
Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

A Metric Model of Lambda Calculus with
Guarded Recursion

Jan Schwinghammer

Programming Systems Lab
Saarland University

joint work with Lars Birkedal and Kristian Støvring

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Metric semantics of lambda calculus

Metric semantics of simply typed lambda calculus
(Complete, bounded, non-empty) ultrametric spaces and
non-expansive functions, CBUlt, forms a CCC.

Metric semantics of call-by-name PCF
Counting clock ticks to determine the similarity of programs,
ensuring that recursive definitions are contractive [Escardo, 1998].

Metric semantics of Functional Reactive Programming
Streams of events, and “causal” stream transformers as
non-expansive functions [Krishnaswami & Benton, 2010].

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Metric semantics of lambda calculus

Two questions:

1 Are there good syntactic criteria for determining when a term
denotes a contractive function in CBUlt?

2 Which recursive types can be interpreted?

Nakano’s modal type system [Nakano, LICS’00] gives an answer.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Talk outline

1 Reasoning about streams and stream transformers

2 Nakano’s calculus

3 Metric semantics

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Recursively defined streams

Integer streams

data Stream = Cons of Int× Stream

nats1 = iterate succ 0

nats2 = Cons (0, (map succ nats2))

Well-definedness
Are these “good” recursive definitions? For instance,

xs = Cons (1,xs) is,

ys = tail (Cons (1,ys)) is not,

zs = f (Cons (1,zs)) may or may not be, depending on f.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Guarded recursion

Recursive occurrences should be guarded by constructors.

Guardedness
f : Stream→ Stream is guarded if

∀ xs, ys, n. bxscn = byscn ⇒ bf(xs)cn+1 = bf(ys)cn+1

i.e., f is “productive.”

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Unique fixed points

A consequence of guardedness is the following proof principle:[
Ralf Hinze, ICFP’08 pearl:
Streams and unique fixed points

]
To prove xs = ys : Stream

find f : Stream→ Stream, guarded,

such that f (xs) = xs ∧ f (ys) = ys

For instance, let f (s) = Cons 0 (map succ s).

f is guarded

f (nats2) = nats2 by definition

f (nats1) = nats1 by equational reasoning

The principle yields nats1 = nats2.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Nakano’s typed lambda calculus[
Hiroshi Nakano, LICS’00:
A modality for recursion

]
A simply typed cbn lambda calculus with a unary type constructor:

τ ::= Int | τ × τ ′ | τ → τ ′ | ty︸︷︷︸
type names

| • τ︸︷︷︸
later τ

Each type name associated with a declaration:

data ty = In1 of τ1 | . . . | Ink of τk

For instance,

data S = Cons of Int× S

data U = Fold of U→ τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Typing guardedness

Intuition:

• τ : values of type τ that can only be used in guarded
positions

•S→ S consists of guarded stream functions

Constructor applications are guarded:

Γ ` t : •τj
Γ ` Inj(t) : ty

Pattern matching adds guardedness constraint:

Γ ` t : ty Γ, x1:•τ1 ` t1 : τ . . . Γ, xk :•τk ` tk : τ

Γ ` case t of In1(x1)⇒ t1 | . . . | Ink(xk)⇒ tk : τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Typing guardedness

Fixed points are restricted to guarded recursion:

Γ ` t : • τ → τ

Γ ` fix t : τ

Function application is generalized:

Γ ` t1 : •n(τ → σ) Γ ` t2 : •nτ
Γ ` t1 t2 : •nσ

Subtyping relation with axioms like:

τ ≤ • τ • τ → •σ ≤ • (τ → σ) . . .

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Recursively defined streams, revisited

We have ` λxs.Cons (1, xs) : • S→ S

thus ` fix λxs.Cons (1, xs) : S

We have ` tail : S→ •S

thus, only ` λys. tail (Cons (1, ys)) : • S→ •S

However, f : •S→ S ` λzs. f (Cons (1, zs)) : S

thus f : •S→ S ` fix λzs. f (Cons (1, zs)) : S

Using data U = Fold of U→ τ one can type the Y combinator:

We have ` Y : (• τ → τ)→ τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Recursively defined streams, revisited

We have ` λxs.Cons (1, xs) : • S→ S

thus ` fix λxs.Cons (1, xs) : S

We have ` tail : S→ •S

thus, only ` λys. tail (Cons (1, ys)) : • S→ •S

However, f : •S→ S ` λzs. f (Cons (1, zs)) : S

thus f : •S→ S ` fix λzs. f (Cons (1, zs)) : S

Using data U = Fold of U→ τ one can type the Y combinator:

We have ` Y : (• τ → τ)→ τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Recursively defined streams, revisited

We have ` λxs.Cons (1, xs) : • S→ S

thus ` fix λxs.Cons (1, xs) : S

We have ` tail : S→ •S

thus, only ` λys. tail (Cons (1, ys)) : • S→ •S

However, f : •S→ S ` λzs. f (Cons (1, zs)) : S

thus f : •S→ S ` fix λzs. f (Cons (1, zs)) : S

Using data U = Fold of U→ τ one can type the Y combinator:

We have ` Y : (• τ → τ)→ τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Recursively defined streams, revisited

We have ` λxs.Cons (1, xs) : • S→ S

thus ` fix λxs.Cons (1, xs) : S

We have ` tail : S→ •S

thus, only ` λys. tail (Cons (1, ys)) : • S→ •S

However, f : •S→ S ` λzs. f (Cons (1, zs)) : S

thus f : •S→ S ` fix λzs. f (Cons (1, zs)) : S

Using data U = Fold of U→ τ one can type the Y combinator:

We have ` Y : (• τ → τ)→ τ

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Unique fixed point principle, revisited

To prove s ' t : τ

find f : • τ → τ

such that f (s)
∗↔ s ∧ f (t)

∗↔ t

s ' t : τ denotes contextual equivalence:

∀C [·] : Int. C [s]
∗→ n ⇔ C [t]

∗→ n

guardedness is expressed abstractly using • τ → τ .

