Existence varieties of regular rings and complemented modular lattices

Christian Herrmann1 \quad Marina Semenova2

1TU Darmstadt, Germany
2Institute of Mathematics SB RAS, Russia

Luminy, November 2010
Lattices are considered in signature $\{\lor, \land, 0\}$.
Lattices are considered in signature \(\{ \lor, \land, 0 \} \)

\[\Sigma_l = \text{axioms of modular lattices} + \]
\[+ \ \forall xy \exists z \ [x \land y \land z = 0] \& [(x \land y) \lor z = x]. \]
Lattices are considered in signature $\{\lor, \land, 0\}$

$\Sigma_l = \text{axioms of modular lattices} +$

$+ \ \forall xy \exists z \ [x \land y \land z = 0] \& [(x \land y) \lor z = x].$

If $L \in \text{Mod} \Sigma_l$, then L is a sectionally complemented modular lattice (a SCML for short);
Lattices are considered in signature \(\{ \lor, \land, 0 \} \)

\[
\Sigma_l = \text{axioms of modular lattices } + \\
+ \forall xy \exists z \left[x \land y \land z = 0 \right] \& \left[(x \land y) \lor z = x \right].
\]

If \(L \in \text{Mod} \Sigma_l \), then \(L \) is a \textit{sectionally complemented modular lattice} (a \textit{SCML} for short);

if \(L \in \text{Mod} \Sigma_l \) has 1, then it is a \textit{complemented modular lattice} (a \textit{CML} for short);
Λ-algebras are considered in signature \(\{ \Lambda, +, -, \cdot, 0 \} \);
Λ-algebras are considered in signature $\{\Lambda, +, -, \cdot, 0\}$; Rings are considered in signature $\{+, -, \cdot, 0\}$;
Λ-algebras are considered in signature \(\{\Lambda, +, -, \cdot, 0\}\); Rings are considered in signature \(\{+, -, \cdot, 0\}\);

\[
\Sigma_\Lambda = \text{axioms of } \Lambda\text{-algebras} + \forall x \exists y [xyx = x].
\]
Λ-algebras are considered in signature \(\{\Lambda, +, -, \cdot, 0\}\); Rings are considered in signature \(\{+,-,\cdot,0\}\);

\[
\Sigma_\Lambda = \text{axioms of } \Lambda\text{-algebras} + \forall x \exists y [xyx = x].
\]

If \(A \in \text{Mod} \Sigma_\Lambda\), then \(A\) is a (von Neumann) regular algebra.
Let R be a regular ring.
Let R be a regular ring.
\(\mathbb{L}(R) \) is the lattice of principal right ideals of R.
Let R be a regular ring.
\(\mathbb{L}(R) \) is the lattice of principal right ideals of R.
\(\mathbb{L}(R) \) is a SCML.
Let R be a regular ring.
$L(R)$ is the lattice of principal right ideals of R.
$L(R)$ is a SCML.
If R is Artinian, then $L(R)$ is a finite height CML.
(X, \varphi) is a combinatorial geometry, if it has the exchange property:

\[a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\}) \]

for any \(a, b \in X \) and any \(Y \subseteq X \).
(\(X, \varphi\)) is a **combinatorial geometry**, if it has the **exchange property**:

\[
a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\})
\]

for any \(a, b \in X\) and any \(Y \subseteq X\).

Closure lattices of combinatorial geometries are **often** modular.
(X, ϕ) is a **combinatorial geometry**, if it has the **exchange property**:

\[a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\}) \]

for any \(a, b \in X \) and any \(Y \subseteq X \).

Closure lattices of combinatorial geometries are **often** modular.

Let \(V_D \) be a vector space over a division ring \(D \).
(\(X, \varphi\)) is a \textbf{combinatorial geometry}, if it has the \textbf{exchange property}:

\[a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\}) \]

for any \(a, b \in X\) and any \(Y \subseteq X\).

Closure lattices of combinatorial geometries are \textbf{often} modular.

Let \(V_D\) be a vector space over a division ring \(D\). \(\text{Sub}(V_D)\) is the subspace lattice.
(\(X, \varphi\)) is a \textbf{combinatorial geometry}, if it has the \textbf{exchange property}:

\[a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\}) \]

for any \(a, b \in X\) and any \(Y \subseteq X\).

