## Finite Coxeter lattices and lattices of finite closure systems: some (lower) bounded lattices

#### NATHALIE CASPARD

LACL, University Paris 12 Val-de-Marne, France and CAMS, EHESS, Paris, France

ICFCA'07, Clermont-Ferrand



### Sketch of the talk

#### (1) (Lower) bounded lattices and the doubling operation

#### 2 Finite Coxeter lattices

- Coxeter lattices
- $\bullet$  The class  $\mathcal{H}\mathcal{H}$  of lattices
- $\bullet$  All lattices of  $\mathcal{H}\mathcal{H}$  are bounded
- $\bullet$  Finite Coxeter lattices are in  $\mathcal{HH}$





## Outline

#### (1) (Lower) bounded lattices and the doubling operation

#### 2 Finite Coxeter lattices

- Coxeter lattices
- The class  $\mathcal{HH}$  of lattices
- All lattices of  $\mathcal{HH}$  are bounded
- $\bullet$  Finite Coxeter lattices are in  ${\cal H}{\cal H}$

#### 3 The lattice of finite closure systems



## (LOWER) BOUNDED LATTICES

#### Definition (MCKENZIE [10], 1972)

A homomorphism  $\alpha: L \to L'$  is called *lower bounded* if the inverse image of each element of L' is either empty or has a minimum.

A lattice is *lower bounded* if it is the lower bounded homomorphic image of a free lattice.

An *upper bounded* lattice is defined dually and a lattice is *bounded* if it is lower and upper bounded.

## THE DOUBLING CONSTRUCTION, DAY [6], 1970





## The doubling construction, Day [6], 1970



#### GENERALISATION TO LOWER PSEUDO-INTERVALS





#### GENERALISATION TO LOWER PSEUDO-INTERVALS





#### GENERALISATION TO LOWER PSEUDO-INTERVALS



#### GENERALISATION TO CONVEX SETS





#### CHARACTERISATION OF BOUNDED LATTICES

#### Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is bounded,
- it can be constructed starting from <u>2</u> by a finite sequence of interval doublings.



#### CHARACTERISATION OF LOWER BOUNDED LATTICES

#### Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- it can be constructed starting from <u>2</u> by a finite sequence of lower pseudo-intervals.



#### CHARACTERISATION OF UPPER BOUNDED LATTICES

#### Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is upper bounded,
- it can be constructed starting from <u>2</u> by a finite sequence of upper pseudo-intervals.



#### AN EXAMPLE OF BOUNDED LATTICE





#### AN EXAMPLE OF BOUNDED LATTICE





#### AN EXAMPLE OF BOUNDED LATTICE





## PERM(3) IS BOUNDED



lac

590

#### Permutohedron on 4 elements :



#### Permutohedron on 4 elements : bounded too



#### Permutohedron on 5 elements :



#### Permutohedron on 5 elements : bounded again





#### IN FACT...

#### Permutohedron is bounded



#### IN FACT...

Permutohedron is bounded

AND IN FACT...

All finite Coxeter lattices are bounded



## Outline

#### (Lower) bounded lattices and the doubling operation

#### 2 Finite Coxeter lattices

- Coxeter lattices
- $\bullet$  The class  $\mathcal{H}\mathcal{H}$  of lattices
- $\bullet$  All lattices of  $\mathcal{H}\mathcal{H}$  are bounded
- $\bullet$  Finite Coxeter lattices are in  $\mathcal{HH}$





Coxeter lattices

## WHAT IS A COXETER GROUP?

#### Definition

A group W is a *Coxeter group* if W has a set of generators  $S \subset W$ , subject only to relations of the form

$$(ss')^{m(s,s')} = \epsilon$$

where m(s,s) = 1 for any s in S (all generators have order 2), and  $m(s,s') = m(s',s) \ge 2$  for  $s \ne s'$  in S.

Coxeter lattices

LIST OF ALL FINITE IRREDUCIBLE COXETER GROUPS

#### • The four infinite families :

- $A_n$  (symmetric groups),
- $B_n$ ,
- $D_n$ ,
- and  $I_n$  (dihedral groups).



Coxeter lattices

LIST OF ALL FINITE IRREDUCIBLE COXETER GROUPS



- $A_n$  (symmetric groups),
- $B_n$ ,
- $D_n$ ,
- and  $I_n$  (dihedral groups).

**2** and the six isolated groups :  $E_6, E_7, E_8, F_4, H_3$  and  $H_4$ .



#### Coxeter lattices

# COXETER GRAPH OF FINITE IRREDUCIBLE COXETER GROUPS



Coxeter lattices

## The lattice structure of Coxeter groups





Coxeter lattices

#### The lattice structure of Coxeter groups



If  $\ell(w) < \ell(ws)$ .



Coxeter lattices

### The lattice structure of Coxeter groups



If  $\ell(w) < \ell(ws)$ .



Coxeter lattices

FINITE COXETER LATTICES ARE BOUNDED

#### Sketch of the proof :



Coxeter lattices

FINITE COXETER LATTICES ARE BOUNDED

#### Sketch of the proof :

• Defining a new class of lattices :  $\mathcal{HH}$ ,


Coxeter lattices

# FINITE COXETER LATTICES ARE BOUNDED

#### Sketch of the proof :

- Defining a new class of lattices :  $\mathcal{HH}$ ,
- **2** Showing that lattices of  $\mathcal{HH}$  are bounded,



Coxeter lattices

# FINITE COXETER LATTICES ARE BOUNDED

#### Sketch of the proof :

- Defining a new class of lattices :  $\mathcal{HH}$ ,
- **2** Showing that lattices of  $\mathcal{HH}$  are bounded,
- $\bigcirc$  Showing that finite Coxeter lattices are in  $\mathcal{HH}$ .



