ ρq−1);

ρ∗
q = argmin

||ρ||≤R

||ρ− ρq||,

12: end for
13: Randomly sample a batch Ct ⊂ D.
14: Update c̃ using Stochastic Gradient Descent

W̃ t
c = W̃ t−1

c − ηt
∑
x∈Ct

[∇W̃c
D(y(x, c̃), y(x, c))

∣∣
W̃c=W t−1

c
+ λ1∇W̃c

Lk1(g̃(x), g(x))
∣∣
W̃c=W t−1

c

+ λ2∇W̃c
D(y(x, c̃), y(x, c̃+ δ∗P ))

∣∣
W̃c=W t−1

c
+ λ3∇W̃c

Lk2
(g̃(x), g̃(x) + ρ∗

Q)
∣∣
W̃c=W t−1

c
].

15: end for
16: Return: c̃∗ = c̃T .

accompanied by annotations that describe 312 concepts associated with the bird species. These con-
cepts include attributes such as wing color (e.g., blue) and head pattern (e.g., spotted). In contrast,
Places365 is primarily geared towards scene recognition. It encompasses a much larger scale, with
1-2 million training images available for use. The dataset also provides annotations that describe
various concepts related to scenes. Despite the availability of concept names and annotations in
the CUB and Places365 datasets, we intentionally choose not to utilize this information during the
training of our FVLC models. Our objective was to demonstrate the capability of our approach to
perform effectively without relying on such labels. Surprisingly, our method was able to discover
similar concepts and achieve competitive performance when compared to methods that leverage the
provided concept information. By training FVLC on these four datasets, which encompass gen-
eral image classification (CIFAR-10/100), fine-grained bird-species classification (CUB), and scene
recognition (Places365), we aimed to evaluate the effectiveness and versatility of our approach com-
prehensively. For other fields, such as sentiment analysis (Lai et al., 2023a;b; Hu et al., 2023a),
autonomous driving (Xu et al., 2023a), and social good (Lai et al., 2023c; Li et al., 2023), we leave
it in future work.

D.2 BACKBONE

To ensure a fair and consistent comparison with previous work, we adopted specific backbone mod-
els for the CIFAR and CUB datasets, as done by Yuksekgonul et al. (2022). For CIFAR, we utilized
the CLIP (RN50) image encoder as the backbone model. This choice allows us to establish a direct
comparison with the results reported in the mentioned study. Regarding the CUB dataset, we em-
ployed the ResNet-18 architecture trained on CUB from imgclsmob, which has been widely used

16
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List the most important features for recognizing 
something as a horse:
- Four legs
- Mane and tail
- Hooves
- Large, muscular body

List the things most commonly seen around a horse:
- Saddle
- Bridle
- Hay bales
- Water trough

Give superclasses for the word horse:
- Mammal
- Animal
- Vertebrate
- Chordate

List the most important features for recognizing 
something as a dog:
- Fur or hair
- Pointed ears
- Snout or muzzle
- Tail

List the things most commonly seen around a dog:
- Leashes or collars
- Dog food or treats
- Toys, such as balls or chew toys
- Dog beds or blankets

Give superclasses for the word dog:
- Living organism
- Animal
- Natural object
- Vertebrate

Figure 4: Example of our Step 1.

in the literature for fine-grained bird-species classification tasks, making it a suitable choice for our
evaluation. For Places365, we opted for the ResNet-50 architecture trained as our backbone net-
work. This choice aligns with common practices in the field, ensuring consistency and allowing for
meaningful comparisons with other approaches. In our framework, the number of concepts incorpo-
rated into each model is roughly proportional to the number of output classes specific to the task. As
each class introduces additional initial concepts, the number of concepts increases accordingly. For
instance, the CIFAR-10 model integrates 128 concepts, while the CIFAR-100 model employs 824
concepts. The CUB model incorporates 211 concepts, whereas the Places365 model incorporates
2202 concepts. It is worth noting that the CUB dataset has a smaller number of concepts com-
pared to the other datasets. This is because, in our approach, we only utilized the important features
prompt for this particular dataset. Despite this reduction in the number of concepts, our method still
achieves competitive performance on CUB, showcasing the effectiveness of our approach even with
a more limited concept space.

