Finite Coxeter lattices and lattices of FINITE CLOSURE SYSTEMS: SOME (LOWER) BOUNDED LATTICES

Nathalie Caspard

LACL, University Paris 12 Val-de-Marne, France and CAMS, EHESS, Paris, France

ICFCA'07, Clermont-Ferrand

Sketch of The TALK

(1) (Lower) bounded lattices and the doubling operation
(2) Finite Coxeter lattices

- Coxeter lattices
- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$
(3) The lattice of finite closure systems

Outline

(1) (Lower) bounded lattices and the doubling operation
(2) Finite Coxeter lattices

- Coxeter lattices
- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$
(3) The lattice of finite closure systems

(LOWER) BOUNDED LATTICES

Definition (McKenzie [10], 1972)

A homomorphism $\alpha: L \rightarrow L^{\prime}$ is called lower bounded if the inverse image of each element of L^{\prime} is either empty or has a minimum.

A lattice is lower bounded if it is the lower bounded homomorphic image of a free lattice.

An upper bounded lattice is defined dually and a lattice is bounded if it is lower and upper bounded.

[acl

The doubling construction, Day [6], 1970

The doubling construction, Day [6], 1970

The doubling construction, Day [6], 1970

[acl

The doubling construction, Day [6], 1970

[acl

The doubling construction, Day [6], 1970

ICICI

Generalisation to Lower pseudo-intervals

Generalisation to lower pseudo-intervals

Generalisation to lower pseudo-intervals

Generalisation to convex sets

lacl

Characterisation of Bounded lattices

Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is bounded,
- it can be constructed starting from $\underline{2}$ by a finite sequence of interval doublings.

|cacl

Characterisation of lower bounded lattices

Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- it can be constructed starting from $\underline{2}$ by a finite sequence of lower pseudo-intervals.

Characterisation of upper bounded lattices

Theorem (DAY [7], 1979)

Let L be a lattice. The following are equivalent :

- L is upper bounded,
- it can be constructed starting from $\underline{2}$ by a finite sequence of upper pseudo-intervals.

|acl

An example of bounded lattice

An example of bounded lattice

An example of bounded lattice

Perm(3) IS BOUNDED

PERMUTOHEDRON ON 4 ELEMENTS :

PERMUTOHEDRON ON 4 ELEMENTS : BOUNDED TOO

[acl

PERMUTOHEDRON ON 5 ELEMENTS :

PERMUTOHEDRON ON 5 ELEMENTS : BOUNDED AGAIN

lacl

IN FACT...

Permutohedron is bounded

IN FACT...

Permutohedron is bounded

AND IN FACT...

All finite Coxeter lattices are bounded

Outline

(1) (Lower) bounded lattices and the doubling operation
(2) Finite Coxeter lattices

- Coxeter lattices
- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$
(3) The lattice of finite closure systems

What is a Coxeter group?

Definition

A group W is a Coxeter group if W has a set of generators $S \subset W$, subject only to relations of the form

$$
\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e
$$

where $m(s, s)=1$ for any s in S (all generators have order 2), and $m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \geq 2$ for $s \neq s^{\prime}$ in S.

|c|c|

List of all finite irreducible Coxeter groups

(1) The four infinite families :

- A_{n} (symmetric groups),
- B_{n},
- D_{n},
- and I_{n} (dihedral groups).

List of all finite irreducible Coxeter groups

(1) The four infinite families :

- A_{n} (symmetric groups),
- B_{n},
- D_{n},
- and I_{n} (dihedral groups).
(2) and the six isolated groups : $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}$ and H_{4}.

Coxeter graph of finite irreducible Coxeter GROUPS

The lattice structure of Coxeter groups

Cayley graph of a group

Coxeter lattices

The lattice structure of Coxeter groups

Cayley graph of a group ordered by the (right) weak order

If $\ell(w)<\ell(w s)$.

[ad

The lattice structure of Coxeter groups

Cayley graph of a group ordered by the (right) weak order

If $\ell(w)<\ell(w s)$.

Theorem (Björner, 1984)

The weak order on any finite Coxeter group is a (autodual) lattice.

Finite Coxeter lattices are bounded

Sketch of the proof :

Finite Coxeter lattices are bounded

Sketch of the proof:

(1) Defining a new class of lattices: $\mathcal{H} \mathcal{H}$,

Finite Coxeter lattices are bounded

Sketch of the proof :

(1) Defining a new class of lattices: $\mathcal{H} \mathcal{H}$,
(2) Showing that lattices of $\mathcal{H} \mathcal{H}$ are bounded,

[acl

Finite Coxeter lattices are bounded

Sketch of the proof :

(1) Defining a new class of lattices: $\mathcal{H} \mathcal{H}$,
(2) Showing that lattices of $\mathcal{H} \mathcal{H}$ are bounded,
(3) Showing that finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$.