Coxeter lattices

FINITE COXETER LATTICES ARE BOUNDED

#### Sketch of the proof :

• Defining a new class of lattices :  $\mathcal{HH}$ ,



30/103

The class  $\mathcal{HH}$  of lattices

# HAT, ANTIHAT AND 2-FACET

#### Definition

• a *Hat* 
$$(y, x, z)^{\wedge}$$
 :



• an antiHat 
$$(y, x, z)^{\vee}$$
:





The class  $\mathcal{HH}$  of lattices

# HAT, ANTIHAT AND 2-FACET

#### Definition

• a *Hat* 
$$(y, x, z)^{\wedge}$$
 :



• an antiHat 
$$(y, x, z)^{\vee}$$
:





The class  $\mathcal{HH}$  of lattices

# HAT, ANTIHAT AND 2-FACET

#### Definition





• an antiHat 
$$(y, x, z)^{\vee}$$



• a 2-facet  $F^{y,x,z}$  :





The class  $\mathcal{HH}$  of lattices

# DEFINITION OF A 2-FACET LABELLING



The class  $\mathcal{HH}$  of lattices

# DEFINITION OF A 2-FACET LABELLING



33/103

The class  $\mathcal{HH}$  of lattices

# DEFINITION OF A 2-FACET LABELLING



naa

The class  $\mathcal{HH}$  of lattices

# DEFINITION OF A 2-FACET LABELLING



The class  $\mathcal{HH}$  of lattices

# DEFINITION OF A 2-FACET LABELLING



The class  $\mathcal{HH}$  of lattices

#### 2-FACET RANK FUNCTION ON A 2-FACET LABELLING

#### Definition





37/103

The class  $\mathcal{HH}$  of lattices

# 2-FACET RANK FUNCTION ON A 2-FACET LABELLING



Sac

This is a function r from  $T = \{t_1, ..., t_i, ..., t_p\}$  to  $\mathbb{R}$ 

The class  $\mathcal{HH}$  of lattices

## 2-FACET RANK FUNCTION ON A 2-FACET LABELLING



This is a function r from  $T = \{t_1, ..., t_i, ..., t_p\}$  to  $\mathbb{R}$  such that :



The class  $\mathcal{HH}$  of lattices

## 2-FACET RANK FUNCTION ON A 2-FACET LABELLING





This is a function r from  $T = \{t_1, ..., t_i, ..., t_p\}$  to  $\mathbb{R}$  such that :

So : 
$$r(t_1) < r(t_2) < r(t_3)$$
  
and  $r(t_6) < r(t_5) < r(t_4)$   
and  $r(t_1), r(t_6) < r(t_7)$ 

The class  $\mathcal{HH}$  of lattices

#### 2-FACET RANK FUNCTION ON A 2-FACET LABELLING





The class  $\mathcal{HH}$  of lattices

# 2-FACET RANK FUNCTION ON A 2-FACET LABELLING



naa

Here  $r(t_1) < r(t_5), r(t_3)$ 

The class  $\mathcal{HH}$  of lattices

#### 2-FACET RANK FUNCTION ON A 2-FACET LABELLING



Sac

Here  $r(t_1) < r(t_5), r(t_3)$  and  $r(t_2) < r(t_6), r(t_3)$ 

The class  $\mathcal{HH}$  of lattices

## **ON SEMIDISTRIBUTIVITY**

#### Definition

A lattice is *semidistributive* if, for all  $x, y, z \in L$ :

- $x \wedge y = x \wedge z$  implies  $x \wedge y = x \wedge (y \lor z)$
- $x \lor y = x \lor z$  implies  $x \lor y = x \lor (y \land z)$



The class  $\mathcal{HH}$  of lattices

# **ON SEMIDISTRIBUTIVITY**

#### Definition

A lattice is *semidistributive* if, for all  $x, y, z \in L$ :

- $x \wedge y = x \wedge z$  implies  $x \wedge y = x \wedge (y \lor z)$
- $x \lor y = x \lor z$  implies  $x \lor y = x \lor (y \land z)$

#### Proposition (DAY, NATION, TSCHANTZ [8], 1989)

Bounded lattices are semidistributive.



The class  $\mathcal{HH}$  of lattices

# The class $\mathcal{HH}$ of lattices

#### Definition

A finite lattice L is in the class  $\mathcal{HH}$  if it satisfies :



The class  $\mathcal{HH}$  of lattices

# The class $\mathcal{HH}$ of lattices

#### Definition

A finite lattice L is in the class  $\mathcal{HH}$  if it satisfies :

- L is semidistributive,
- **2** to every hat  $(y, x, z)^{\wedge}$  of L is associated an anti-hat  $(y', y \wedge z, z')_{\vee}$  of L such that  $[y \wedge z, x]$  is a 2-facet,
- So to every anti-hat  $(y, x, z)_{\vee}$  of L is associated a hat  $(y', y \lor z, z')^{\wedge}$  of L such that  $[x, y \lor z]$  is a 2-facet,
- there exists a 2-facet labelling T on the (covering) edges of L and a 2-facet rank function r on T.

All lattices of  $\mathcal{HH}$  are bounded

#### First part of the theorem

All lattices of  $\mathcal{HH}$  are bounded

#### How do we prove this?



45/103

#### All lattices of $\mathcal{HH}$ are bounded

#### RECALLING ARROW RELATIONS...



46/103

All lattices of  $\mathcal{HH}$  are bounded

CHARACTERISING SEMIDISTRIBUTIVITY WITH ARROW RELATIONS

#### Proposition (Day [7], 1979)

A lattice L is semidistributive if and only if the relation  $\uparrow$  on  $J \times M$  induces a bijection between J and M.