D.3 BASELINE

Standard. The standard model represents an image classification model, which extracts image
features through the same backbone as our FVLC model and then connects a fully connected layer
to complete the image classification task. In fact, this is a common practice in the field of CBM.
After adding the bottleneck layer, the accuracy of the image classification task will be affected due
to the intervention of the concept task.

P-CBM. The Post-hoc Concept Bottleneck Model (P-CBM) is a framework that converts a pre-
trained neural network into a concept bottleneck model. The PCBM consists of two main steps.
First, there is a pre-trained backbone model that maps inputs to an embedding space. This backbone
model can be any pre-trained model, such as an image encoder or a specific layer of a deep neural
network. The second step involves learning a concept bank, which captures interpretable concepts
relevant to the task. Concept representations can be obtained using techniques like Concept Activa-
tion Vectors (CAVs) or multimodal models. CAVs are learned by training Support Vector Machines
(SVMs) to distinguish embeddings with and without the concept. Multimodal models leverage text
encoders to map concepts to vector representations. Once the concept bank is obtained, the em-
beddings produced by the backbone model are projected onto the concept subspace defined by the
concept vectors. This projection step aligns the embeddings with the interpretable concepts, creating
a bottleneck representation. Finally, an interpretable predictor is trained to classify examples based
on their projections onto the concept subspace. This predictor can be implemented using methods
like sparse linear layers.
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D.4 SETTINGS

To give the details of our experimental setup, we provided Table 5, which lists the key parameters we
used during our training and evaluation process. The values of these parameters have been selected
based on previous research and experimental experience, and have been carefully adjusted to achieve
optimal performance. Note that these parameters include not only model architecture and optimizer
type, but also important settings such as learning rate, batch size, number of training iterations, etc.
Through Table 5, the reader can understand the specific configuration of our experiment and can
reproduce it if necessary.

Argument Value Remark

batch size 512 batch size used when saving model/CLIP activations
saga batch size 256 batch size used when fitting final layer
proj batch size 5000 batch size to use when learning projection layer
clip cutoff 0.25 concepts with smaller top5 clip activation will be deleted
proj steps 1000 how many steps to train the projection layer for
interpretability cutoff 0.45 concepts with smaller similarity to target concept will be deleted
lam 0.0007 sparsity regularization parameter, higher-¿more sparse
n iters 1000 how many iterations to run the final layer solver for
pgd radius 0.1
pgd step 10
pgd step size 0.02
pgd norm type l-infty
x pgd radius 0.05
x pgd step 10
x pgd step size 0.01
x pgd norm type l-infty
lambda 1 1.00E-02
lambda 2 1.00E-02
lambda 3 1.00E-02
lambda 4 1.00E-02

Table 5: Model parameter configuration.

E DETAIL OF FIGURE 3

See in Figure 5,6,7,8.

F MORE EXPERIMENTS

In order to verify that FVLC is faithful under the same concept space, we repeatedly generated
concept sets to build different concept spaces and repeated the above experiments. The experimental
results are shown in the Table 6, 7, 8, 9, 10, 11. According to the experimental results, it can be
seen that our FVLC is more stable than other baselines against input perturbation and concept set
perturbation, making it a more faithful interpretation. Moreover, our approach exhibits minimal
accuracy degradation compared to vanilla CBM.

G MORE EXPERIMENTS IN HAM10000

We report the performance of our model on the HAM10000 dataset in Table 12. We also visualized
interpretable output results for samples in HAM10000. The presentations are shown in the Figure 9.
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C
IFA

R
10

Figure 5: The visualizations for concept weights and final layer weights on one sample from CI-
FAR10. Top left, top right, bottom left and bottom right are the input image, the concept weight
visualization without perturbation, the concept weight visualization with perturbation, and the opti-
mized concept weight visualization with perturbation.