[acl

[^0]
Finite Coxeter lattices are bounded

Sketch of the proof:

(1) Defining a new class of lattices: $\mathcal{H} \mathcal{H}$,

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

- an antiHat $(y, x, z)^{\vee}$:

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

- an antiHat $(y, x, z)^{\vee}$:

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

- an antiHat $(y, x, z)^{\vee}$:

- a 2-facet $F^{y, x, z}$:

DEFINITION OF A 2-FACET LABELLING

Fig.: Example of A 2-FAcet Labelling
[acl

DEFINITION OF A 2-FACET LABELLING

Fig.: Example of A 2-FAcet Labelling

DEFINITION OF A 2-FACET LABELLING

Fig.: Example of A 2-FAcet Labelling
[acl

DEFINITION OF A 2-FACET LABELLING

Fig.: Another example of a 2-FAcet Labelling

DEFINITION OF A 2-FACET LABELLING

Fig.: Another example of a 2-FACET LABELLing
[acl

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

[acl

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

This is a function r from $T=\left\{t_{1}, \ldots, t_{i}, \ldots t_{p}\right\}$ to \mathbb{R}

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

This is a function r from $T=\left\{t_{1}, \ldots, t_{i}, \ldots t_{p}\right\}$ to \mathbb{R} such that:

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

This is a function r from $T=\left\{t_{1}, \ldots, t_{i}, \ldots t_{p}\right\}$ to \mathbb{R} such that:
So : $r\left(t_{1}\right)<r\left(t_{2}\right)<r\left(t_{3}\right)$
and $r\left(t_{6}\right)<r\left(t_{5}\right)<r\left(t_{4}\right)$
and $r\left(t_{1}\right), r\left(t_{6}\right)<r\left(t_{7}\right)$

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

[acl

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r\left(t_{1}\right)<r\left(t_{5}\right), r\left(t_{3}\right)$

[acl

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r\left(t_{1}\right)<r\left(t_{5}\right), r\left(t_{3}\right)$ and $r\left(t_{2}\right)<r\left(t_{6}\right), r\left(t_{3}\right)$

ON SEMIDISTRIBUTIVITY

Definition

A lattice is semidistributive if, for all $x, y, z \in L$:

- $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$
- $x \vee y=x \vee z$ implies $x \vee y=x \vee(y \wedge z)$

|cacl

The class $\mathcal{H} \mathcal{H}$ of lattices

ON SEMIDISTRIBUTIVITY

Definition

A lattice is semidistributive if, for all $x, y, z \in L$:

- $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$
- $x \vee y=x \vee z$ implies $x \vee y=x \vee(y \wedge z)$

Proposition (Day, Nation, Tschantz [8], 1989)

Bounded lattices are semidistributive.

|cacl

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :

[ad

The class $\mathcal{H} \mathcal{H}$ of lattices

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :
(1) L is semidistributive,
(2) to every hat $(y, x, z)^{\wedge}$ of L is associated an anti-hat $\left(y^{\prime}, y \wedge z, z^{\prime}\right)_{\vee}$ of L such that $[y \wedge z, x]$ is a 2 -facet,
(3) to every anti-hat $(y, x, z)_{\vee}$ of L is associated a hat $\left(y^{\prime}, y \vee z, z^{\prime}\right)^{\wedge}$ of L such that $[x, y \vee z]$ is a 2-facet,
(1) there exists a 2 -facet labelling T on the (covering) edges of L and a 2-facet rank function r on T.

lacl

First part of the theorem
 All lattices of $\mathcal{H} \mathcal{H}$ are bounded

How do we prove this?

RECALLING ARROW RELATIONS...

$$
j \uparrow m: j \vee m=m^{+}
$$

[acl

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Characterising semidistributivity with arrow RELATIONS

Proposition (DAY [7], 1979)

A lattice L is semidistributive if and only if the relation \downarrow on $J \times M$ induces a bijection between J and M.

Characterising semidistributivity with arrow RELATIONS

Proposition (DAY [7], 1979)

A lattice L is semidistributive if and only if the relation \downarrow on $J \times M$ induces a bijection between J and M.

Notation

In any semidistributive lattice L, we can denote by $\left(j, m_{j}\right)$ - or by $\left(j_{m}, m\right)$ - the elements of $J_{L} \times M_{L}$ which are bijective for the relation \uparrow.

[acl

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Relations on the edges of the lattices of $\mathcal{H} \mathcal{H}$

[acl

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Relations on the edges of the lattices of $\mathcal{H} \mathcal{H}$

We write : bd $\prec_{t_{2}} g i$

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Relations on the edges of the lattices of $\mathcal{H} \mathcal{H}$

We write : bd $\prec_{t_{2}} g i$ and $a b \prec_{t_{4}} c e$

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Relations on the edges of the lattices of $\mathcal{H} \mathcal{H}$

We write : bd $\prec_{t_{2}} g i$
and $a b \prec_{t_{4}} c e$
and $a c \prec_{t_{1}} b e \prec_{t_{1}} h i$

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Relations on the edges of the lattices of $\mathcal{H} \mathcal{H}$

We write : bd $\prec_{t_{2}} g i$
and $a b \prec_{t_{4}} c e$ and $a c \prec_{t_{1}} b e \prec_{t_{1}} h i$ and so : $a c \leq_{t_{1}} h i$.

