Classifying Unification Problems in Distributive Lattices and Kleene Algebras

Leonardo Manuel Cabrer

University of Bern

(joint work with Simone Bova)
Preliminaries
Algebraic Unifiers

Given an algebraic language \mathcal{L}, a unification problem in the language \mathcal{L} is a finite set of equations $S = \{(s_1, t_1), \ldots, (s_n, t_n)\} \subseteq \text{Term}_2^L$.
Given an algebraic language \mathcal{L}, a **unification problem** in the language \mathcal{L} is a finite set of equations $S = \{(s_1, t_1), \ldots, (s_n, t_n)\} \subseteq \text{Term}^2_\mathcal{L}$.

Given a unification problem S and an equational theory E, an **algebraic E-unifier** for S is pair (h, P) where P is a projective algebra in the equational class determined by E and $h: Fp(S) \rightarrow P$ is a homomorphism.

If \((h_1, P_1), (h_2, P_2)\) are algebraic \(E\)-unifiers for \(S\), we say that \((h_1, P_1)\) is more general than \((h_2, P_2)\) \(((h_2, P_2) \preccurlyeq (h_1, P_1))\) if there exists a homomorphism \(f : P_1 \to P_2\) such that:

\[
\begin{align*}
Fp(S) & \xrightarrow{h_1} P_1 \\
 & \downarrow h_2 \\
 & \downarrow f \\
 & P_2
\end{align*}
\]
Preliminaries

Algebraic Unifiers

If \((h_1, P_1), (h_2, P_2)\) are algebraic \(E\)-unifiers for \(S\), we say that \((h_1, P_1)\) is **more general** than \((h_2, P_2)\) \(((h_2, P_2) \preccurlyeq (h_1, P_1))\) if there exists a homomorphism \(f: P_1 \to P_2\) such that

\[
\begin{array}{c}
Fp(S) \\ \downarrow \ h_1 \\
\downarrow \ h_2 \\
\downarrow \ f \\
P_1 \\ \downarrow \ f \\
P_2
\end{array}
\]

We denote by \(\mathcal{U}_E(S)\) the pre-ordered set of algebraic \(E\)-unifiers for \(S\).
Preliminaries

Unification types

A unification problem S in an equational theory E is said to have type:

$\mathcal{U}_E(S)$

1
A unification problem S in an equational theory E is said to have type:

$\mathcal{U}_E(S)$

1

ω
Preliminaries

Unification types

A unification problem S in an equational theory E is said to have type:

$$\mathcal{U}_E(S)$$
Preliminaries

Unification types

A unification problem S in an equational theory E is said to have type:

$$\mathcal{U}_E(S)$$

1

ω

∞

0

∞

Nullarity

Classification

Kleene Algebras

Natural duality

(I) Duals of Projectives

(II): Nullarity

(III): Necessary Conditions for Nullarity

Classification
A equational theory E is said to have type:

- 1 if every unification problem S has type 1,
A equational theory E is said to have type:

- 1 if every unification problem S has type 1,
- ω if every unification problem S has type ω and at least one S has not unification type 1,
- ∞ if every unification problem S has type 1, ω or ∞ and at least one S has unification type ∞,
A equational theory E is said to have type:

- 1 if every unification problem S has type 1,
- ω if every unification problem S has type ω and at least one S has not unification type 1,
- ∞ if every unification problem S has type 1, ω or ∞ and at least one S has unification type ∞.
A equational theory E is said to have type:

- 1 if every unification problem S has type 1,
- ω if every unification problem S has type ω and at least one S has not unification type 1,
- ∞ if every unification problem S has type 1, ω or ∞ and at least one S has unification type ∞,
- 0 if at least one S has unification type 0.
Unifiers through duality

Duals of Unifiers

Preliminaries
Algebraic Unifiers
Unification types

Unifiers through duality
Duals of Unifiers
Working strategy

Bounded Distributive Lattices
(I) Description of finitely generated projectives
(II) Analysis of the unification type
(III): Causes of nullarity
Classification

Kleene Algebras
Natural duality
(I) Duals of Projectives
(II): Nullarity
(III): Necessary Conditions for Nullarity
Classification
Unifiers through duality

Duals of Unifiers

\[Fp(S) \xrightarrow{u} P \quad \leftrightarrow \quad I \xrightarrow{f} D(Fp(S)) \]
Unifiers through duality

Working strategy

(I) Description of finitely generated projective algebras. *Injective objects.*
Unifiers through duality

Working strategy

(I) Description of finitely generated projective algebras. *Injective objects.*

(II) Analysis of the unification type. *Examples*
Unifiers through duality

Working strategy

(I) Description of finitely generated projective algebras. *Injective objects.*

(II) Analysis of the unification type. *Examples*

(III) Classification of a given unification problem. *Analysis of the examples*
Bounded Distributive Lattices

Preliminaries

Algebraic Unifiers
Unification types

Unifiers through duality

Duals of Unifiers
Working strategy

Bounded Distributive Lattices

(I) Description of finitely generated projectives
(II) Analysis of the unification type
(III): Causes of nullarity
Classification