C
IFA

R
100

Figure 6: The visualizations for concept weights and final layer weights on one sample from CI-
FAR100. Top left, top right, bottom left and bottom right are the input image, the concept weight
visualization without perturbation, the concept weight visualization with perturbation, and the opti-
mized concept weight visualization with perturbation.
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C
U

B

Figure 7: The visualizations for concept weights and final layer weights on one sample from CUB.
Top left, top right, bottom left and bottom right are the input image, the concept weight visualization
without perturbation, the concept weight visualization with perturbation, and the optimized concept
weight visualization with perturbation.

Places365

Figure 8: The visualizations for concept weights and final layer weights on one sample from
Places365. Top left, top right, bottom left and bottom right are the input image, the concept weight
visualization without perturbation, the concept weight visualization with perturbation, and the opti-
mized concept weight visualization with perturbation.
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Method CIFAR10 CIFAR100 CUB Places365

Standard(No interpretability) 88.80% 70.10% 76.70% 48.56%

P-CBM(CLIP) 84.50% 56.00% N/A N/A
Label-free CBM 86.32% 65.42% 74.23% 43.63%

WP1(5%) - base 86.26% 65.25% 73.92% 43.52%
WP1(5%) - FVLC 86.45% 65.59% 73.74% 43.47%
WP1(10%) - base 85.88% 65.05% 74.27% 43.49%

WP1(10%) - FVLC 86.27% 64.65% 73.66% 43.46%

WP2 - base 86.09% 65.27% 73.62% 43.42%
WP2 - FVLC 86.41% 65.52% 74.55% 44.56%

IP - base 86.31% 65.67% 74.51% 43.58%
IP - FVLC 86.70% 65.46% 74.11% 43.76%

WP1(5%)+WP2 - base 86.22% 65.18% 73.78% 43.66%
WP1(5%)+WP2 - FVLC 86.50% 65.65% 73.66% 43.63%
WP1(10%)+WP2 - base 86.21% 65.11% 73.63% 43.63%

WP1(10%)+WP2 - FVLC 86.60% 65.18% 74.19% 43.60%
WP1(10%)+WP2+IP - base 85.63% 64.72% 74.05% 43.20%

WP1(10%)+WP2+IP - FVLC 86.48% 65.28% 74.42% 43.33%

Table 6: The table shows the accuracy of baseline and FVLC before and after perturbation under
four benchmark datasets. The first is the standard backbone image classification model without in-
terpretability. P-CBM (Yuksekgonul et al., 2022) and Label-free CBM (Oikarinen et al., 2023) are
the latest CBM models with interpretability, and the process of generating concept sets is unsuper-
vised and does not require manual labeling. The percentages in parentheses are the degree of added
WP1. It should be emphasized that this is a repeated experiment under the new-1 concept space.

Method CIFAR10 CIFAR100 CUB Places365

Standard(No interpretability) 88.80% 70.10% 76.70% 48.56%

P-CBM(CLIP) 84.50% 56.00% N/A N/A
Label-free CBM 86.32% 65.42% 74.23% 43.63%

WP1(5%) - base 86.65% 65.45% 74.44% 43.40%
WP1(5%) - FVLC 86.01% 65.56% 73.83% 43.60%
WP1(10%) - base 86.20% 65.08% 73.62% 43.51%

WP1(10%) - FVLC 86.19% 64.72% 73.75% 43.77%

WP2 - base 86.08% 64.89% 74.09% 43.63%
WP2 - FVLC 86.31% 65.07% 74.65% 44.73%

IP - base 86.88% 65.43% 74.49% 43.59%
IP - FVLC 86.95% 65.37% 73.98% 43.90%

WP1(5%)+WP2 - base 86.45% 65.20% 73.71% 43.80%
WP1(5%)+WP2 - FVLC 86.76% 65.12% 74.21% 43.56%
WP1(10%)+WP2 - base 86.11% 64.89% 74.18% 43.51%

WP1(10%)+WP2 - FVLC 86.28% 65.31% 73.89% 43.46%
WP1(10%)+WP2+IP - base 86.08% 64.59% 74.03% 43.12%