Closure lattices of combinatorial geometries are \textit{often} modular.

Let \(V_D\) be a vector space over a division ring \(D\).
\(\text{Sub}(V_D)\) is the subspace lattice.
\(\text{Sub}(V_D) \cong \mathbb{L}(\text{End}(V_D)), \quad \text{End}(V_D)\) is a regular ring.
$\text{Sub}(V_D)$ is a subdirectly irreducible Arguesian SCL:
$\text{Sub}(V_D)$ is a subdirectly irreducible Arguesian SCL:

\[\forall x_0 x_1 x_2 y_0 y_1 y_2 \ \bigwedge_{i<3} (x_i \vee y_i) \leq (x_0 \wedge (x_1 \vee c)) \vee (y_0 \wedge (y_1 \vee c)), \]

where

\[c_i = (x_j \vee x_k) \wedge (y_j \vee y_k), \quad \{i, j, k\} = \{0, 1, 2\}, \]

\[c = (c_0 \vee c_1) \wedge c_2. \]
Sub($V_\mathcal{D}$) is a subdirectly irreducible Arguesian SCL:

$$\forall x_0 x_1 x_2 y_0 y_1 y_2 \quad \bigwedge_{i<3} (x_i \lor y_i) \leq (x_0 \land (x_1 \lor c)) \lor (y_0 \land (y_1 \lor c)),$$

where

$$c_i = (x_j \lor x_k) \land (y_j \lor y_k), \quad \{i, j, k\} = \{0, 1, 2\},$$
$$c = (c_0 \lor c_1) \land c_2.$$

If dim $V_\mathcal{D} < \omega$, then Sub($V_\mathcal{D}$) is simple finite height.
A partial converse is true:
A partial converse is true:

Theorem (von Neumann, 1939; Jónsson, 1960)

Let L be a simple Arguesian CL of finite height $n \geq 3$.
A partial converse is true:

Theorem (von Neumann, 1939; Jónsson, 1960)

Let L be a simple Arguesian CL of finite height $n \geq 3$. Then there is a division ring \mathbb{D} such that $L \cong \text{Sub}(\mathbb{D}^n)$.
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1. $L \in S\left(Cl(X, \varphi)\right)$ for a projective geometry (X, φ);
2. $L \in S\left(Sub(A)\right)$ for an Abelian group A;
3. $L \in S\left(\prod_{i \in I} Sub(V_i)\right)$, V_i is a vector space for all $i \in I$;
4. L is Arguesian.
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1. \(L \in S(\text{Cl}(X, \varphi)) \) for a projective geometry \((X, \varphi)\);
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1. \(L \in S(\text{Cl}(X, \varphi)) \) for a projective geometry \((X, \varphi)\);
2. \(L \in S(\text{Sub}(A)) \) for an Abelian group \(A\);
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1. \(L \in S(\text{Cl}(X, \varphi)) \) for a projective geometry \((X, \varphi)\);
2. \(L \in S(\text{Sub}(A)) \) for an Abelian group \(A\);
3. \(L \in S(\prod_{i \in I} \text{Sub}(V_i)), \) \(V_i\) is a vector space for all \(i \in I\);
Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1. \(L \in S(\text{Cl}(X, \varphi)) \) for a projective geometry \((X, \varphi)\);
2. \(L \in S(\text{Sub}(A)) \) for an Abelian group \(A\);
3. \(L \in S(\prod_{i \in I} \text{Sub}(V_i)) \), \(V_i\) is a vector space for all \(i \in I\);
4. \(L \) is Arguesian.
Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.
Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.
$S_\exists(\mathcal{K}) = \text{Mod } \Sigma \cap S(\mathcal{K})$
Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

$S_\exists (\mathcal{K}) = \text{Mod } \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod } \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.
Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

$S_{\exists}(\mathcal{K}) = \text{Mod } \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod } \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.

Theorem

Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

Herrmann, Semenova

Existence varieties
Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

$S_\exists(\mathcal{K}) = \text{Mod } \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod } \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.