Kleene Algebras

Natural duality
(I) Duals of Projectives
(II): Nullarity
(III): Necessary Conditions for Nullarity
Classification
A finite bounded distributive lattice L is projective if and only if $\langle J(L), \leq \rangle$ is a lattice.
Bounded Distributive Lattices

(II) Analysis of the unification type

The unification problem \(S = \{ x \land y \approx z \lor t \} \) has nullary unification type.
Bounded Distributive Lattices

(II) Analysis of the unification type

The unification problem $S = \{ x \land y \equiv z \lor t \}$ has nullary unification type.
(II) Analysis of the unification type

The unification problem $S = \{ x \land y \approx z \lor t \}$ has nullary unification type.
Lemma

Let S be a unification problem in the language of bounded lattices. If there exist $x, a, b, c, d, y \in J(F_p(S))$ satisfying:

(i) $x \leq a, b \leq c, d \leq y$, and

(ii) it does not exist $e \in J(F_p(S))$ such that $a, b \leq e \leq c, d$,

then the unification type of S in the equational theory of distributive lattices is nullary.
Bounded Distributive Lattices

Classification

Theorem

Let S be a unification problem in the language of bounded lattices. Then the unification type of S is:

Unitary if and only if $J(F_p(S))$ is a lattice,
Theorem

Let S be a unification problem in the language of bounded lattices. Then the unification type of S is:

Unitary if and only if $J(F_p(S))$ is a lattice,

Finitary if and only if for every $x, y \in J(F_p(S))$ the interval $[x, y]$ is a lattice,
Theorem

Let S be a unification problem in the language of bounded lattices. Then the unification type of S is:

- **Unitary** if and only if $\mathcal{J}(F_p(S))$ is a lattice,
- **Finitary** if and only if for every $x, y \in \mathcal{J}(F_p(S))$ the interval $[x, y]$ is a lattice,
- **Nullary** otherwise.
Kleene Algebras

Definition

A Kleene algebra $A = (A, \wedge, \vee, \neg, 0, 1)$ is a bounded distributive lattice equipped with a unary operation, $\neg x$, satisfying:

1. $x = \neg \neg x$,
2. $x \wedge y = \neg (\neg x \vee \neg y)$,
3. $x \wedge \neg x \leq y \vee \neg y$.

0

1
Kleene Algebras

Definition

A Kleene algebra $A = (A, \wedge, \vee, \neg, 0, 1)$ is a bounded distributive lattice equipped with a unary operation, $\neg x$, satisfying:

- $x = \neg\neg x$,
- $x \wedge y = \neg(\neg x \vee \neg y)$,
- $x \wedge \neg x \leq y \vee \neg y$.

Kleene Algebras

Definition

A Kleene algebra $A = (A, \wedge, \vee, \neg, 0, 1)$ is a bounded distributive lattice equipped with a unary operation, $\neg x$, satisfying:

- $x = \neg\neg x$,
- $x \wedge y = \neg(\neg x \vee \neg y)$,
- $x \wedge \neg x \leq y \vee \neg y$.

Kleene Algebras

Definition

A Kleene algebra $\mathbf{A} = (A, \wedge, \vee, \neg, 0, 1)$ is a bounded distributive lattice equipped with a unary operation, $\neg x$, satisfying:

1. $x = \neg\neg x$,
2. $x \wedge y = \neg(\neg x \vee \neg y)$,
3. $x \wedge \neg x \leq y \vee \neg y$.
Kleene Algebras

Natural duality

Piggyback-Dualitäten,

Preliminaries

Algebraic Unifiers

Unification types

Unifiers through duality

Duals of Unifiers

Working strategy

Bounded Distributive Lattices

(I) Description of finitely generated projectives

(II) Analysis of the unification type

(III): Causes of nullarity

Classification

Kleene Algebras

Natural duality

(I) Duals of Projectives

(II): Nullarity

(III): Necessary Conditions for Nullarity

Classification
Kleene Algebras
Natural duality

Piggyback-Dualitäten,

Definition
A structure $X = \langle X, \leq, \sim, Y, \tau \rangle$ is called a **Kleene space** if it satisfies the following conditions:

(i) $\langle X, \leq, \tau \rangle$ is a Priestley space,
Kleene Algebras
Natural duality

Piggyback-Dualitäten,

Definition
A structure \(X = \langle X, \leq, \sim, Y, \tau \rangle \) is called a **Kleene space** if it satisfies the following conditions:

(i) \(\langle X, \leq, \tau \rangle \) is a Priestley space,
(ii) \(\sim \) is a closed binary relation, i.e., \(\sim \) is a closed subset of \(X^2 \),
Kleene Algebras

Natural duality

Piggyback-Dualitäten,

Definition

A structure \(X = \langle X, \leq, \sim, Y, \tau \rangle \) is called a **Kleene space** if it satisfies the following conditions:

(i) \(\langle X, \leq, \tau \rangle \) is a Priestley space,

(ii) \(\sim \) is a closed binary relation, i.e., \(\sim \) is a closed subset of \(X^2 \),