WP1(10%)+WP2+IP - FVLC 86.86% 64.87% 74.71% 43.38%

Table 7: The table shows the accuracy of baseline and FVLC before and after perturbation under
four benchmark datasets. The first is the standard backbone image classification model without in-
terpretability. P-CBM (Yuksekgonul et al., 2022) and Label-free CBM (Oikarinen et al., 2023) are
the latest CBM models with interpretability, and the process of generating concept sets is unsuper-
vised and does not require manual labeling. The percentages in parentheses are the degree of added
WP1. It should be emphasized that this is a repeated experiment under the new-2 concept space.
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Method CIFAR10 CIFAR100 CUB Places365

Standard(No interpretability) 88.80% 70.10% 76.70% 48.56%

P-CBM(CLIP) 84.50% 56.00% N/A N/A
Label-free CBM 86.32% 65.42% 74.23% 43.63%

WP1(5%) - base 86.29% 65.06% 73.81% 43.74%
WP1(5%) - FVLC 85.99% 65.59% 74.12% 43.53%
WP1(10%) - base 85.91% 65.14% 73.82% 43.83%

WP1(10%) - FVLC 86.02% 64.83% 73.74% 43.70%

WP2 - base 86.40% 65.36% 74.04% 43.44%
WP2 - FVLC 86.32% 65.51% 74.70% 44.48%

IP - base 86.46% 65.36% 74.66% 43.64%
IP - FVLC 86.75% 65.60% 74.11% 43.74%

WP1(5%)+WP2 - base 86.90% 65.40% 74.18% 43.52%
WP1(5%)+WP2 - FVLC 86.57% 65.20% 73.89% 43.53%
WP1(10%)+WP2 - base 86.25% 64.72% 73.82% 43.65%

WP1(10%)+WP2 - FVLC 86.53% 65.20% 73.75% 43.34%
WP1(10%)+WP2+IP - base 86.15% 64.18% 73.85% 43.43%

WP1(10%)+WP2+IP - FVLC 86.89% 65.29% 74.12% 43.56%

Table 8: The table shows the accuracy of baseline and FVLC before and after perturbation under
four benchmark datasets. The first is the standard backbone image classification model without in-
terpretability. P-CBM (Yuksekgonul et al., 2022) and Label-free CBM (Oikarinen et al., 2023) are
the latest CBM models with interpretability, and the process of generating concept sets is unsuper-
vised and does not require manual labeling. The percentages in parentheses are the degree of added
WP1. It should be emphasized that this is a repeated experiment under the new-3 concept space.

Method CIFAR10 CIFAR100 CUB Places365
TCPC TOPC TCPC TOPC TCPC TOPC TCPC TOPC

WP1(5%) - base 1.51E-01 6.38E-02 1.04E-01 6.92E-02 1.28E-01 1.76E-01 1.65E-01 6.61E-02
WP1(5%) - FVLC 1.11E-03 8.96E-03 2.77E-03 4.38E-03 1.08E-02 1.46E-03 1.44E-03 1.25E-03
WP1(10%) - base 2.06E-01 8.51E-02 1.92E-01 1.32E-01 2.39E-01 3.37E-01 2.16E-01 1.15E-01

WP1(10%) - FVLC 1.17E-03 7.07E-03 3.85E-03 4.34E-03 1.22E-02 1.55E-03 1.33E-03 1.25E-03

WP2 - base 1.60E-01 4.77E-02 1.33E-01 6.53E-02 1.38E-01 1.71E-01 1.43E-01 6.10E-02
WP2 - FVLC 1.06E-02 8.67E-03 3.41E-03 4.55E-03 1.07E-02 1.60E-03 1.56E-03 1.35E-03

IP - base 1.70E-01 6.02E-02 1.35E-01 8.87E-02 1.76E-01 2.19E-01 1.65E-01 7.94E-02
IP - FVLC 7.82E-03 8.43E-03 3.30E-03 4.46E-03 1.03E-02 1.55E-03 1.53E-03 1.27E-03