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Using THE \leq_{t} RELATIONS

Theorem

Let m be meet-irreducible in $L \in \mathcal{H H}$ and let $\left(m, m^{+}\right)$be labelled by t.

The set $E_{m}=\left\{(x, y):(x, y) \leq_{t}\left(m, m^{+}\right)\right\}$is not empty and has a least element (u, v).

Moreover v is a join-irreducible, $v^{-}=u$ and $v \downarrow m$.

|cicl

Lemma

Let $L \in \mathcal{H} \mathcal{H}$ and T a 2-facet labelling of L. There exists a label $t \in T$ such that for any hat $(y, x, z)^{\wedge}$ whose arc (y, x) or (z, x) is labelled by $t, F^{(y, x, z)}$ is a diamond.

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Lemma

Let $L \in \mathcal{H \mathcal { H }}$ and T a 2-facet labelling of L. There exists a label $t \in T$ such that for any hat $(y, x, z)^{\wedge}$ whose arc (y, x) or (z, x) is labelled by $t, F^{(y, x, z)}$ is a diamond.

More precisely :

If

and if $r(t)$ is maximum in $r(T)$

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

Lemma

Let $L \in \mathcal{H \mathcal { H }}$ and T a 2-facet labelling of L. There exists a label $t \in T$ such that for any hat $(y, x, z)^{\wedge}$ whose arc (y, x) or (z, x) is labelled by $t, F^{(y, x, z)}$ is a diamond.

More precisely :

If

and if $r(t)$ is maximum in $r(T)$ then :

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

" Disconstructing"

 SECOND LEMMA
AN INTERVAL TO CONSTRUCT A

Definition

Let L be a lattice and $I \subseteq L$ an interval of L. We say that I is contractible (in L) if L can be obtained from a lattice L_{0} by the doubling of an interval $I_{0} \subseteq L_{0}$ (with $I=I_{0} \times \underline{2}$).

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

"Disconstructing" SECOND LEMMA

AN INTERVAL TO CONSTRUCT A

Definition

Let L be a lattice and $I \subseteq L$ an interval of L. We say that I is contractible (in L) if L can be obtained from a lattice L_{0} by the doubling of an interval $I_{0} \subseteq L_{0}$ (with $I=I_{0} \times \underline{2}$).

Lemma

Let $L \in \mathcal{H} \mathcal{H}, j \in J_{L}$ and t the label of the arcs $\left(j^{-}, j\right)$ and $\left(m_{j}, m_{j}^{+}\right)$.
Assume all 2-facets contained in $\left[j^{-}, m_{j}^{+}\right]$and which have one edge labelled by t are isomorphic with diamonds.

"Disconstructing"
 AN INTERVAL TO CONSTRUCT A SECOND LEMMA

Definition

Let L be a lattice and $I \subseteq L$ an interval of L. We say that I is contractible (in L) if L can be obtained from a lattice L_{0} by the doubling of an interval $I_{0} \subseteq L_{0}$ (with $I=I_{0} \times \underline{2}$).

Lemma

Let $L \in \mathcal{H} \mathcal{H}, j \in J_{L}$ and t the label of the arcs $\left(j^{-}, j\right)$ and $\left(m_{j}, m_{j}^{+}\right)$.
Assume all 2-facets contained in $\left[j^{-}, m_{j}^{+}\right]$and which have one edge labelled by t are isomorphic with diamonds.

Then the interval $I_{j, m_{j}}=\left[j^{-}, m_{j}^{+}\right]$is contractible.

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

ILLUSTRATION OF THE LEMMA

[acl

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

ILLUSTRATION OF THE LEMMA

[ad

ILLUSTRATION OF THE LEMMA

[acl

ILLUSTRATION OF THE LEMMA

lacl

ILLUSTRATION OF THE LEMMA

ILLUSTRATION OF THE LEMMA

[ad

AT LAST...

Theorem

The class $\mathcal{H H}$ of lattices is closed for the contraction of a contractible interval w.r.t. a label whose 2-facet rank function is maximal.

Hence the result : lattices of $\mathcal{H} \mathcal{H}$ are bounded!

lacl

AT LAST...

Theorem

The class $\mathcal{H H}$ of lattices is closed for the contraction of a contractible interval w.r.t. a label whose 2-facet rank function is maximal.

Hence the result : lattices of $\mathcal{H} \mathcal{H}$ are bounded!

lacl

Not all bounded lattices are in $\mathcal{H} \mathcal{H}$

Not all bounded lattices are in $\mathcal{H} \mathcal{H}$

A bounded lattice that does not belong to $\mathcal{H H}$

WHY???

Second part of the theorem
 Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

How do we prove this?

A strong Result

Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.

A strong Result

Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.

Proposition (Duquenne and Cherfouh, 1994)

Permutohedron is semidistributive.

lacl

Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

Reflections as elements and edge labels

Definition

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

is the set of the reflections of the Coxeter group W.