All lattices of  $\mathcal{HH}$  are bounded

# CHARACTERISING SEMIDISTRIBUTIVITY WITH ARROW RELATIONS

## Proposition (Day [7], 1979)

A lattice L is semidistributive if and only if the relation  $\uparrow$  on  $J \times M$  induces a bijection between J and M.

#### Notation

In any semidistributive lattice L, we can denote by  $(j, m_j)$  – or by  $(j_m, m)$  – the elements of  $J_L \times M_L$  which are bijective for the relation  $\uparrow$ .

All lattices of  $\mathcal{HH}$  are bounded

#### Relations on the edges of the lattices of $\mathcal{HH}$





All lattices of  $\mathcal{HH}$  are bounded

#### Relations on the edges of the lattices of $\mathcal{HH}$



We write :  $bd \prec_{t_2} gi$ 



All lattices of  $\mathcal{HH}$  are bounded

#### Relations on the edges of the lattices of $\mathcal{HH}$



We write :  $bd \prec_{t_2} gi$ and  $ab \prec_{t_4} ce$ 



All lattices of  $\mathcal{HH}$  are bounded

#### Relations on the edges of the lattices of $\mathcal{HH}$



Sac

We write :  $bd \prec_{t_2} gi$ and  $ab \prec_{t_4} ce$ and  $ac \prec_{t_1} be \prec_{t_1} hi$ 

All lattices of  $\mathcal{HH}$  are bounded

#### Relations on the edges of the lattices of $\mathcal{HH}$



We write :  $bd \prec_{t_2} gi$ and  $ab \prec_{t_4} ce$ and  $ac \prec_{t_1} be \prec_{t_1} hi$ and so :  $ac \leq_{t_1} hi$ .



All lattices of  $\mathcal{HH}$  are bounded

# Using the $\leq_t$ relations

#### Theorem

Let m be meet-irreducible in  $L \in \mathcal{HH}$  and let  $(m, m^+)$  be labelled by t.

The set  $E_m = \{(x, y) : (x, y) \leq_t (m, m^+)\}$  is not empty and has a least element (u, v).

Moreover v is a join-irreducible,  $v^- = u$  and  $v \uparrow m$ .



#### All lattices of $\mathcal{HH}$ are bounded



#### All lattices of $\mathcal{HH}$ are bounded



#### All lattices of $\mathcal{HH}$ are bounded



#### All lattices of $\mathcal{HH}$ are bounded

#### Lemma

Let  $L \in \mathcal{HH}$  and T a 2-facet labelling of L. There exists a label  $t \in T$  such that for any hat  $(y, x, z)^{\wedge}$  whose arc (y, x) or (z, x) is labelled by t,  $F^{(y,x,z)}$  is a diamond.


#### All lattices of $\mathcal{HH}$ are bounded

#### Lemma

Let  $L \in \mathcal{HH}$  and T a 2-facet labelling of L. There exists a label  $t \in T$  such that for any hat  $(y, x, z)^{\wedge}$  whose arc (y, x) or (z, x) is labelled by t,  $F^{(y,x,z)}$  is a diamond.



#### All lattices of $\mathcal{HH}$ are bounded

#### Lemma

Let  $L \in \mathcal{HH}$  and T a 2-facet labelling of L. There exists a label  $t \in T$  such that for any hat  $(y, x, z)^{\wedge}$  whose arc (y, x) or (z, x) is labelled by t,  $F^{(y,x,z)}$  is a diamond.



All lattices of  $\mathcal{HH}$  are bounded

# "DISCONSTRUCTING" AN INTERVAL TO CONSTRUCT A SECOND LEMMA

#### Definition

Let *L* be a lattice and  $I \subseteq L$  an interval of *L*. We say that *I* is contractible (in *L*) if *L* can be obtained from a lattice  $L_0$  by the doubling of an interval  $I_0 \subseteq L_0$  (with  $I = I_0 \times \underline{2}$ ).



#### All lattices of $\mathcal{HH}$ are bounded

# "DISCONSTRUCTING" AN INTERVAL TO CONSTRUCT A SECOND LEMMA

#### Definition

Let *L* be a lattice and  $I \subseteq L$  an interval of *L*. We say that *I* is *contractible* (in *L*) if *L* can be obtained from a lattice  $L_0$  by the doubling of an interval  $I_0 \subseteq L_0$  (with  $I = I_0 \times \underline{2}$ ).

#### Lemma

Let  $L \in \mathcal{HH}$ ,  $j \in J_L$  and t the label of the arcs  $(j^-, j)$  and  $(m_j, m_j^+)$ .

Assume all 2-facets contained in  $[j^-, m_j^+]$  and which have one edge labelled by t are isomorphic with diamonds.



#### All lattices of $\mathcal{HH}$ are bounded

# "DISCONSTRUCTING" AN INTERVAL TO CONSTRUCT A SECOND LEMMA

#### Definition

Let *L* be a lattice and  $I \subseteq L$  an interval of *L*. We say that *I* is *contractible* (in *L*) if *L* can be obtained from a lattice  $L_0$  by the doubling of an interval  $I_0 \subseteq L_0$  (with  $I = I_0 \times \underline{2}$ ).

#### Lemma

Let  $L \in \mathcal{HH}$ ,  $j \in J_L$  and t the label of the arcs  $(j^-, j)$  and  $(m_j, m_j^+)$ .