Theorem

Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

1. $V_\exists(\mathcal{K}) = HS_\exists P(\mathcal{K})$ is the smallest \exists-variety containing \mathcal{K};
Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.

$S_\exists(\mathcal{K}) = \text{Mod} \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod} \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.

Theorem

Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.

1. $V_\exists(\mathcal{K}) = H S_\exists P(\mathcal{K})$ is the smallest \exists-variety containing \mathcal{K}; moreover, $T V_\exists(\mathcal{K}) = V T(\mathcal{K})$.

Herrmann, Semenova
Existence varieties
Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

$S_\exists(\mathcal{K}) = \text{Mod } \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod } \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.

Theorem

Let $\mathcal{K} \subseteq \text{Mod } \Sigma$.

1. $V_\exists(\mathcal{K}) = H S_\exists P(\mathcal{K})$ is the smallest \exists-variety containing \mathcal{K}; moreover, $TV_\exists(\mathcal{K}) = VT(\mathcal{K})$.

2. The reduct of any free algebra from $V T(\mathcal{K})$ belongs to $P_{s\exists}(\mathcal{K})$.

Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.

$S_\exists(\mathcal{K}) = \text{Mod} \Sigma \cap S(\mathcal{K})$

Definition

$\mathcal{K} \subseteq \text{Mod} \Sigma$ is an \exists-variety, if it is closed under H, S_\exists, and P.

Theorem

Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.

1. $V_\exists(\mathcal{K}) = HS_\exists P(\mathcal{K})$ is the smallest \exists-variety containing \mathcal{K}; moreover, $TV_\exists(\mathcal{K}) = VT(\mathcal{K})$.

2. The reduct of any free algebra from $VT(\mathcal{K})$ belongs to $P_{s_\exists}(\mathcal{K})$.

3. Any SI algebra from $V_\exists(\mathcal{K})$ belongs to $HS_\exists P_u(\mathcal{K})$.
Let $\mathcal{K} \subseteq \text{Mod} \Sigma$.
$S_{\exists}(\mathcal{K}) = \text{Mod} \Sigma \cap S(\mathcal{K})$

Definition
$\mathcal{K} \subseteq \text{Mod} \Sigma$ is an \exists-variety, if it is closed under H, S_{\exists}, and P.

Theorem

1. $V_{\exists}(\mathcal{K}) = H S_{\exists} P(\mathcal{K})$ is the smallest \exists-variety containing \mathcal{K}; moreover, $T V_{\exists}(\mathcal{K}) = V T(\mathcal{K})$.
2. The reduct of any free algebra from $V T(\mathcal{K})$ belongs to $P_{s\exists}(\mathcal{K})$.
3. Any SI algebra from $V_{\exists}(\mathcal{K})$ belongs to $H S_{\exists} P_u(\mathcal{K})$.
4. Any \exists-variety is generated by its finitely generated SI-s.
Free algebras exist in \exists-varieties.
Free algebras exist in $∃$-varieties. Any $∃$-variety can be defined by positive sentences as well as by Horn sentences.
Free algebras exist in \exists-varieties.
Any \exists-variety can be defined by positive sentences as well as by Horn sentences.

Problem

Can an \exists-variety be defined by positive Horn sentences?
Regular rings
Regular rings

Theorem

\[\mathbf{V}_\exists (\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \ \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists\text{-variety of regular } \Lambda\text{-algebras.} \]
Theorem

\[\mathbf{V}_\exists(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists \text{-variety of regular } \Lambda \text{-algebras.} \]

Corollary

1. \[\mathbf{V}_\exists(\mathbb{F}_{p}^{n \times n} \mid n_0 < n < \omega, p \text{ is prime}) \text{ is the } \exists \text{-variety of regular rings.} \]
Regular rings

Theorem

$\mathbf{V}_\exists(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \text{ } \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists \text{-variety of regular } \Lambda\text{-algebras.}$

Corollary

1. $\mathbf{V}_\exists(\mathbb{F}_p^{n \times n} \mid n_0 < n < \omega, \text{ } p \text{ is prime}) \text{ is the } \exists \text{-variety of regular rings.}$
2. Free regular rings are residually finite.
Regular rings