(iii) \(Y \) is a closed subset of \(X \),
Kleene Algebras

Natural duality

Piggyback-Dualitäten,

Definition

A structure \(X = \langle X, \leq, \sim, Y, \tau \rangle \) is called a **Kleene space** if it satisfies the following conditions:

(i) \(\langle X, \leq, \tau \rangle \) is a Priestley space,

(ii) \(\sim \) is a closed binary relation, i.e., \(\sim \) is a closed subset of \(X^2 \),

(iii) \(Y \) is a closed subset of \(X \), and

(iv) for every \(x, y, z \in X \):

(a) \(x \sim x \),

(b) if \(x \sim y \) and \(x \in Y \), then \(x \leq y \),

(c) if \(x \sim y \) and \(y \leq z \), then \(z \sim x \).
Kleene Algebras

Natural duality

\[K = \{ \leq, \sim, Y \} \]
Kleene Algebras

(I) Duals of Projectives

Theorem

Let A be a finite Kleene Algebra. Then the following statements are equivalent:

(i) A is projective,

(ii) $X_K(A) = \{X_A, \leq_A, \sim_A, Y_A, \tau_A\}$ satisfies the following conditions:

(a) $\langle X_A, \leq_A \rangle$ is a meet semi-lattice,
(b) $Y_A = \text{Max}(\langle X_A, \leq_A \rangle)$,
(c) X_A is 2-conditionally complete,
(d) $x \sim_A y$ if and only if there exists $z \in X_A$ such that $x, y \leq z$.

The unification problem $S = \{ x \land \neg x \approx y \lor z \}$ has nullary unification type.
Kleene Algebras

(II): Nullarity

The unification problem $S = \{ x \land \neg x \approx y \lor z \}$ has nullary unification type.
Kleene Algebras

(II): Nullarity

The unification problem \(S = \{ x \land \neg x \approx y \lor z \} \) has nullary unification type.
Lemma

Let S be a unification problem in the language of Kleene algebras. If there exist $x, a, b, c, d, y, z \in XK(F_p(S))$ satisfying:

(i) $x \leq a, b \leq c, d, c \leq y$ and $d \leq z$,

(ii) $y, z \in Y, and$

(iii) it does not exist $e \in XK(F_p(S))$ such that $a, b \leq e \leq c, d$,

then the unification type of S is nullary.
Kleene Algebras

(III): Necessary Conditions for Nullarity

Lemma

Let S be a unification problem in the language of kleene algebras with. If there exist $w, a, b, c, d, e, f, x, y, z \in XK(F_p(S))$ satisfying:

(i) $w \leq a, b, c; a \leq d, e; b \leq d, f; c \leq e, f; d \leq x; e \leq y; $ and $f \leq z$,

(ii) $x, y, z \in Y$, and

(iii) it does not exists $g \in XK(F_p(S))$ such that $a, b, c \leq g$,

then the unification type of S is nullary.
Lemma

Let S be a unification problem in the language of Kleene algebras with. If there exist

$w, a, b, c, d, e, f, x, y, z \in XK(F_p(S))$ satisfying:

(i) $w \leq a, b, c; a \leq d, e; b \leq d, f; c \leq e, f; d \leq x; e \leq y; and f \leq z,$

(ii) $x, y, z \in Y$, and

(iii) it does not exist $g \in XK(F_p(S))$ such that $a, b, c \leq g$,

then the unification type of S is nullary.
Theorem

Let S be a unification problem. Then the unification type of S over the equational theory of Kleene algebras is:

- **unitary** if and only if the set

 $$K = \{ x \in XK(Fp(S)) \mid \exists y \in Y, x \leq y \}$$

 is a 2-conditionally complete meet semilattice,

- **finitary** if and only if for $x \in K$ the set

 $$\{ y \in K \mid x \leq y \}$$

 is a 2-conditionally complete meet semilattice,

- **nullary** otherwise.
Kleene Algebras

Classification

Theorem

Let S be a unification problem. Then the unification type of S over the equational theory of Kleene algebras is:

- **unitary if and only if** the set

 $$K = \{ x \in XK(Fp(S)) \mid \exists y \in Y, x \leq y \}$$

 is a 2-conditionally complete meet semilattice,

- **finitary if and only if** for $x \in K$ the set

 $$\{ y \in K \mid x \leq y \}$$

 is a 2-conditionally complete meet semilattice,
Kleene Algebras

Classification

Theorem

Let S be a unification problem. Then the unification type of S over the equational theory of Kleene algebras is:

- **unitary** if and only if the set

 \[K = \{ x \in XK(Fp(S)) \mid \exists y \in Y, x \leq y \} \]

 is a 2-conditionally complete meet semilattice,

- **finitary** if and only if for $x \in K$ the set

 \[\{ y \in K \mid x \leq y \} \]

 is a 2-conditionally complete meet semilattice,

- **nullary** otherwise.
Classifying Unification Problems in Distributive Lattices and Kleene Algebras

Thank you for your attention!

lmcabrer@yahoo.com.ar