Assume all 2-facets contained in  $[j^-, m_j^+]$  and which have one edge labelled by t are isomorphic with diamonds.

Then the interval  $I_{j,m_j} = [j^-, m_j^+]$  is contractible.

▲□▶ ▲□▶ ▲□▶

All lattices of  $\mathcal{HH}$  are bounded



All lattices of  $\mathcal{HH}$  are bounded



#### All lattices of $\mathcal{HH}$ are bounded



All lattices of  $\mathcal{HH}$  are bounded

# ILLUSTRATION OF THE LEMMA



#### All lattices of $\mathcal{HH}$ are bounded



#### All lattices of $\mathcal{HH}$ are bounded



All lattices of  $\mathcal{HH}$  are bounded

AT LAST...

#### Theorem

The class  $\mathcal{HH}$  of lattices is closed for the contraction of a contractible interval w.r.t. a label whose 2-facet rank function is maximal.

Hence the result : lattices of  $\mathcal{HH}$  are bounded !



All lattices of  $\mathcal{HH}$  are bounded

AT LAST...

#### Theorem

The class  $\mathcal{HH}$  of lattices is closed for the contraction of a contractible interval w.r.t. a label whose 2-facet rank function is maximal.

Hence the result : lattices of  $\mathcal{HH}$  are bounded !



All lattices of  $\mathcal{HH}$  are bounded

Not all bounded lattices are in  $\mathcal{HH}$ 



All lattices of  $\mathcal{HH}$  are bounded

Not all bounded lattices are in  $\mathcal{HH}$ 



WHY ? ? ?



Finite Coxeter lattices are in  $\mathcal{HH}$ 

#### Second part of the theorem

Finite Coxeter lattices are in  $\mathcal{HH}$ 

## How do we prove this?



Finite Coxeter lattices are in  $\mathcal{HH}$ 

# A STRONG RESULT

## Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

# A STRONG RESULT

## Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.

## Proposition (DUQUENNE AND CHERFOUH, 1994)

Permutohedron is semidistributive.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

Reflections as elements and edge labels

### Definition

$$T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$$

is the set of the *reflections* of the Coxeter group W.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

Reflections as elements and edge labels

### Definition

$$T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$$

is the set of the *reflections* of the Coxeter group W.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

Reflections as elements and edge labels

### Definition

$$T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$$

is the set of the *reflections* of the Coxeter group W.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

## PROPERTIES OF THE REFLECTIONS

## Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

## PROPERTIES OF THE REFLECTIONS

## Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.





Finite Coxeter lattices are in  $\mathcal{HH}$ 

## PROPERTIES OF THE REFLECTIONS

## Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.



## Corollary

The r-labelling on the edges of any finite Coxeter lattice is a 2-facet labelling.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

PROPERTIES OF THE LENGTH FUNCTION

## Theorem (L.C.d.P.-B.)

The length function  $\ell$  on every Coxeter lattice  $L_W$  is a 2-facet rank function when defined on the r-labelling of the edges of  $L_W$ .



Finite Coxeter lattices are in  $\mathcal{HH}$ 

PROPERTIES OF THE LENGTH FUNCTION

## Theorem (L.C.d.P.-B.)

The length function  $\ell$  on every Coxeter lattice  $L_W$  is a 2-facet rank function when defined on the r-labelling of the edges of  $L_W$ .

So :

#### Theorem

Every Coxeter lattice is in the class  $\mathcal{H}\mathcal{H}$  and therefore is bounded.



Finite Coxeter lattices are in  $\mathcal{HH}$ 

## Two additional results

#### Theorem

Let  $L_W$  be a Coxeter lattice and  $W_H$  a parabolic subgroup of W. There exists a series of interval contractions that leads from  $L_W$  to the lattice  $L_{W_H}$  of its parabolic subgroup  $W_H$ .



Finite Coxeter lattices are in  $\mathcal{HH}$ 

## Two additional results

#### Theorem

Let  $L_W$  be a Coxeter lattice and  $W_H$  a parabolic subgroup of W. There exists a series of interval contractions that leads from  $L_W$  to the lattice  $L_{W_H}$  of its parabolic subgroup  $W_H$ .

### Proposition

There exists a particular interval doubling series from a given Coxeter lattice generated by n generators to the Coxeter lattice of the same family, generated by n + 1 generators.



# Outline

## (Lower) bounded lattices and the doubling operation

## 2 Finite Coxeter lattices

- Coxeter lattices
- The class  $\mathcal{HH}$  of lattices
- All lattices of  $\mathcal{HH}$  are bounded
- $\bullet$  Finite Coxeter lattices are in  ${\cal H}{\cal H}$

## 3 The lattice of finite closure systems



# DEFINITION

A *closure system* C on S: a subset of  $2^S$  which contains S and is closed under set intersection.



# The lattice $(\mathbb{M}_n, \subseteq)$ of closure systems on a finite set S



Structures cryptomorphic with :

- closure operators,
- finite lattices,
- full implicational systems (or full systems of dependencies).



Structures cryptomorphic with :

- closure operators,
- finite lattices,
- full implicational systems (or full systems of dependencies).

### Theorem

The lattice  $(\mathbb{M}_n, \subseteq)$  of closure systems is lower bounded.

## How do we prove this?



# Two dependence relations on the Join-Irreducibles of $\mathbb{M}_n$

- The dependence relation  $\delta$  (Monjardet [11], 1990),
- The strong dependence relation  $\delta_d$  (Day [7], 1979).

### Definition

• 
$$j\delta j'$$
 if  $j = j'$  or if  $\exists x \in L$  with  $j < j' \lor x, j \not\leq x$  and  $j' \not\leq x$ .  
•  $j\delta_d j'$  if  $j = j'$  or if  $\exists x \in L$  with  $j < j' \lor x$  and  $j \not\leq j'^- \lor x$ .