Theorem

\[\mathcal{V}(F^{n \times n} \mid n_0 < n < \omega, \ F \text{ is a quotient field of } \Lambda) \text{ is the } \exists\text{-variety of regular } \Lambda\text{-algebras.} \]

Corollary

1. \[\mathcal{V}(F_p^{n \times n} \mid n_0 < n < \omega, \ p \text{ is prime}) \text{ is the } \exists\text{-variety of regular rings.} \]
2. Free regular rings are residually finite.
3. The equational theory of regular rings with quasi-inversion as a fundamental operation is decidable.
Theorem

Let R be a SI non-Artinian regular Λ-algebra.
Theorem

Let R be a SI non-Artinian regular Λ-algebra. There is a field F: $V_\exists(R) = V_\exists(F^{n\times n} \mid n_0 < n < \omega)$.

Corollary

Any \exists-variety of regular Λ-algebras is generated by its simple Artinian members.

Corollary

Free regular Λ-algebras are residually Artinian.

Goodearl, Menal, and Moncasi (1993) proved the latter statement for algebras with unit.
Theorem

Let R be a SI non-Artinian regular Λ-algebra. There is a field F: $V_{\exists}(R) = V_{\exists}(F^{n\times n} | n_0 < n < \omega)$.

Corollary

Any \exists-variety of regular Λ-algebras is generated by its simple Artinian members.
Theorem

Let R be a SI non-Artinian regular Λ-algebra. There is a field F: $V_\exists(R) = V_\exists(F^{n\times n} \mid n_0 < n < \omega)$.

Corollary

Any \exists-variety of regular Λ-algebras is generated by its simple Artinian members.

Corollary

Free regular Λ-algebras are residually Artinian.
Theorem

Let \(R \) be a SI non-Artinian regular \(\Lambda \)-algebra. There is a field \(F \): \(V_\exists(R) = V_\exists(F^{n \times n} \mid n_0 < n < \omega) \).

Corollary

Any \(\exists \)-variety of regular \(\Lambda \)-algebras is generated by its simple Artinian members.

Corollary

Free regular \(\Lambda \)-algebras are residually Artinian.

Goodearl, Menal, and Moncasi (1993) proved the latter statement for algebras with unit.
For an \exists-variety \mathcal{V} of regular rings, $C(\mathcal{V})$ is the class of simple Artinian members of \mathcal{V}.
For an \exists-variety \mathcal{V} of regular rings, $C(\mathcal{V})$ is the class of simple Artinian members of \mathcal{V}.

By the Wedderburn-Artin theorem, $C(\mathcal{V})$ consists of matrix rings over division rings.
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \iff D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D \in D_n(\mathcal{C})$ for all $n > 0$.
2. $D \in D_m(\mathcal{C})$ for all $n \geq m > 0$.
3. If $n = mk > 0$, $F \in D_n(\mathcal{C})$ and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$.
4. If p is a prime and there is $D \in D_n(\mathcal{C})$ with $\text{char}(D) = p$, then $F \in \bigcap_{n > 0} D_n(\mathcal{C})$ for any F with $\text{char}(F) = p$.
5. $D_1(\mathcal{C})$ is the class of all division rings.
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is *closed*, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. if $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$.

For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. if $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$;
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. If $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$;
4. p is a prime;
 if for any $n > 0$, there is $D \in D_n(\mathcal{C})$ with $\text{char } D = p$, then $F \in \bigcap_{n > 0} D_n(\mathcal{C})$ for any F with $\text{char } F = p$;
For a class \mathcal{C} of simple Artinian regular rings and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } D^{n \times n} \in \mathcal{C}.$$

Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. if $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$;
4. p is a prime; if for any $n > 0$, there is $D \in D_n(\mathcal{C})$ with char $D = p$, then $F \in \bigcap_{n>0} D_n(\mathcal{C})$ for any F with char $F = p$;
5. $D_1(\mathcal{C})$ is the class of all division rings.
Theorem

Let \mathcal{C} be a class of simple Artinian regular rings.
\mathcal{C} is closed if and only if $\mathcal{C} = C(\forall)$ for an \exists-variety of regular rings.
Sectionally complemented modular lattices
Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height.
Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height. There is a unique prime field \mathbb{F} such that $V_\exists(L) = V_\exists(L(\mathbb{F}^{n \times n}) \mid n_0 < n < \omega)$.
Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height. There is a unique prime field \mathbb{F} such that $V_\exists(L) = V_\exists(L(\mathbb{F}^{n \times n}) \mid n_0 < n < \omega)$.