Reflections as elements and edge labels

Definition

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

is the set of the reflections of the Coxeter group W.

Two labellings of the edges : the g-labelling

Reflections As ELEMENTS AND EDGE LABELS

Definition

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

is the set of the reflections of the Coxeter group W.

Two labellings of the edges : the g-labelling and the r-labelling

Properties of the reflections

Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.

[ad

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" edges of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Corollary

The r-labelling on the edges of any finite Coxeter lattice is a 2-facet labelling.

Properties of THE LENGTH FUNCTION

Theorem (L.C.d.P.-B.)

The length function ℓ on every Coxeter lattice L_{W} is a 2-facet rank function when defined on the r-labelling of the edges of L_{W}.

PROPERTIES OF THE LENGTH FUNCTION

Theorem (L.C.d.P.-B.)

The length function ℓ on every Coxeter lattice L_{W} is a 2-facet rank function when defined on the r-labelling of the edges of L_{W}.

So :

Theorem

Every Coxeter lattice is in the class $\mathcal{H} \mathcal{H}$ and therefore is bounded.

[acl

Two ADDITIONAL RESULTS

Theorem

Let L_{W} be a Coxeter lattice and W_{H} a parabolic subgroup of W. There exists a series of interval contractions that leads from L_{W} to the lattice $L_{W_{H}}$ of its parabolic subgroup W_{H}.

[acl

Two AdDITIONAL RESULTS

Theorem

Let L_{W} be a Coxeter lattice and W_{H} a parabolic subgroup of W. There exists a series of interval contractions that leads from L_{W} to the lattice $L_{W_{H}}$ of its parabolic subgroup W_{H}.

Proposition

There exists a particular interval doubling series from a given Coxeter lattice generated by n generators to the Coxeter lattice of the same family, generated by $n+1$ generators.

Outline

(1) (Lower) bounded lattices and the doubling operation
(2) Finite Coxeter lattices

- Coxeter lattices
- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$
(3) The lattice of finite closure systems

Definition

A closure system \mathcal{C} on S : a subset of 2^{S} which contains S and is closed under set intersection.

Example ($S=\{1,2,3,4\}$)

lad

The LATTICE $\left(\mathbb{M}_{n}, \subseteq\right)$ OF CLOSURE SYSTEMS ON A FINITE SET S

Example ($n=2$)

lacl

Structures cryptomorphic with :

- closure operators,
- finite lattices,
- full implicational systems (or full systems of dependencies).

Structures cryptomorphic with :

- closure operators,
- finite lattices,
- full implicational systems (or full systems of dependencies).

Theorem

The lattice $\left(\mathbb{M}_{n}, \subseteq\right)$ of closure systems is lower bounded.

How do we prove this?

Two Dependence Relations on The JOIN-IRREDUCIBLES OF \mathbb{M}_{n}

- The dependence relation δ (Monjardet [11], 1990),
- The strong dependence relation δ_{d} (Day [7], 1979).

Definition

(1) $j \delta j^{\prime}$ if $j=j^{\prime}$ or if $\exists x \in L$ with $j<j^{\prime} \vee x, j \not \leq x$ and $j^{\prime} \not \leq x$.
(2) $j \delta_{d j^{\prime}}$ if $j=j^{\prime}$ or if $\exists x \in L$ with $j<j^{\prime} \vee x$ and $j \not \leq j^{\prime}-\vee x$.

|c|c|

Two dependence relations on the Join-irreducibles of \mathbf{M}_{n}

- The dependence relation δ (Monjardet [11], 1990),
- The strong dependence relation δ_{d} (Day [7], 1979).

Definition

(1) $j \delta j^{\prime}$ if $j=j^{\prime}$ or if $\exists x \in L$ with $j<j^{\prime} \vee x, j \not \leq x$ and $j^{\prime} \not \leq x$.
(2) $j \delta_{d j^{\prime}}$ if $j=j^{\prime}$ or if $\exists x \in L$ with $j<j^{\prime} \vee x$ and $j \not \leq j^{\prime}-\vee x$.

In particular, we have $\delta_{d} \subseteq \delta$.

|c|c|

Characterising δ and δ_{d} With the arrow RELATIONS

Proposition

(1) $j \delta j^{\prime} \Longleftrightarrow \exists m \in M: j \uparrow m$ and $j^{\prime} \notin m$.

- $j \delta_{d} j^{\prime} \Longleftrightarrow \exists m \in M: j \uparrow m$ and $j^{\prime} \downarrow m$.

lacl

Some resulis

Proposition

In any lattice L, the following are equivalent :
(1) L is atomistic,
(2) $\forall j \in J, \forall m \in M, j \not \leq m$ implies $j \downarrow m$,
(3) $\delta_{d}=\delta$.

|acl

Some resulis

Proposition

In any lattice L, the following are equivalent :
(1) L is atomistic,
(2) $\forall j \in J, \forall m \in M, j \not \leq m$ implies $j \downarrow m$,
(3) $\delta_{d}=\delta$.

