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ON THE RESTRICTED ORDINAL THEOREM 
R. L. QOODSTEIN 

The proposition that a decreasing sequence of ordinals necessarily terminates 
ha,$ been given a new, and perhaps unexpected, importance by the r61e which it 
plays in Gentzen's proof1 of the freedom from contradiction of the "reine Zahlen- 
theorie." Godel's construction2 of non-demonstrable propositions and the 
establishment of the impossibility of a proof of freedom from contradiction, 
within the framework of a certain type of formal system, showed that a proof 
of freedom from contradiction could be found only by transcending the axioms 
and proof processes of that formal system. Gentzen's proof succeeds by utilising 
transfinite induction to prove that certain sequences of reduction processes, 
enumerated by ordinals less than e (the first ordinal to satisfy e = w e ) are finite. 
Were it possible toprove the restricted ordinal theorem, that a descending sequence 
of ordinals, less than e, is finite, in Gentzen's "reine Zahlentheorie," then it would 
be possible to determine a contradiction in that number system. In his paper, 
Gentzen proves the theorem of transfinite induction, which he requires, by an 
intuitive argument. There is also a method of reducing transfinite induction, 
for ordinals less than e ,  to a number-theoretic principle given by Hilbert and 
~ e r n a ~ s , ~  Kone of these proofs of trans- and a similar method by Aclicrmann.' 
finite induction is finitist. 

As the restricted ordinal theorem is a suggested minimum deviation from the 
previously accepted field of finitist processes, it becomes highly important to 
esamine to what extent this theorem fulfils general finitist requirements. For 
this purpose it is necessary to give an account of the ordinal signs which does not 
presuppose any part of the Cantor theory of infinite classes, and in fact such an 
account is given in Gentzen's paper, but it is more convenient for our purpose 
to present the construction of ordinal signs differently from Gentzen. 

By means of additions, multiplications, and exponentiations we can express 
any numeral n uniquely in the form 

cksak + CL-Isak-'f ' " + C~S" + CIS"' + Q, 

n ~ h e r e s 1 2 , O S c o < s , O < c 1 , c ~ , c t ,  , c ~ < s , O < a ~< a2 < at < ... < ak, 
and each a l  is itself of this form. We shall call this the representation of n with 
digits 0,1 ,  2 ,  . .. , s - 1 and scale symbol s. If c$,(~L) is an abbreviation for the 
representation of 71 with scale symbol s, then this expression may be defined 
recursively as being the samc 38 cs"'"' + +,(n - cs"), where a is the exponent 
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of the greatest power of s which does not exceed n, and csa is the greatest multiple 
of sa not exceeding n. 

Denoting by Sb:a the expression obtained by replacing x, a t  each point of 
its occurrence in an expression a ,  by y, we define c ( n )  = Sb:4,(n), the operator 
Sb: applying to the expression for which 4,(n) stands, not just to the sign +,(n) 
itself (so that Sb;t$,(n) is not &(n)), and define the ordinals (less than e) to  be 
the expressions Z ( n )  for any m and n, m >= 2. Thus for instance ~ z ( 1 0 6 )is 
the ordinal w"" + 2w2+ 2w + 1 (express 106 in the scale of 3 with digits 0, 1,2 
and then replace "3" by "w"). Every ordinal a ,  less than c, in the Cantor theory, 
is expressible in the form Z ( n ) ,  m being any natural number greater than each 
of the natural numbers which occur ns coefficients or exponents in the expression 
of a by powers of w and sums of such powers with numerical coefficients, and n 
being uniquely determined by a and m. 

We shall also use the sign St(n), with natural numbers x, y, n, where y h x > 1, 
to denote the number obtained by substituting "y" for "x" in the expression 
representing n in the scale of x; i.e., Sxn) is the number which is represented by 
Sb3,(n) in the scale of y. For example si(34) = 265, since 34 = 3' + 2.3  + 1 
and 4' + 2.4 + 1 = 265; and ~ i ( 1 6 )= 42b6,since 16 = 22' and 4" = 42S6. 

The formulae c ( n )  are not all distinct, for we can show that corresponding 
to any m' > m we can find n' such that ~:'(n') and T:(n) are the same formula; 
in fact if n' = S=,(n) then ~ z ' ( n ' )  = Tz(n), for by definition SbzI4,(n) = 
+,I ( S ~ I(n)) and therefore T:'(s~~ (n)) = ~b:'t$,~ (S:I (n)) = ~ b ~ ' ~ b : ~ 4 , ( n )= 
Sb't:+,Jn) = Z ( n ) .  