Corollary

Any \exists-variety of SCML is generated by its simple finite height members.
Corollary 1

\[\forall \exists (\mathbb{L}((\mathbb{F}_p^{n \times n}) \mid n_0 < n < \omega, \ p \text{ is prime}) \text{ is the variety of Arguesian SCL.} \]
Corollary

1. $V_{∃}(L(F_p^{n \times n}) \mid n_0 < n < ω, \ p \ is \ prime)$ is the variety of Arguesian SCL.

2. Free Arguesian SCL are residually finite.
Corollary

1. \(V_\exists \left(\mathbb{L}(\mathbb{F}_p^{n\times n}) \mid n_0 < n < \omega, \ p \text{ is prime} \right) \) is the variety of Arguesian SCL.

2. Free Arguesian SCL are residually finite.

3. Equational theory of Arguesian lattices with sectional complementation as a fundamental operation is decidable.
Corollary

1. \(V \exists(L(\mathbb{F}_p^{n \times n}) \mid n_0 < n < \omega, \ p \text{ is prime}) \) is the variety of Arguesian SCL.
2. Free Arguesian SCL are residually finite.
3. Equational theory of Arguesian lattices with sectional complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional complementation is decidable.
For an \exists-variety \mathcal{V} of Arguesian SCL, $C(\mathcal{V})$ is the class of its simple Arguesian finite height members.
For an \exists-variety \mathcal{V} of Arguesian SCL, $C(\mathcal{V})$ is the class of its simple Arguesian finite height members.

By the von-Neumann-Jónsson coordinatization theorem, any $L \in C(\mathcal{V})$ with $\text{ht } L \geq 3$ is of the form $\mathbb{L}(D^n_D)$.
For a class \mathcal{C} of simple Arguesian finite height SCL and for $n > 0$:

$$D \in D_n(\mathcal{C}) \text{ if and only if } \mathbb{L}(D^n_D) \in \mathcal{C}.$$
Definition

Let \mathcal{C} be closed, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. If $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^k \times k)$ is a division ring, then $D \in D_m(\mathcal{C})$;
4. p is a prime; if for any $n > 0$, there is $D \in D_n(\mathcal{C})$ with char $D = p$, then $F \in \bigcap_{n > 0} D_n(\mathcal{C})$ for any F with char $F = p$;
5. If $D \in D_2(\mathcal{C})$ and $|F| \leq |D|$, then $F \in D_2(\mathcal{C})$;
6. $M_k \in \mathcal{C}$ for $k < \omega$, then $M_n \in \mathcal{C}$ for all $2 \leq n \leq k$.

$D_1(\mathcal{C})$ is the class of all division rings.
Definition

\(\mathcal{C} \) is \textit{closed}, if the following holds:

1. \(D_n(\mathcal{C}) \) is a universal class of division rings for all \(n > 0 \);
Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
Definition

\(\mathcal{C} \) is **closed**, if the following holds:

1. \(D_n(\mathcal{C}) \) is a universal class of division rings for all \(n > 0 \);
2. \(D_n(\mathcal{C}) \subseteq D_m(\mathcal{C}) \) for all \(n \geq m > 0 \);
3. if \(n = mk > 0 \), \(F \in D_n(\mathcal{C}) \), and \(D \in S(F^{k \times k}) \) is a division ring, then \(D \in D_m(\mathcal{C}) \);
Definition

\(\mathcal{C} \) is closed, if the following holds:

1. \(\mathbf{D}_n(\mathcal{C}) \) is a universal class of division rings for all \(n > 0 \);
2. \(\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C}) \) for all \(n \geq m > 0 \);
3. if \(n = mk > 0 \), \(F \in \mathbf{D}_n(\mathcal{C}) \), and \(D \in S(F^{k\times k}) \) is a division ring, then \(D \in \mathbf{D}_m(\mathcal{C}) \);
4. \(p \) is a prime;
 if for any \(n > 0 \), there is \(D \in \mathbf{D}_n(\mathcal{C}) \) with \(\text{char} \ D = p \), then \(F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C}) \) for any \(F \) with \(\text{char} \ F = p \);
Definition