Some resulis

Proposition

In any lattice L, the following are equivalent :
(1) L is atomistic,
(2) $\forall j \in J, \forall m \in M, j \not \leq m$ implies $j \downarrow m$,
(3) $\delta_{d}=\delta$.

Moreover :

Proposition (Day [7], 1979)

A lattice L is lower bounded if and only if δ_{d} has no circuit.

lacl

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

- Each \mathcal{C}_{A} is a closure system,

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

- Each \mathcal{C}_{A} is a closure system,
- they are exactly the atoms of \mathbb{M}_{n},

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

- Each \mathcal{C}_{A} is a closure system,
- they are exactly the atoms of \mathbb{M}_{n},
- and any other closure system (except from $\{S\}$) is a join of some \mathcal{C}_{A}.

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

- Each \mathcal{C}_{A} is a closure system,
- they are exactly the atoms of \mathbb{M}_{n},
- and any other closure system (except from $\{S\}$) is a join of some \mathcal{C}_{A}.
Thus :
Proposition
The lattice \mathbb{M}_{n} is atomistic

lacl

The Join-IRREDUCIBLES OF \mathbb{M}_{n}

For $A \subset S$, we set $\mathcal{C}_{A}=\{A, S\}$.

- Each \mathcal{C}_{A} is a closure system,
- they are exactly the atoms of \mathbb{M}_{n},
- and any other closure system (except from $\{S\}$) is a join of some \mathcal{C}_{A}.
Thus :
Proposition
The lattice \mathbb{M}_{n} is atomistic and $\delta_{d}=\delta$.

lacl

What about the meet-IRREDUCIBLES OF \mathbb{M}_{n} ?

Proposition

Let \mathcal{C} be a closure system of \mathbb{M}_{n}. The following holds :
$\mathcal{C} \in M_{\mathbb{M}_{n}} \Longleftrightarrow \mathcal{C}=\mathcal{C}_{A, i}=\{X \subseteq S: A \nsubseteq X$ or $i \in X\}$.

[acl

Finally...

Proposition

Let \mathcal{C}_{A} and \mathcal{C}_{B} be two join-irreducible elements of \mathbb{M}_{n}.

$$
\mathcal{C}_{A} \delta \mathcal{C}_{B} \Longleftrightarrow A \subseteq B \subset S
$$

Finally...

Proposition

Let \mathcal{C}_{A} and \mathcal{C}_{B} be two join-irreducible elements of \mathbb{M}_{n}.

$$
\mathcal{C}_{A} \delta \mathcal{C}_{B} \Longleftrightarrow A \subseteq B \subset S
$$

So δ is an order relation.

Finally...

Proposition

Let \mathcal{C}_{A} and \mathcal{C}_{B} be two join-irreducible elements of \mathbb{M}_{n}.

$$
\mathcal{C}_{A} \delta \mathcal{C}_{B} \Longleftrightarrow A \subseteq B \subset S
$$

So δ is an order relation. And since $\delta=\delta_{d} \ldots$

Finally...

Proposition

Let \mathcal{C}_{A} and \mathcal{C}_{B} be two join-irreducible elements of \mathbb{M}_{n}.

$$
\mathcal{C}_{A} \delta \mathcal{C}_{B} \Longleftrightarrow A \subseteq B \subset S
$$

So δ is an order relation.
And since $\delta=\delta_{d} \cdots$

Theorem

The lattice \mathbb{M}_{n} of closure systems is lower bounded.

|cacl

Finally...

Proposition

Let \mathcal{C}_{A} and \mathcal{C}_{B} be two join-irreducible elements of \mathbb{M}_{n}.

$$
\mathcal{C}_{A} \delta \mathcal{C}_{B} \Longleftrightarrow A \subseteq B \subset S
$$

So δ is an order relation.
And since $\delta=\delta_{d} \ldots$

Theorem

The lattice \mathbb{M}_{n} of closure systems is lower bounded.
It is not bounded since it is not semidistributive.

lacl

MY COLLEAGUES (AND FRIENDS!)

Fig.: C. le Conte de Poly-Barbut, CAMS, EHESS, Pari $[\mathbf{C I C}$

MY COLLEAGUES (AND FRIENDS!)

Fig.: B. Leclerc and B. Monjardet, CAMS, EHESS, Par $[\mathbf{C I C}$

The final word.

No QUESTIONS..?

N. Caspard, The lattice of permutations is bounded, International Journal of Algebra and Computation 10(4), 481-489 (2000).
N. Caspard, A characterization for all interval doubling schemes of the lattice of permutations, Discr. Maths. and Theoretical Comp. Sci. 3(4), 177-188 (1999).
N. Caspard, C. Le Conte de Poly-Barbut et M. Morvan, Cayley lattices of finite Coxeter groups are bounded, Advances in Applied Mathematics, 33(1), 71-94 (2004).
N. Caspard and B. Monjardet, The lattice of Moore families and closure operators on a finite set : a survey, Electronic Notes in Discrete Mathematics, 2 (1999).
N. Caspard et B. Monjardet, The lattice of closure systems, closure operators and implicational systems on a finite set : a survey, Discrete Applied Mathematics, 127(2), 241-269 (2003).
A. Day, A simple solution to the word problem for lattices, Canad. Math. Bull. 13, 253-254 (1970).