# Two dependence relations on the Join-Irreducibles of $\mathbb{M}_n$

- The dependence relation  $\delta$  (Monjardet [11], 1990),
- The strong dependence relation  $\delta_d$  (Day [7], 1979).

### Definition

In particular, we have  $\delta_d \subseteq \delta$ .

# Characterising $\delta$ and $\delta_d$ with the arrow relations

## Proposition
# Some results

#### Proposition

In any lattice L, the following are equivalent :

- $\bullet L is atomistic,$
- $\delta_d = \delta.$



# Some results

### Proposition

In any lattice L, the following are equivalent :

- $\bigcirc$  L is atomistic,
- $@ \forall j \in J, \ \forall \ m \in M, \ j \not\leq m \ implies \ j \downarrow m,$



# Some results

### Proposition

In any lattice L, the following are equivalent :

- $\bullet$  L is atomistic,
- *Q j* ∈ *J*, *∀ m* ∈ *M*, *j* ≤ *m* implies *j* ↓ *m*,
  *δ*<sub>d</sub> = *δ*.
- w

Moreover :

Proposition (Day [7], 1979)

A lattice L is lower bounded if and only if  $\delta_d$  has no circuit.

Sac

## The join-irreducibles of $\mathbb{M}_n$

For  $A \subset S$ , we set  $\mathcal{C}_A = \{A, S\}$ .



# The join-irreducibles of $\mathbb{M}_n$

For 
$$A \subset S$$
, we set  $\mathcal{C}_A = \{A, S\}$ .

• Each  $C_A$  is a closure system,



# The join-irreducibles of $\mathbb{M}_n$

For  $A \subset S$ , we set  $\mathcal{C}_A = \{A, S\}$ .

- Each  $C_A$  is a closure system,
- they are exactly the atoms of  $\mathbb{M}_n$ ,



# The join-irreducibles of $\mathbb{M}_n$

For  $A \subset S$ , we set  $\mathcal{C}_A = \{A, S\}$ .

- Each  $C_A$  is a closure system,
- they are exactly the atoms of  $\mathbb{M}_n$ ,
- and any other closure system (except from  $\{S\}$ ) is a join of some  $\mathcal{C}_A$ .

# The join-irreducibles of $\mathbb{M}_n$

For  $A \subset S$ , we set  $\mathcal{C}_A = \{A, S\}$ .

- Each  $C_A$  is a closure system,
- they are exactly the atoms of  $\mathbb{M}_n$ ,
- and any other closure system (except from  $\{S\}$ ) is a join of some  $\mathcal{C}_A$ .

Thus :

## Proposition

The lattice  $\mathbb{M}_n$  is atomistic



# The join-irreducibles of $\mathbb{M}_n$

For  $A \subset S$ , we set  $\mathcal{C}_A = \{A, S\}$ .

- Each  $C_A$  is a closure system,
- they are exactly the atoms of  $\mathbb{M}_n$ ,
- and any other closure system (except from  $\{S\}$ ) is a join of some  $\mathcal{C}_A$ .

Sac

Thus :

### Proposition

The lattice  $\mathbb{M}_n$  is atomistic and  $\delta_d = \delta$ .

## What about the meet-irreducibles of $\mathbb{M}_n$ ?

### Proposition

Let C be a closure system of  $\mathbb{M}_n$ . The following holds :  $C \in M_{\mathbb{M}_n} \iff C = C_{A,i} = \{X \subseteq S : A \not\subseteq X \text{ or } i \in X\}.$ 



## FINALLY...

### Proposition

Let  $C_A$  and  $C_B$  be two join-irreducible elements of  $\mathbb{M}_n$ .

## $\mathcal{C}_A \delta \mathcal{C}_B \iff A \subseteq B \subset S$



## FINALLY...

### Proposition

Let  $C_A$  and  $C_B$  be two join-irreducible elements of  $\mathbb{M}_n$ .

## $\mathcal{C}_A \delta \mathcal{C}_B \iff A \subseteq B \subset S$

So  $\delta$  is an order relation.



## FINALLY...

### Proposition

Let  $C_A$  and  $C_B$  be two join-irreducible elements of  $\mathbb{M}_n$ .

## $\mathcal{C}_A \delta \mathcal{C}_B \iff A \subseteq B \subset S$

So  $\delta$  is an order relation. And since  $\delta = \delta_d$ ...



# FINALLY...

### Proposition

Let  $C_A$  and  $C_B$  be two join-irreducible elements of  $\mathbb{M}_n$ .

## $\mathcal{C}_A \delta \mathcal{C}_B \iff A \subseteq B \subset S$

## So $\delta$ is an order relation. And since $\delta = \delta_d$ ...

#### Theorem

The lattice  $\mathbb{M}_n$  of closure systems is lower bounded.



# FINALLY...

### Proposition

Let  $C_A$  and  $C_B$  be two join-irreducible elements of  $\mathbb{M}_n$ .

## $\mathcal{C}_A \delta \mathcal{C}_B \iff A \subseteq B \subset S$

• • • • • • • • • • • •

Sac

So  $\delta$  is an order relation. And since  $\delta = \delta_d$ ...

#### Theorem

The lattice  $\mathbb{M}_n$  of closure systems is lower bounded.

It is not bounded since it is not semidistributive.