WP1(5%)+WP2 - base 1.78E-01 3.60E-02 1.24E-01 6.58E-02 1.46E-01 1.86E-01 1.64E-01 6.36E-02
WP1(5%)+WP2 - FVLC 1.25E-02 7.76E-03 3.84E-03 4.41E-03 9.80E-02 1.56E-03 1.58E-03 1.25E-03
WP1(10%)+WP2 - base 1.21E-01 8.50E-02 1.93E-01 1.28E-01 1.76E-01 3.32E-01 2.53E-01 1.12E-01

WP1(10%)+WP2 - FVLC 1.14E-02 9.78E-03 2.11E-02 1.45E-02 1.94E-02 3.88E-02 2.68E-02 1.21E-02
WP1(10%)+WP2+IP - base 1.39E-01 1.03E-01 2.32E-01 1.56E-01 1.94E-01 3.57E-01 2.55E-01 1.42E-01

WP1(10%)+WP2+IP - FVLC 1.41E-02 1.15E-02 2.47E-02 1.75E-02 2.13E-02 4.70E-02 3.44E-02 1.28E-02

Table 9: The table shows the TCPC and TOPC of baselines and FVLC under four benchmark
datasets with different perturbations. The percentages in parentheses are the degree of added WP1.
It should be emphasized that this is a repeated experiment under the new-1 concept space.

22



Published as a conference paper at ICLR 2024

Method CIFAR10 CIFAR100 CUB Places365
TCPC TOPC TCPC TOPC TCPC TOPC TCPC TOPC

WP1(5%) - base 1.47E-01 6.19E-02 1.07E-01 7.10E-02 1.22E-01 1.82E-01 1.63E-01 6.77E-02
WP1(5%) - FVLC 1.07E-03 8.95E-03 2.79E-03 4.31E-03 1.09E-02 1.40E-03 1.46E-03 1.26E-03
WP1(10%) - base 2.12E-01 8.40E-02 1.84E-01 1.27E-01 2.37E-01 3.44E-01 2.09E-01 1.10E-01

WP1(10%) - FVLC 1.13E-03 6.73E-03 3.84E-03 4.36E-03 1.16E-02 1.56E-03 1.39E-03 1.24E-03

WP2 - base 1.61E-01 4.74E-02 1.36E-01 6.23E-02 1.33E-01 1.68E-01 1.46E-01 6.04E-02
WP2 - FVLC 1.05E-02 8.57E-03 3.36E-03 4.60E-03 1.08E-02 1.67E-03 1.54E-03 1.35E-03

IP - base 1.68E-01 5.93E-02 1.37E-01 8.54E-02 1.69E-01 2.19E-01 1.71E-01 7.98E-02
IP - FVLC 8.04E-03 8.04E-03 3.29E-03 4.34E-03 1.05E-02 1.56E-03 1.49E-03 1.26E-03

WP1(5%)+WP2 - base 1.87E-01 3.43E-02 1.20E-01 6.33E-02 1.53E-01 1.87E-01 1.61E-01 6.33E-02
WP1(5%)+WP2 - FVLC 1.22E-02 8.12E-03 3.85E-03 4.34E-03 9.40E-02 1.54E-03 1.59E-03 1.22E-03
WP1(10%)+WP2 - base 1.20E-01 8.33E-02 2.01E-01 1.33E-01 1.68E-01 3.43E-01 2.53E-01 1.12E-01

WP1(10%)+WP2 - FVLC 1.12E-02 9.32E-03 2.14E-02 1.41E-02 2.01E-02 3.72E-02 2.65E-02 1.17E-02
WP1(10%)+WP2+IP - base 1.40E-01 9.84E-02 2.38E-01 1.50E-01 1.87E-01 3.49E-01 2.63E-01 1.35E-01

WP1(10%)+WP2+IP - FVLC 1.35E-02 1.17E-02 2.59E-02 1.83E-02 2.10E-02 4.86E-02 3.45E-02 1.28E-02

Table 10: The table shows the TCPC and TOPC of baseline and FVLC under four benchmark
datasets with different perturbations. The percentages in parentheses are the degree of added WP1.
It should be emphasized that this is a repeated experiment under the new-2 concept space.