For any nl, nz, ml 2 mz > 1we say that T:'(nl) is greater than, equal to, or 
less than Tf2(w) according as nl is greater than, equal to, or less than S:f(nz); 
this definition is in accordance with the usual definition of inequalities betwcen 
ordinals. A decreasing sequence of ordinals takes the form 

where, for each value of r, m,+] 2 m, and n ,+~< S:;+,(n,). For every con-
structively given sequence of ordinals the sequence m, is general recursive 
though not perhaps primitive recursive in every case. For a given function m, 
we obtain the 'longest' sequence by taking n,+l = S;;+,(n,) 1, for T:(n) = 0 
if and only if n = 0, and if n < n, then Sz:+,(n) < S:;+,(n,). 

The restricted ordinal theorem may now bc expressed by saying that tor any 
non-decreasing function p,, po 2_ 2: and for n,. defined by thc recursive equation 
n , + ~= S;:+,(n,) A 1, we can find a value of r for which T,Pr(nr) = 0. 

We observe first that the restricted ordinal theorem is equivalent to the 
following number-theoretic proposition: 

Given any non-decreasing function p,, po 2 2, a number no, and the function 
n, defined by the recursive equation n,, = S;;+,(n,) 1, then there 1s a value 
of r for which n, = 0. 

We shall call this proposition P*. It  malies no essential differencein forming 
the scquence no,nl, 722, . \vhetlicr in forming 71, from 72, we first reduce n, 
by unity and then change the scale, or as we have done above, first change the 
scale in the representation of n, and then reduce the resulting number by unity. 
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In fact if we form a sequence m,by the recursive equation W+I = S;;,,(m, I),-L 

then the proposition P*above is proved if we can prove the proposition P that 
there is a value of T for which m, = 0. For if m, > 0, for r 5 8, and m,+, = 0, 
then taking 7to = mo 1, from nb = mt A 1we derive n t + ~  = Si:,,(n$ 1 = 
Sg:+,(mt 1) A 1 = ~ L + IA 1, and therefore n, = m, A 1,for all r, whence 
n.+l = 0. 

We shall give a completely finitist proof of the proposition P (constructing an 
explicit formula determining a value of r for which m, = 0) for values of mt, 

not greater than popoPO. This is equivalent to proving the restricted ordinal 
theorem for ordinals not greater than ow". 

It  will make the demonstration easier to follow if we consider first the case 
mo 5 pope. 

LRt a(n) be a non-decreasing sequence, u(0) 2 2, and let a sequence 
yu(x, n, p, r) be defined by the equations: 

Define the function j.(x, p, n) by the equations: 

fu(z + 2, P, n) = 4u(z + 1, P,fJ1 ,  P, 4,n), (ii) 

where x 2 0, p 2 0, n 2 0. Then for all x + 1, p < u(n), k 2 j.(x + 1, p, n), 
ru(x+ 1,P, n, k) = 0. 

For x, p, n 2 0 let PU(x + 1, p, n) denote the proposition, "If 
k = fu(x+ 1, p, n) and x + 1, p < a(n) thenys(x + 1,p, n, k) = 0." l3quation 
(i) proves Pu(l, 0, n). And equation (ii) proves Pu(l ,  p, n) & Pu(x+ 1, p, n + 
fu(l,p, n)) + P,(x + 2, p, n); for starting from (x + 2)(u(n)jP, with 2 + 2 < 
u(n), p < a(n), we reach in turn ( x  + l ) (c(n  + 1))' + S:&,[(o(n)jP 11,

*(n+l) *(I))and (x + l )(u(n + 211" + S.(,+~)[S,(,+l)[(u(n)Y 11 A 11, and so on UP 
to (x + l)(u(n+fu(l, P, n))lPinfu(l, P, n) steps, and (x + l)(o(n +f.(l, P, n))IP 
is reduced to zero in a further fu(x + 1, p, n + ju(l,  p, n)) steps. Furthermore, 
starting from {a(n)lP+', where p + 1 < u(n), the next term is (u(n) 
1 )  (u(n + l ) jP  + ~:[::~)[(u(n)j~ 11, and so on, so that equation (iii) proves 
Pu(1, p, n) $ P,(u(n) A 1, p,,n + fU(1, P, n)) -+ Pu(1, P + 1 1  n). 