# My colleagues (and friends!)



FIG.: C. le Conte de Poly-Barbut, CAMS, EHESS, Paris

• • • • • • • • •



# My colleagues (and friends!)





(□) (□) (□) (□) (□)

FIG.: B. Leclerc and B. Monjardet, CAMS, EHESS, Paris

# THE FINAL WORD.



# NO QUESTIONS..?



- N. Caspard, The lattice of permutations is bounded, International Journal of Algebra and Computation 10(4), 481–489 (2000).
- N. Caspard, A characterization for all interval doubling schemes of the lattice of permutations, Discr. Maths. and Theoretical Comp. Sci. 3(4), 177–188 (1999).
- N. Caspard, C. Le Conte de Poly-Barbut et M. Morvan, Cayley lattices of finite Coxeter groups are bounded, Advances in Applied Mathematics, 33(1), 71-94 (2004).
  - N. Caspard and B. Monjardet, The lattice of Moore families and closure operators on a finite set : a survey, *Electronic Notes in Discrete Mathematics*, **2** (1999).
  - N. Caspard et B. Monjardet, The lattice of closure systems, closure operators and implicational systems on a finite set : a survey, *Discrete Applied Mathematics*, 127(2), 241–269 (2003).
    - A. Day, A simple solution to the word problem for lattices, *Canad. Math. Bull.* **13**, 253–254 (1970).



- A. Day, characterisations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, *Canadian J. Math.* **31**, 69–78 (1979).
  - A. Day, J.B. Nation and S. Tschantz, Doubling Convex Sets in Lattices and a Generalized Semidistributivity Condition, Order 6, 175–180 (1989).
- W. Geyer, The generalized doubling construction and formal concept analysis, Algebra Universalis **32**, 341–367 (1994).
  - R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc 174, 1-43 (1972).
  - B. Monjardet, Arrowian characterizations of latticial federation consensus functions, Mathematical Social Sciences **20**(1), 51-71 (1990).



## **RECALLING ARROW RELATIONS...**



# $\dots$ And the *A*-context of a lattice





# $\dots$ And the *A*-context of a lattice



|   | a | z | t | v | w |
|---|---|---|---|---|---|
| y | ↓ | × | × | × | × |
| z |   | × | ↓ | × | 1 |
| t |   | Ļ | × | ¢ | × |
| u |   | 1 | Ĵ | × | × |



# $\dots$ AND THE *A*-CONTEXT OF A LATTICE



|   | a | z   | t | v | w |
|---|---|-----|---|---|---|
| y | ↓ | ×   | × | × | × |
| z |   | ×   | Ļ | × | Ĵ |
| t |   | Ļ   | × | ¢ | × |
| u |   | 1 Î | ↓ | × | × |

Any lattice has  $(|J|! \times |M|!)$  tableaux to describe its A-context.



# **ON SEMIDISTRIBUTIVITY**

### Definition

A lattice is *meet-semidistributive* if, for all  $x, y, z \in L$ ,  $x \wedge y = x \wedge z$  implies  $x \wedge y = x \wedge (y \vee z)$ .

*Join-semidistributive* lattices are defined dually and a lattice is *semidistributive* if it is meet- and join-semidistributive.



## **ON SEMIDISTRIBUTIVITY**

### Definition

A lattice is *meet-semidistributive* if, for all  $x, y, z \in L$ ,  $x \wedge y = x \wedge z$  implies  $x \wedge y = x \wedge (y \vee z)$ .

*Join-semidistributive* lattices are defined dually and a lattice is *semidistributive* if it is meet- and join-semidistributive.

### Proposition (DAY, NATION, TSCHANTZ [8], 1989)

Bounded lattices are semidistributive.

## RESULTS

## Proposition (DUQUENNE AND CHERFOUH, L.C.D.P.-B., 1994)

Permutohedron is semidistributive.



# RESULTS

Proposition (DUQUENNE AND CHERFOUH, L.C.D.P.-B., 1994)

Permutohedron is semidistributive.

## Proposition (DAY [7], 1979)

A lattice L is semidistributive if and only if the relation  $\uparrow$  on  $J \times M$  induces a bijection between J and M.



# RESULTS

## Proposition (DUQUENNE AND CHERFOUH, L.C.D.P.-B., 1994)

Permutohedron is semidistributive.

## Proposition (Day [7], 1979)

A lattice L is semidistributive if and only if the relation  $\uparrow$  on  $J \times M$  induces a bijection between J and M.

#### Hence :

Given any total order on  $J_{Perm(n)}$ , there exists a unique total order on  $M_{Perm(n)}$  – say  $L_M^*$  – such that  $T = (A_L, L_J, L_M^*)$  has all  $\uparrow$  on the principal diagonal.

## A SIMPLE IDEA FROM A STRONG RESULT

### Definition

Let L be a semidistributive lattice. A tableau  $T = (A_L, L_J, L_M)$  of the A-context of L is a *B-tableau* if the following hold :

- the |J| arrows  $\uparrow$  of T are on the principal diagonal of T,
- All arrows ↑, are below this diagonal and all arrows ↓, are above.

Sac

### Proposition (Geyer [9], 1994)

A lattice is bounded if and only if its A-context admits a B-tableau.