τ need not be S,

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Ultrametric spaces

Complete ultrametric spaces CBUlt
Complete metric spaces (X , d) satisfying ultrametric inequality:

d(x , y) ≤ max{d(x , z), d(z , y)}

Products
Cartesian product X1 × X2 equipped with max distance:

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}

Exponentials
Non-expansive functions X1 →ne X2 equipped with sup distance:

d(f , g) = sup {d2(f x , g x) | x ∈ X1}

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Semantics of • τ

Key idea of the semantics:
Later modality as scaling functor 1

2
· (−) : CBUlt −→ CBUlt

1
2 · (X , d)

def
= (X , d ′) where d ′(x , y) = 1/2 · d(x , y)

Guardedness as contractiveness
• τ → σ denotes contractive functions from τ to σ:

Assume d(x , y) = c in [[τ]].

Then d(x , y) = c/2 in [[• τ]].

Thus, d(f x , f y) ≤ c/2 in [[σ]].

In particular, interpretation [[fix t]] qua Banach fixed point theorem.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Semantics of recursive types

By separating positive and negative occurrences of ty in τ define

Fτ : CBUltop × CBUlt −→ CBUlt

For each data ty = In1 of τ1 | . . . | Ink of τk define

F (X−,X +)
def
= 1

2 ·Fτ1(X−,X +) + . . .+ 1
2 ·Fτk (X−,X +)

For instance,

for data S = Cons of Int× S:
F (X−,X +) = 1

2 · (Z× X +)

for data U = Fold of U→ τ :
F (X−,X +) = 1

2 · (X−→ne Fτ (X−,X +))

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Semantics of recursive types, cnt’d

Then F is locally contractive:

d(F (f1, g1),F (f2, g2)) ≤ 1/2 ·max{d(f1, g1), d(f2, g2)}

Theorem (America & Rutten, 1989)

Let F : CBUltop × CBUlt −→ CBUlt be locally contractive.
Then there exists a unique (X , d) such that F (X ,X) ∼= X .

For instance, for data S = Cons of Int× S have X ∼= 1
2 · (Z× X):

d(s, s ′) ≤ 2−n iff bscn−1 = bs ′cn−1

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Adequacy

Theorem

The model is sound and adequate for the operational semantics:

1 s → t ⇒ [[s]] = [[t]]

2 [[s]] = [[t]] ⇒ s ' t

Proof sketch.

1 By an easy induction.

2 By a logical relation between semantics and syntax.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Kripke logical relation

Relations Rk
τ ⊆ [[τ]]× Tm(τ), given by:]

n Rk
Int t ⇔ t

∗→ n

f Rk
τ1→τ2

t ⇔ ∀j ≤ k, a1, t1. a1 R j
τ1

t1 ⇒ fa1 R j
τ2

t t1

a Rk
• τ t ⇔ k > 0 ⇒ a Rk−1

τ t

a Rk
ty t ⇔ a = (ι ◦ inj)(a′) ∧ t

∗→ Inj(t ′) ∧ a′ Rk
• τj t ′

Theorem (fundamental property)

∀t ∈ Tm(τ) ∀k . [[t]] Rk
τ t.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Proving the unique fixed point principle

Suppose f : • τ → τ .
Then [[f]] is a contractive function on [[τ]]

Suppose f (s)
∗↔ s and f (t)

∗↔ t.
By soundness, [[s]] and [[t]] are both fixed points of [[f]].
By the contractiveness of [[f]] and Banach theorem, [[s]] = [[t]].

By adequacy, s ' t.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Summary

Nakano’s system is a calculus of total functions.

Ultrametric spaces form a model of Nakano’s lambda calculus:

• τ is interpreted as a scaling functor on CBUlt,

• τ → σ denotes the contractive functions on τ , and

syntactic notion of guardedness becomes contractiveness.

Banach’s fixed point theorem explains

the typing of the recursion operators, as well as

the unique fixed point principle.

An open question is full abstraction of the model.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Outlook

F. Pottier proposed a variant of System F with recursive kinds:

used as target language for translation of ML-like languages,

Nakano’s calculus on the kind level, and

unique fixed point principle used to prove type equivalences.

It should be possible to give a model by indexing over CBUlt.

Recursively defined properties on recursive types:

step-indexed logics [Dreyer et al., LICS’09]

semantics of expressive type systems tomorrow

Explore semantics for • on type and logical level.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

Setting the stage Reasoning about streams Nakano’s typed lambda calculus Metric semantics

Thank you.

Jan Schwinghammer 21.08.2010

A Metric Model of Lambda Calculus with Guarded Recursion

	Setting the stage
	Reasoning about streams
	Nakano's typed lambda calculus
	Metric semantics