Method CIFAR10 CIFAR100 CUB Places365
TCPC TOPC TCPC TOPC TCPC TOPC TCPC TOPC

WP1(5%) - base 1.44E-01 6.44E-02 1.00E-01 6.61E-02 1.25E-01 1.81E-01 1.72E-01 6.58E-02
WP1(5%) - FVLC 1.12E-03 8.58E-03 2.68E-03 4.50E-03 1.06E-02 1.51E-03 1.42E-03 1.30E-03
WP1(10%) - base 2.08E-01 8.31E-02 1.85E-01 1.34E-01 2.41E-01 3.40E-01 2.26E-01 1.21E-01

WP1(10%) - FVLC 1.22E-03 6.73E-03 3.88E-03 4.31E-03 1.25E-02 1.53E-03 1.30E-03 1.25E-03

WP2 - base 1.58E-01 4.89E-02 1.37E-01 6.83E-02 1.42E-01 1.67E-01 1.44E-01 6.17E-02
WP2 - FVLC 1.03E-02 8.73E-03 3.24E-03 4.34E-03 1.04E-02 1.65E-03 1.55E-03 1.35E-03

IP - base 1.78E-01 6.11E-02 1.30E-01 9.07E-02 1.80E-01 2.23E-01 1.62E-01 7.94E-02
IP - FVLC 7.49E-03 8.14E-03 3.42E-03 4.28E-03 1.04E-02 1.48E-03 1.54E-03 1.22E-03

WP1(5%)+WP2 - base 1.82E-01 3.73E-02 1.30E-01 6.61E-02 1.50E-01 1.82E-01 1.63E-01 6.17E-02
WP1(5%)+WP2 - FVLC 1.25E-02 8.15E-03 3.91E-03 4.57E-03 9.85E-02 1.52E-03 1.64E-03 1.19E-03
WP1(10%)+WP2 - base 1.15E-01 8.60E-02 1.87E-01 1.26E-01 1.76E-01 3.20E-01 2.64E-01 1.07E-01

WP1(10%)+WP2 - FVLC 1.18E-02 9.70E-03 2.17E-02 1.47E-02 2.02E-02 3.74E-02 2.71E-02 1.25E-02
WP1(10%)+WP2+IP - base 1.38E-01 1.07E-01 2.22E-01 1.62E-01 2.01E-01 3.61E-01 2.62E-01 1.41E-01

WP1(10%)+WP2+IP - FVLC 1.36E-02 1.20E-02 2.39E-02 1.70E-02 2.22E-02 4.57E-02 3.50E-02 1.27E-02

Table 11: The table shows the TCPC and TOPC of baselines and FVLC under four benchmark
datasets with different perturbations. The percentages in parentheses are the degree of added WP1.
It should be emphasized that this is a repeated experiment under the new-3 concept space.

Model HAM10000
Standard (No interpretability) 96.30%
P-CBM 94.70%
Label-free CBM 94.38%
FVLC 94.42%

Table 12: The performance of our model on the HAM10000 dataset.
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Figure 9: Explanations for one randomly chosen input image for our model trained on HAM10000.
The visualizations for concept weights and final layer weights on one sample from HAM10000. Top
left, top right, bottom left and bottom right are the input image, the concept weight visualization
without perturbation, the concept weight visualization with perturbation, and the optimized concept
weight visualization with perturbation.

24


	Introduction
	Related Work
	Preliminary
	Faithful Vision-Language Concept
	FVLC Framework
	Experiments
	Experimental Setup
	Utility Evaluation
	Stability Evaluation
	Ablation Study

	Conclusion
	Acknowledgements
	More Discussion on Faithful Concept
	Optimization for FVLC Layer
	Example of Step 1
	More Experimental Settings
	Datasets
	Backbone
	Baseline
	Settings

	Detail of Figure 3
	More Experiments
	More Experiments in HAM10000