A. Day, characterisations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canadian J. Math. 31, 69-78 (1979).
A. Day, J.B. Nation and S. Tschantz, Doubling Convex Sets in Lattices and a Generalized Semidistributivity Condition, Order 6, 175-180 (1989).
W. Geyer, The generalized doubling construction and formal concept analysis, Algebra Universalis 32, 341-367 (1994).
R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc 174, 1-43 (1972).
B. Monjardet, Arrowian characterizations of latticial federation consensus functions, Mathematical Social Sciences 20(1), 51-71 (1990).

ReCALLing ARROW RELATIONS...

$$
j \downarrow m: j \wedge m=j^{-}
$$

$$
j \uparrow m: j \vee m=m^{+}
$$

lacl

... And THE A-CONTEXT OF A LATtice

[acl

... And THE A-CONTEXT OF A LATTICE

	a	z	t	v	w
y	\downarrow	\times	\times	\times	\times
z		\times	\downarrow	\times	\downarrow
t		\downarrow	\times	\downarrow	\times
u		\downarrow	\downarrow	\times	\times

．．．And THE A－CONTEXT OF A LATTICE

	a	z	t	v	w
y	\downarrow	\times	\times	\times	\times
z		\times	\downarrow	\times	\downarrow
t		\downarrow	\times	\downarrow	\times
u		\downarrow	\downarrow	\times	\times

Any lattice has $(|J|!\times|M|!)$ tableaux to describe its A－context．

lacl

«ロ・4包 」

ON SEMIDISTRIBUTIVITY

Definition

A lattice is meet-semidistributive if, for all $x, y, z \in L$, $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$.

Join-semidistributive lattices are defined dually and a lattice is semidistributive if it is meet- and join-semidistributive.

ON SEMIDISTRIBUTIVITY

Definition

A lattice is meet-semidistributive if, for all $x, y, z \in L$, $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$.

Join-semidistributive lattices are defined dually and a lattice is semidistributive if it is meet- and join-semidistributive.

Proposition (Day, Nation, Tschantz [8], 1989)

Bounded lattices are semidistributive.

|cacl

Results

Proposition (Duquenne and Cherfouh, L.C.d.P.-B., 1994)

Permutohedron is semidistributive.

Results

Proposition (Duquenne and Cherfouh, L.C.D.P.-B., 1994)

Permutohedron is semidistributive.

Proposition (DAY [7], 1979)

A lattice L is semidistributive if and only if the relation \downarrow on $J \times M$ induces a bijection between J and M.

[acl

Results

Proposition (Duquenne and Cherfouh, L.C.D.P.-B., 1994)

Permutohedron is semidistributive.

Proposition (DAY [7], 1979)

A lattice L is semidistributive if and only if the relation \downarrow on $J \times M$ induces a bijection between J and M.

Hence :

Given any total order on $J_{\operatorname{Perm}(n)}$, there exists a unique total order on $M_{\operatorname{Perm}(n)}$ - say $L_{M}^{*}-\operatorname{such}$ that $T=\left(A_{L}, L_{J}, L_{M}^{*}\right)$ has all \uparrow on the principal diagonal.

[ad

A SIMPLE IDEA FROM A STRONG RESULT

Definition

Let L be a semidistributive lattice. A tableau $T=\left(A_{L}, L_{J}, L_{M}\right)$ of the A-context of L is a B-tableau if the following hold :
(1) the $|J|$ arrows \uparrow of T are on the principal diagonal of T,
(2) All arrows \uparrow. are below this diagonal and all arrows \downarrow. are above.

Proposition (Geyer [9], 1994)

A lattice is bounded if and only if its A-context admits a B-tableau.

[acl

A B-tableau of Perm (4)

$J \backslash M$	3421	4231	3241	2431	4312	4213	3214	2413	4132	3142	1432
1243	\downarrow	\times	\downarrow	\times	\times	\times	\downarrow	\times	\times	\downarrow	\times
1324	\times	\uparrow	\times	\downarrow	\times	\downarrow	\times	\downarrow	\times	\times	\times
1342	\times	\uparrow	\uparrow		\times		\downarrow		\times	\times	\times
1423	\uparrow	\times		\uparrow	\times	\times		\downarrow	\times		
2134	\times	\times	\times	\times	\uparrow	\times	\times	\times	\downarrow	\downarrow	
2314	\times	\times	\times	\times	\uparrow	\uparrow	\times	\downarrow			
2341	\times	\times	\times	\times	\uparrow	\uparrow	\uparrow				
2413	\uparrow	\times		\times	\uparrow	\times		\downarrow			
3124	\times	\uparrow	\times		\times		\times		\downarrow	\times	
3412	\times	\uparrow	\uparrow		\times				\uparrow	\downarrow	
4123	\uparrow	\times		\uparrow	\times	\times			\times	\downarrow	

A B-tableau of Perm (4)