# A B-TABLEAU OF PERM(4)

| $J \setminus M$ | 3421 | 4231 | 3241 | 2431 | 4312 | 4213 | 3214 | 2413 | 4132 | 3142 | 1432         |
|-----------------|------|------|------|------|------|------|------|------|------|------|--------------|
| 1243            | Ĵ    | ×    | Ļ    | ×    | ×    | ×    | Ļ    | ×    | ×    | Ļ    | ×            |
| 1324            | ×    | Ĵ    | ×    | Ļ    | ×    | Ļ    | ×    | Ļ    | ×    | ×    | ×            |
| 1342            | ×    |      | Ĵ    |      | ×    |      | Ļ    |      | ×    | ×    | ×            |
| 1423            | ↑    | ×    |      | Ĵ    | ×    | ×    |      | Ļ    | ×    |      | ×            |
| 2134            | ×    | ×    | ×    | ×    | Ĵ    | ×    | ×    | ×    | Ļ    | Ļ    | Ļ            |
| 2314            | ×    | ×    | ×    | ×    | Ť    | 1    | ×    | Ļ    |      |      |              |
| 2341            | ×    | ×    | ×    | ×    |      | 1    | Ĵ    |      |      |      |              |
| 2413            |      | ×    |      | ×    |      | ×    |      | Ĵ    |      |      |              |
| 3124            | ×    | Î    | ×    |      | ×    |      | ×    |      | 1    | ×    | $\downarrow$ |
| 3412            | ×    |      | 1    |      | ×    |      |      |      | 1    | Ĵ    |              |
| 4123            | 1    | ×    |      | ↑    | ×    | ×    |      |      | ×    |      | 1            |



# A B-TABLEAU OF PERM(4)

| $J \setminus M$ | 3421 | 4231 | 3241 | 2431 | 4312 | 4213 | 3214 | 2413 | 4132 | 3142 | 1432 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|
| 1243            | 1    | ×    | Ļ    | ×    | ×    | ×    | Ļ    | ×    | ×    | Ļ    | ×    |
| 1324            | ×    | Ĵ    | ×    | Ļ    | ×    | Ļ    | ×    | Ļ    | ×    | ×    | ×    |
| 1342            | ×    | Î    | 1    |      | ×    |      | Ļ    |      | ×    | ×    | ×    |
| 1423            | 1    | ×    |      | 1    | ×    | ×    |      | Ļ    | ×    |      | ×    |
| 2134            | ×    | ×    | ×    | ×    | Ĵ    | ×    | ×    | ×    | Ļ    | Ļ    | Ļ    |
| 2314            | ×    | ×    | ×    | ×    | 1    | 1    | ×    | Ļ    |      |      |      |
| 2341            | ×    | ×    | ×    | ×    | 1    | 1    | 1    |      |      |      |      |
| 2413            | 1    | ×    |      | ×    | 1    | ×    |      | 1    |      |      |      |
| 3124            | ×    | Ť    | ×    |      | ×    |      | ×    |      | 1    | ×    | Ļ    |
| 3412            | ×    | Î    | 1    |      | ×    |      |      |      | 1    | 1    |      |
| 4123            | 1    | ×    |      | 1    | ×    | ×    |      |      | ×    |      | 1    |

Here :  $L_J$  is equal to Lex(J).

In fact :

#### Theorem

The tableau  $T = (A_{Perm(n)}, Lex_J, L_M^*)$  of the A-context of the lattice Perm(n) is a B-tableau.



# RECALLS

### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .



# RECALLS

### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .

### Example

 $\alpha = 3241 \in \operatorname{Perm}(4).$ 



# RECALLS

### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .

### Example

 $\alpha = 3241 \in \text{Perm}(4).$  $A(3241) = \{24, 34\}$ 


# RECALLS

#### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .

#### Example

$$\label{eq:alpha} \begin{split} \alpha &= 3241 \in \operatorname{Perm}(4). \\ A(3241) &= \{24,34\} \text{ and } D(3241) = \{32,31,21,41\}. \end{split}$$



# RECALLS

#### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .

#### Example

$$\begin{aligned} &\alpha = 3241 \in \operatorname{Perm}(4). \\ &A(3241) = \{24, 34\} \text{ and } D(3241) = \{32, 31, 21, 41\}. \end{aligned}$$

## The weak order defined on $\operatorname{Perm}(n)$ is characterised by :

naa

$$\alpha \leq \beta \iff A(\beta) \subseteq A(\alpha)$$

# RECALLS

#### Definition

- $A(\alpha)$ : the set of *agreements* of  $\alpha$ ,
- $D(\alpha)$ : the set of *disagreements* of  $\alpha$ .

#### Example

$$\begin{aligned} &\alpha = 3241 \in \operatorname{Perm}(4). \\ &A(3241) = \{24, 34\} \text{ and } D(3241) = \{32, 31, 21, 41\}. \end{aligned}$$

### The weak order defined on $\operatorname{Perm}(n)$ is characterised by :

naa

$$\alpha \leq \beta \iff A(\beta) \subseteq A(\alpha) \Longleftrightarrow \ D(\alpha) \subseteq D(\beta)$$

# EXPRESSION OF THE ELEMENTS OF $J_{Perm(n)}$

#### Result

 $\alpha \in J_{Perm(n)}$  if and only if there exists a unique ordered pair vu of adjacent elements in  $\alpha$  such that u < v.



# EXPRESSION OF THE ELEMENTS OF $J_{Perm(n)}$

#### Result

 $\alpha \in J_{Perm(n)}$  if and only if there exists a unique ordered pair vu of adjacent elements in  $\alpha$  such that u < v.

#### Example

 $4123, 1324 \in J_{Perm(4)}$ 



# EXPRESSION OF THE ELEMENTS OF $J_{Perm(n)}$

#### Result

 $\alpha \in J_{Perm(n)}$  if and only if there exists a unique ordered pair vu of adjacent elements in  $\alpha$  such that u < v.

#### Example

 $4123, 1324 \in J_{Perm(4)}$  but  $1432, 4213 \notin J_{Perm(4)}$ .