From the proved propositions, 

PU(1, 0, 1 4 ,  ( 4  

we can derive P.(x + 1, p, n) by an application of the generalised schema of 
ind~~ctionIT described in Th. Skoiem's papel. Einc Bemerkung iiber die Induk-
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tionsschemata in der rehrsiven Zahhtheorie,' which, as Skolem shows, if we take 
into account the observation which hliss R. P6ter malres in her review of Skolem's 
paper,G can be reduced to an ordinary induction. For by generalised induction 
the formula P,(x + 1 ,  p, n) ,  with variables x, n and some definite numeral p, 
is derived from P,(1, p, n), with the same numeral p,  by means of formula (b) 
above; in particular P,(a(n) 4 1 ,  p, n + f,(l, p, n ) )is derivable from P,(1, p, n )  
and hence by (c) we derive P,(l, p + 1 ,  n )  from P,(l, p,  n).  From this, in 
conjunction with (a), we then derive P,(1, p,  n) by induction over p,  from which 
we conclude that P,(x + 1, p, n ) holds for arbitrary values of x, p, n 2 0. 

This is a finite constn~ctive proof of the restricted ordinal theorem for ordinals 
less than w w .  

Next we observe that, writing R for a(n) 1 ,  we have (~ (n ) ]" ' " '= 

R (a(n) ] R ,  and therefore the sequence 6,(n, r),  with 6,(n, 0) ]"'"'+ ( ~ ( n ) ]  = ( ~ ( n )
o(n+r)and 6,(n, r + 1 )  = S,(n+r+l)(6,(n, r) A 11, reaches zero in 

steps, for f,(l, R, n )  steps take us from ~ ( a ( n ) ] ~  R(a(n ++ (a(n)lRto 
f,(l, R. n ) ) J R ,  and therefore a further f,(R, R, n + f,(l, R, n ) )  steps are needed 
to reach zero. Thus the restricted ordinal theorem is proved for ordinals less 
than or equal to w w .  (Notice that the formula f,(l, u(n), n )  for the number of 
terms in a sequence commencing with (a(n)]"'n'is the same as tlhe fo~.rnula for 
a sequence commencing with (u(n)IP,p < n, with p replaced by a(n);this is 
to be expected since the relation of (~ (n ) ) """to  ( ~ ( 7 2 ) ) ~is the same as the 
relation of (a (n )JRto  ( a ( n ) ~ ~ " . )  

Consider next the sequence c(x ,yo, yl, . . . , ? / j ,  n, r) wit,h 

and 

The function f,, i(x,yo, yl. .- ., y j ,  n )  is defined by the equations (recursive for a 
definite value of j): 

where j, x 2 0, 0 5 r 5 j ,  R = u(n) 1, and + a , j ( ~ ,  YO.yl, ..., yj ,  C ,  n )  = 
C + fa ,  j(x, YO,Y l ,  .. . ?  Y i ,  n + c). 

Monafshejfe jiir Mafhemafik und Physik, vol. 48 (1939), pp. 268-276. 

"n this JO~IRNAI,,
vol. 5 (1940), pp. 34-35. 



ON THE RESTRICTED OBDINAL THEOREM 37 

Let Pa,j(x, Yo, Y i ,  ..., j ,  n )  say, "If k = fa, j ( ~ ,Yo, Y i ,  ...,Y i ,  n )  and z,Po,Yl,  

-",y j  < ~ ( n )then G ( X ,yo, 91, . - . , y j , n ,  k)  = 0." 
Equation (iv) proves Pa,j(O,0,  ..-, 0, n).  Since (x 4- 2 ) ( 4 n ) J S= 

(x + l ) ( a ( n ) J S+ ( ~ ( n ) ) ' ,equation (v) proves 

And since 

therefore equation (vi) proves 

If for given values of x, yo, yl, ..., y j  we can derive, for any assigned 
m, Pa,j(x, yo, yl,  ..., y j ,  m )  from Pa,j(O, yo, y1, ..., y j ,  n )  utilising only the 
elementary propositional calculus and the operations of substituting for variables 
and replacing computable functional expressions by their values, then in par-
ticular we can derive Pa,i(O, yo, yl, .. ., y j ,  m) and Pa,j ( ~ ,  yo, y ~ ,..., 
y j ,  m + fa, j(O, yo, y,, . a ,  y,, m ) )by these means, and hence by (g) we derive 
Pa,,(x + 1, YO,yl, .- -,y j ,  m) ,  whence it follows, by induction over x, that we can 
derive Pa,j(x, yo, yl, ..., yi, m )  from Pa,j(0, yo, yl, ...,yj, n ) ,  for any x. Fur-
thermore, if for given values of x, r ,  y,, y,+,, ..., yj we can derive Pa,j(x, yo, 
91, ...,yj, m) for any assigned m, from Pa,j(O, 0, ...,0, y,. y,+l, ...,yj, n ) ,then 
we can derive both PaSi(O,R, R, ...,R, y,, Y ,+~ ,...,y j ,  m)  and Pa,,(R 1, R, R, 
..,R, yr, yr+l, ..., y j ,  m + fa, j(O, R, R, ...,R, yr, yr+l, ..., y j ,  m) )and hence 

by (h), Pa,j(0, 0, ..., 0, y, + 1 ,  yr+l, yr+z,8 .., y j ,  m).  By induction over Y r  

it follows that from Pa,j(O,0, ..., 0, 0, y,+~, Yr+z, ..., yj, m)  we can derive 
Pa,j(0, 0, ...,0, y,, yr+l, ...,yj, m)  for any assigned m. Accordingly if w7ecan 
derive Pa,j(x,yo, y l ,  ...,y j ,  m)  from Pa,i(O, 0, ...,0, y,, Y , + ~ ,. .,y,, n )  then that 
formula can also be derived from Pa,,(O,0, ..-,0, 0, y,+l, . ., y j ,  n) .  But we 
have seen that Pa,,(x,yo, yl, ..-,y j,  m)  can be derived from Pa,j(O, yo, y1, ..-, 
yj, n) ,  and therefore Pa,,(x,yo, yl, ..., y j ,  m) can be derived from the proved 
proposition Pa,j(O, 0, ..., 0, n).  This derivation is completely finitist, and in 
fact it can readily be seen that, starting with the proved proposition P,,j(O, 0, 
..., 0, n )  and substituting repeatedly in this and in the formulae (g) and (h) 
definite numerals for the variables x, yo, yl, ..., yj, n ,  we derive the formula 
Pa,,(a,PO, 81, .., B,, r ) ,  for assigned numerals j,a, Bo, 81, . ., B j ,  r and an 
assigned a(n),after exactly Nu,i(a,Bo, B1, ...,B j ,  r )  applications of the formulae 
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pa,j(O, 0, . .,0,n), (g), and (h), where Nu,j(x, YO,yl, ...,Y j ,  n) is defined by the 
recursive equations: 

Thus the restricted ordinal theorem is proved for ordinals less than ow. 

Since 

where R = ~ ( n )A 1,  therefore the sequence cu(n,r ) ,  with 

reaches zero in 

steps, which completes the proof for ordinals less than or equal to w@. 
We shall now show that the formula for the number of terms in the sequence 

commencing with {u(n)[u(n) l*( f i )is the same as the formula fa, j(O, 0, . -,0, 1, n) 
for the sequence commencing with {u(n))'u'n)l',j < u(n),with j replaced by 
u(n);i.e., that 

First we prove the identity: 

fu,s(x,Yo, Y i ,  ', Y j ,  n) = fU,i+i(z,Yo, Y I ,  *, Y j ,  0, n). 

Let EU(z,yo, y1, . .,y j ,  n) assert this identity. By equation (iv), Ea(O,0, .., 
0, n)  holds, and by equation (v) and induction we derive EJz, yo, y,, ...,yj, n) 
from Eu(O,yo, y1, ...,91,n). Furthermore by equation (vi) we derive Eu(0,0, 
..,0, yr + 1, yr+l, ...,Y j ,  n) from Eu(0,R, R, ...,R, yr, yr+l,..a ,  yj, n) and 

Eu(R A l , R , R ,  ...,R,~r,yr+l,. . . , ~ j , n+,fu,j(O,R,R,. . . , R , Y ~ , Y ~ + I ,.:., 
yj, n)) ,and so the proof of E,(X,yo, yl, ...,yj ,  n) follows exactly as the proof of 
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P,,j(z, YO, YI, ..,yj) n) above. Hence 

j.,i+i(O, 0, ...,0, 1,n) = j.,j+l(O, R, R, ...,R, 0, n) 

and from this the required result follows by taking j = R. 
The method of proof readily extends to ordinals beyond w@, but to reach 

by these means seems hardly to be worth the labour involved. On the other 
hand i t  seems likely that a more subtle approach would enable the theorems to 
be proved, by finitist methods, for ordinals up to any assigned v., where uo = w, 
v,+l = wv". The important point revealed by the foregoing proofs is that if a 
function g(k, n) specifies the number of terms in a decreasing sequence com-
mencing with some F(k, u(n)), k < u(n), then F(o(n), u(n)) is followed by a 
decreasing sequence of a t  most g(u(n), n) terms, so that from a proof of the 
restricted ordinal theorem for otdinals less than or equal to Q(k) we derive a 
proof of the theorem for ordinals less than or equal to Q(w) .  The position a p  
pears to be, therefore, that if P(n) expresses the restricted ordinal theorem for 
ordinals less than or equal to v,, then P(n) is capable of a finite constructive 
proof for any assigned n, but (n)P(n) is not so provable-which of course in-
volves that in the "reine Zahlentheorie," there can be no general formula G(k, n) 
with a free variable k, specifyingdthe number of terms in a decreasing sequence 
commencing with the ordinal vr, but only specific formula^ for particular values 
of k. 

Thc formula P.(x + 1, p, n) above can be derived from the formulae (a), 
(b), (c) in a purely formal manner by means of recursive number theory. The 
following derivation was communicnted to me by Professor Bernays. 

Let j(z, p, n), g(p, n), h(n) be recursive functions, and let P(z, p, n) be an 
abbreviation for the equation j(z, p, n) = 0. Then P(z, p, n) will be derived 
from the formulae: 

Define $(z, p, n) by the equations, 
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and let Q(x, p, n) be an abbreviation for 

From the demonstrable formula, 

and the definitions of +(x, p, n) and Q(x, p, n) we derive 

Q(x + 1,P, n) --t P(0, P, n) & Q(x, P, Q(P,n)), (d*) 

which together with (b*) gives 

and this formula, in conjunction with the demonstrable formula Q(0, p, n) -, 
P(0, y, n), gives Q(x, p, n) --t P(x, p, n), by means of that schema of generalised 
induction referred to above. (The application of Skolem's schema I1 is not quite 
immediate, since the two parameters p, n must first be reduced to a single param- 
eter by the method explained by Hilbert and Bernays for the case of primitive 
recur~ion.~) From Q(x, p, n) -+ P(x, p, n) and the formulae (c*) and (d*) we 
derive: 

From (e*) and (a*j we derive P(0, p, n) by the schema of generalised induction 
briefly discussed, at the end of the paper of Skolein's to which we have already 
referred,' as being reducible to schema I1 and ordinary induction. To carry 
out this reduction we make the following definitions. K (p, n) is an abbreviation 
for 

and 

&, n) = Max Max $(z, p, u). 
u s r s i h ( u ) + l  

From the definitions of K(p, n) and #(x, p, n) there follows 

and using (a*) and the definition of Q(x, p, n) we obtain 

Furthermore the definitions of K(p, n), Q(x, p, n) and formula (e*) yield 

7 D. Hilbert and P. Bernays, Grundlagen der Malhematik, vol. I, Berlin 1934, p. 322. 
8 In footnote 5. Vide pp. 275-276. 
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whence 

Formulae (kl) and (kz) give K(p,  n ) ,  by the generalised induction schema 11, 
whence by (ko) we derive P(0, p, n ) ,  i.e., j(0, p, n )  = 0,  whence Q(x, p, n) .  
Finally P(x, p, n )  is derived from the proved formulae Q(x, p, n ) ,  Q(x, p, n )  -+ 

P(x, p, n) .  Taking 

A (5+ 1 ) ) .(44 p)) .yu(z + 1,p, n,  f.(x + 1,  p, n ) )  

for f (x ,  p, n ) ,  n + ju(l, p, n )  for g(p, n ) ,  and a(n) 1 for h(n),i t  follows that 

( d n )A ( ~ f  A P ) ) . ' Y ~ ( X+ 1, p, n,  f.(x + 1, p, n ) )  = 0l ) ) . ( u ( n )  

is proved, and this equation is a formal transform of the formula Pu(x+ 1, p, n). 

The author acknowledges with most grateful thanks his deep indebtedness to 
Professor P. Bernays for much valuable advice and most generous assistance. 
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