$J \backslash M$	3421	4231	3241	2431	4312	4213	3214	2413	4132	3142	1432
1243	\uparrow	\times	\downarrow	\times	\times	\times	\downarrow	\times	\times	\downarrow	\times
1324	\times	\uparrow	\times	\downarrow	\times	\downarrow	\times	\downarrow	\times	\times	\times
1342	\times	\uparrow	\uparrow		\times		\downarrow		\times	\times	\times
1423	\uparrow	\times		\uparrow	\times	\times		\downarrow	\times		
2134	\times	\times	\times	\times	\uparrow	\times	\times	\times	\downarrow	\downarrow	
2314	\times	\times	\times	\times	\uparrow	\uparrow	\times	\downarrow			
2341	\times	\times	\times	\times	\uparrow	\uparrow	\uparrow				
2413	\uparrow	\times		\times	\uparrow	\times		\downarrow			
3124	\times	\uparrow	\times		\times		\times		\uparrow	\times	
3412	\times	\uparrow	\uparrow		\times				\uparrow	\times	
4123	\uparrow	\times		\uparrow	\times	\times			\times	\downarrow	

Here : L_{J} is equal to $\operatorname{Lex}(J)$.
In fact :

Theorem

The tableau $T=\left(A_{\operatorname{Perm}(n)}, \operatorname{Lex}_{J}, L_{M}^{*}\right)$ of the A-context of the lattice Perm(n) is a B-tableau.

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

Example
 $\alpha=3241 \in \operatorname{Perm}(4)$.

[acl

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

Example
 $\alpha=3241 \in \operatorname{Perm}(4)$.
 $A(3241)=\{24,34\}$

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

```
Example
\(\alpha=3241 \in \operatorname{Perm}(4)\).
\(A(3241)=\{24,34\}\) and \(D(3241)=\{32,31,21,41\}\).
```


[acl

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

Example

$\alpha=3241 \in \operatorname{Perm}(4)$.
$A(3241)=\{24,34\}$ and $D(3241)=\{32,31,21,41\}$.

The weak order defined on $\operatorname{Perm}(n)$ is characterised by :
$\alpha \leq \beta \Longleftrightarrow A(\beta) \subseteq A(\alpha)$

[acl

Recalls

Definition

- $A(\alpha)$: the set of agreements of α,
- $D(\alpha)$: the set of disagreements of α.

Example

$\alpha=3241 \in \operatorname{Perm}(4)$.
$A(3241)=\{24,34\}$ and $D(3241)=\{32,31,21,41\}$.

The weak order defined on $\operatorname{Perm}(n)$ is characterised by :
$\alpha \leq \beta \Longleftrightarrow A(\beta) \subseteq A(\alpha) \Longleftrightarrow D(\alpha) \subseteq D(\beta)$

|cacl

Expression of the elements of $J_{\text {Perm(n) }}$

Result

$\alpha \in J_{\operatorname{Perm(n)}}$ if and only if there exists a unique ordered pair vu of adjacent elements in α such that $u<v$.

Expression of the elements of $J_{\text {Perm }(n)}$

Result

$\alpha \in J_{P e r m(n)}$ if and only if there exists a unique ordered pair vu of adjacent elements in α such that $u<v$.

Example

$4123,1324 \in J_{\text {Perm(4) }}$

[ad

Expression of the elements of $J_{\text {Perm }(n)}$

Result

$\alpha \in J_{\operatorname{Perm(n)}}$ if and only if there exists a unique ordered pair vu of adjacent elements in α such that $u<v$.

Example

$4123,1324 \in J_{\text {Perm(4) }}$ but $1432,4213 \notin J_{\text {Perm(4) }}$.

[ad

Expression of The elements of $J_{\text {Perm(n) }}$

Result

$\alpha \in J_{\text {Perm(n) }}$ if and only if there exists a unique ordered pair vu of adjacent elements in α such that $u<v$.

Example

$4123,1324 \in J_{\text {Perm(4) }}$ but $1432,4213 \notin J_{\text {Perm(4) }}$.

So, in other words :

$$
\alpha \in J_{\operatorname{Perm}(n)} \Longleftrightarrow \alpha=A|\bar{A}=B v| u \bar{B}
$$

with $u<v$ and $A=B v$ and $\bar{A}=u \bar{B}$ the two maximal linear suborders of α compatible with $0_{\operatorname{Perm(n)}}=1 \ldots i \ldots n$.

Expression of The Elements of $M_{\operatorname{Perm}(n)}$

Result

$\alpha \in M_{\operatorname{Perm}(n)}$ if and only if there exists a unique ordered pair lp of adjacent elements in α such that $l<p$.

Example

$4213,1432 \in M_{\text {Perm(4) }}$ but $1342,4231 \notin M_{\text {Perm(4) }}$.

|cacl

Expression of The Elements of $M_{\text {Perm(n) }}$

Result

$\alpha \in M_{\operatorname{Perm(n)}}$ if and only if there exists a unique ordered pair $l p$ of adjacent elements in α such that $l<p$.