\(\mathcal{C} \) is closed, if the following holds:

1. \(D_n(\mathcal{C}) \) is a universal class of division rings for all \(n > 0 \);
2. \(D_n(\mathcal{C}) \subseteq D_m(\mathcal{C}) \) for all \(n \geq m > 0 \);
3. if \(n = mk > 0 \), \(F \in D_n(\mathcal{C}) \), and \(D \in S(F^{k \times k}) \) is a division ring, then \(D \in D_m(\mathcal{C}) \);
4. \(p \) is a prime;
 if for any \(n > 0 \), there is \(D \in D_n(\mathcal{C}) \) with \(\text{char} \ D = p \), then \(F \in \bigcap_{n>0} D_n(\mathcal{C}) \) for any \(F \) with \(\text{char} \ F = p \);
5. if \(D \in D_2(\mathcal{C}) \) and \(|F| \leq |D| \), then \(F \in D_2(\mathcal{C}) \);
Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. if $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$;
4. p is a prime;
 - if for any $n > 0$, there is $D \in D_n(\mathcal{C})$ with char $D = p$, then $F \in \bigcap_{n > 0} D_n(\mathcal{C})$ for any F with char $F = p$;
5. if $D \in D_2(\mathcal{C})$ and $|F| \leq |D|$, then $F \in D_2(\mathcal{C})$;
 - if $M_k \in \mathcal{C}$ for $k < \omega$, then $M_n \in \mathcal{C}$ for all $2 < n \leq k$;
Definition

\(C \) is **closed**, if the following holds:

1. \(D_n(C) \) is a universal class of division rings for all \(n > 0 \);
2. \(D_n(C) \subseteq D_m(C) \) for all \(n \geq m > 0 \);
3. if \(n = mk > 0 \), \(F \in D_n(C) \), and \(D \in S(F^{k\times k}) \) is a division ring, then \(D \in D_m(C) \);
4. \(p \) is a prime;
 if for any \(n > 0 \), there is \(D \in D_n(C) \) with \(\text{char} \ D = p \), then \(F \in \bigcap_{n>0} D_n(C) \) for any \(F \) with \(\text{char} \ F = p \);
5. if \(D \in D_2(C) \) and \(|F| \leq |D| \), then \(F \in D_2(C) \);
 if \(M_k \in C \) for \(k < \omega \), then \(M_n \in C \) for all \(2 < n \leq k \);
Definition

\mathcal{C} is **closed**, if the following holds:

1. $D_n(\mathcal{C})$ is a universal class of division rings for all $n > 0$;
2. $D_n(\mathcal{C}) \subseteq D_m(\mathcal{C})$ for all $n \geq m > 0$;
3. if $n = mk > 0$, $F \in D_n(\mathcal{C})$, and $D \in S(F^{k \times k})$ is a division ring, then $D \in D_m(\mathcal{C})$;
4. p is a prime;
 if for any $n > 0$, there is $D \in D_n(\mathcal{C})$ with $\text{char} D = p$, then $F \in \bigcap_{n > 0} D_n(\mathcal{C})$ for any F with $\text{char} F = p$;
5. if $D \in D_2(\mathcal{C})$ and $|F| \leq |D|$, then $F \in D_2(\mathcal{C})$;
 if $M_k \in \mathcal{C}$ for $k < \omega$, then $M_n \in \mathcal{C}$ for all $2 < n \leq k$;
6. $D_1(\mathcal{C})$ is the class of all division rings.
Theorem

Let \mathcal{C} be a class of simple Arguesian finite height SCL. \mathcal{C} is closed if and only if $\mathcal{C} = C(\mathcal{V})$ for an \exists-variety of Arguesian SCL.
Problem

Is the class of lattices embeddable into SCML-s a variety?
Problem

Is the class of lattices embeddable into SCML-s a variety?

Corollary

If L embeds into a SCML, then $\text{Id}(L)$ does.