## EXPRESSION OF THE ELEMENTS OF $J_{Perm(n)}$

#### Result

 $\alpha \in J_{Perm(n)}$  if and only if there exists a unique ordered pair vu of adjacent elements in  $\alpha$  such that u < v.

#### Example

 $4123, 1324 \in J_{Perm(4)}$  but  $1432, 4213 \notin J_{Perm(4)}$ .

#### So, in other words :

$$\alpha \in J_{Perm(n)} \iff \alpha = A | \overline{A} = Bv | u\overline{B}$$

500

with u < v and A = Bv and  $\overline{A} = u\overline{B}$  the two maximal linear suborders of  $\alpha$  compatible with  $0_{Perm(n)} = 1...i..n$ .

## EXPRESSION OF THE ELEMENTS OF $M_{Perm(n)}$

#### Result

 $\alpha \in M_{Perm(n)}$  if and only if there exists a unique ordered pair lp of adjacent elements in  $\alpha$  such that l < p.

#### Example

 $4213, 1432 \in M_{Perm(4)}$  but  $1342, 4231 \notin M_{Perm(4)}$ .



## EXPRESSION OF THE ELEMENTS OF $M_{Perm(n)}$

#### Result

 $\alpha \in M_{Perm(n)}$  if and only if there exists a unique ordered pair lp of adjacent elements in  $\alpha$  such that l < p.

#### Example

 $4213, 1432 \in M_{Perm(4)}$  but  $1342, 4231 \notin M_{Perm(4)}$ .

#### So, in other words :

$$\alpha \in M_{Perm(n)} \iff \alpha = C | \overline{C} = Dl | p \overline{D}$$

Sac

with l < p and C = Dl and  $\overline{C} = p\overline{D}$  the two maximal linear suborders of  $\alpha$  compatible with  $1_{Perm(n)} = n...i...1$ .

# Characterising the A-context of Perm(n)

#### Lemma

Let  $\gamma = Bv | u\overline{B} \in J_{Perm(n)}$  and  $\mu = Cl | p\overline{C} \in M_{Perm(n)}$ .



96/103

# Characterising the A-context of Perm(n)

#### Lemma

Let 
$$\gamma = Bv | u\overline{B} \in J_{Perm(n)}$$
 and  $\mu = Cl | p\overline{C} \in M_{Perm(n)}$ .  
•  $\gamma \leq \mu \iff D(\gamma) \subseteq D(\mu) \iff A(\mu) \subseteq A(\gamma)$ .  
•  $\gamma \uparrow \mu \iff pl \in D(\gamma)$  and  $D(\gamma) \subseteq D(\mu^+)$ .  
•  $\gamma \downarrow \mu \iff uv \in A(\mu)$  and  $A(\mu) \subseteq A(\gamma^-)$ .  
•  $\gamma \uparrow \mu \iff pl \in D(\gamma)$ ,  $uv \in A(\mu)$ ,  $D(\gamma) \subseteq D(\mu^+)$  and  $A(\mu) \subseteq A(\gamma^-)$ .



# Characterising the bijection between J and M induced by $\uparrow$

Proposition

1. Let  $\gamma = Bu|v\overline{B}$  be a join-irreducible and  $\mu$  a meet-irreducible of Perm(n).

$$\gamma \uparrow \mu \iff \mu = Cu | v\overline{C} \quad \text{with } \left\{ \begin{array}{l} C = \left( \{x \in B : u < x\} \cup \{x \in \overline{B} : v < x\}, > \right) \\ \overline{C} = \left( \{x \in B : x < u\} \cup \{x \in \overline{B} : x < v\}, > \right) \end{array} \right.$$

2. Let  $\mu = Cl|p\overline{C}$  be a meet-irreducible and  $\gamma$  a join-irreducible of Perm(n).

$$\gamma \uparrow \mu \iff \gamma = Bp|l\overline{B} \quad \text{with } \begin{cases} B = \left( \{x \in C : x < p\} \cup \{x \in \overline{C} : x < l\}, < \right) \\ \overline{B} = \left( \{x \in C : p < x\} \cup \{x \in \overline{C} : l < x\}, < \right) \end{cases}$$



97/103

## AN ADDITIONAL RESULT

#### Theorem

Let  $L_J$  be a linear order on  $J_{Perm(n)}$  and  $L_M^*$  the "associated" linear order on  $M_{Perm(n)}$ . The following are equivalent :



## AN ADDITIONAL RESULT

#### Theorem

Let  $L_J$  be a linear order on  $J_{Perm(n)}$  and  $L_M^*$  the "associated" linear order on  $M_{Perm(n)}$ . The following are equivalent :

- $T = (A_{Perm(n)}, L_J, L_M^*)$  is a B-tableau of Perm(n),
- ②  $L_J$  is a linear extension of  $(J, \leq_{Perm(n)})$  and  $L_M^*$  a linear extension of  $(M, \geq_{Perm(n)})$ .



# Not all tableaux of Perm(n) are *B*-tableaux



# Not all tableaux of Perm(n) are *B*-tableaux





# Not all tableaux of Perm(n) are *B*-tableaux



FIG.: A linear extension  $L_J$  of  $(J, \leq_{Perm(4)})$  for which  $L_M^*$  on M is not a linear extension of  $(M, \geq_{Perm(4)})$ .

Sac

100/103

# Not all tableaux of Perm(n) are *B*-tableaux



## DEFINITION

A *closure system* C on S: a subset of  $2^S$  which contains S and is closed under set intersection.



#### Proposition

The set of all the lattices that can be obtained from  $L \in \mathcal{HH}$  by a series of interval contractions is a distributive lattice when ordered by the following natural order relation : L < L' if L can be obtained from L' by a series of interval contractions.