Example

$4213,1432 \in M_{\text {Perm(4) }}$ but $1342,4231 \notin M_{\text {Perm(4) }}$.

So, in other words :

$$
\alpha \in M_{\operatorname{Perm}(n)} \Longleftrightarrow \alpha=C|\bar{C}=D l| p \bar{D}
$$

with $l<p$ and $C=D l$ and $\bar{C}=p \bar{D}$ the two maximal linear suborders of α compatible with $1_{\operatorname{Perm(n)}}=n \ldots i \ldots 1$.

Characterising the A-context of $\operatorname{Perm}(n)$

Lemma

Let $\gamma=B v \mid u \bar{B} \in J_{\operatorname{Perm}(n)}$ and $\mu=C l \mid p \bar{C} \in M_{\operatorname{Perm(n)}}$.

[acl

Characterising the A-context of $\operatorname{Perm}(n)$

Lemma

Let $\gamma=B v \mid u \bar{B} \in J_{\operatorname{Perm}(n)}$ and $\mu=C l \mid p \bar{C} \in M_{\operatorname{Perm}(n)}$.
(1) $\gamma \leq \mu \Longleftrightarrow D(\gamma) \subseteq D(\mu) \Longleftrightarrow A(\mu) \subseteq A(\gamma)$.
(2) $\gamma \uparrow \mu \Longleftrightarrow p l \in D(\gamma)$ and $D(\gamma) \subseteq D\left(\mu^{+}\right)$.
(3) $\gamma \downarrow \mu \Longleftrightarrow u v \in A(\mu)$ and $A(\mu) \subseteq A\left(\gamma^{-}\right)$.
(1) $\gamma \downarrow \mu \Longleftrightarrow p l \in D(\gamma)$, $u v \in A(\mu), D(\gamma) \subseteq D\left(\mu^{+}\right)$and $A(\mu) \subseteq A\left(\gamma^{-}\right)$.

Characterising The bijection between J and M INDUCED BY \uparrow

Proposition

1. Let $\gamma=B u \mid v \bar{B}$ be a join-irreducible and μ a meet-irreducible of $\operatorname{Perm}(n)$.

$$
\gamma \mathfrak{\downarrow} \Longleftrightarrow \mu=C u \mid v \bar{C} \quad \text { with }\left\{\begin{array}{l}
C=(\{x \in B: u<x\} \cup\{x \in \bar{B}: v<x\},>) \\
\bar{C}=(\{x \in B: x<u\} \cup\{x \in \bar{B}: x<v\},>)
\end{array}\right.
$$

2. Let $\mu=C l \mid p \bar{C}$ be a meet-irreducible and γ a join-irreducible of Perm(n).

$$
\gamma \mathfrak{I} \Longleftrightarrow \gamma=B p \mid l \bar{B} \quad \text { with }\left\{\begin{array}{l}
B=(\{x \in C: x<p\} \cup\{x \in \bar{C}: x<l\},<) \\
\bar{B}=(\{x \in C: p<x\} \cup\{x \in \bar{C}: l<x\},<)
\end{array}\right.
$$

An ADDITIONAL RESULT

Theorem

Let L_{J} be a linear order on $J_{\operatorname{Perm}(n)}$ and L_{M}^{*} the "associated" linear order on $M_{\operatorname{Perm(n)}}$. The following are equivalent :

lacl

An ADDITIONAL RESULT

Theorem

Let L_{J} be a linear order on $J_{P e r m(n)}$ and L_{M}^{*} the "associated" linear order on $M_{\operatorname{Perm(n)}}$. The following are equivalent :
(1) $T=\left(A_{\operatorname{Perm}(n)}, L_{J}, L_{M}^{*}\right)$ is a B-tableau of $\operatorname{Perm}(n)$,
(2) L_{J} is a linear extension of $\left(J, \leq_{\operatorname{Perm}(n)}\right)$ and L_{M}^{*} a linear extension of $\left(M, \geq_{\operatorname{Perm}(n)}\right)$.

[acl

Not all tableaux of $\operatorname{Perm}(n)$ are B-Tableaux

Not all tableaux of Perm (n) are B-Tableaux

Proof :

Iacl

Not all tableaux of $\operatorname{Perm}(n)$ are B-Tableaux

Proof :

Fig.: A linear extension L_{J} of $\left(J, \leq_{\operatorname{Perm}(4)}\right)$ for which L_{M}^{*} on M is not a linear extension of $\left(M, \geq_{\text {Perm(4) }}\right)$.

|acl

Not all tableaux of $\operatorname{Perm}(n)$ are B-Tableaux

Proof :

Iad

Definition

A closure system \mathcal{C} on S : a subset of 2^{S} which contains S and is closed under set intersection.

Example ($S=\{1,2,3,4\}$)

lad

Proposition

The set of all the lattices that can be obtained from $L \in \mathcal{H} \mathcal{H}$ by a series of interval contractions is a distributive lattice when ordered by the following natural order relation : $L<L^{\prime}$ if L can be obtained from L^{\prime} by a series of interval contractions.

[^0]:

