Finite Embeddability Property of Distributive Lattice-ordered Residuated Groupoids with Modal Operators

Zhe Lin

Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
Faculty of Mathematics and Computer Science Adam Mickiewicz University, Poznań, Poland

29-07-2011, TACL2011
Preliminaries

Associative Lambek Calculus L: (Lambek 1958) ($\Gamma \neq \varepsilon$)

\[(Id)\quad A \Rightarrow A\]

\[(\backslash L)\quad \frac{\Gamma, B, \Delta \Rightarrow C \quad \Phi \Rightarrow A}{\Gamma, \Phi, A\backslash B, \Delta \Rightarrow C}\]
\[(/ L)\quad \frac{\Gamma, B, \Delta \Rightarrow C \quad \Phi \Rightarrow A}{\Gamma, B/A, \Phi, \Delta \Rightarrow C}\]
\[(\cdot L)\quad \frac{\Gamma, A, B\Delta \Rightarrow C}{\Gamma, A \cdot B, \Delta \Rightarrow C}\]

\[(CUT)\quad \frac{\Gamma, A, \Delta \Rightarrow B \quad \Phi \Rightarrow A}{\Gamma, \Phi, \Delta \Rightarrow B}\]

Nonassociative Lambek Calculus NL: (Lambek 1961)

Formula structures (trees): formulas, $\Gamma \circ \Delta$; Sequent: $\Gamma \Rightarrow A$

\[(\backslash L)\quad \frac{\Delta \Rightarrow A \quad \Gamma[B] \Rightarrow C}{\Gamma[\Delta \circ A\backslash B] \Rightarrow C}\]
\[(/ L)\quad \frac{\Gamma[\Delta] \Rightarrow C \quad \Delta \Rightarrow B}{\Gamma[A/B \circ \Delta] \Rightarrow C}\]
\[(\cdot L)\quad \frac{\Gamma[A \circ B] \Rightarrow C}{\Gamma[A \cdot B] \Rightarrow C}\]

\[(CUT)\quad \frac{\Delta \Rightarrow A \quad \Gamma[A] \Rightarrow B}{\Gamma[\Delta] \Rightarrow B}\]

(CUT) is admissible in L and NL.
A residuated semigroup: $\mathcal{M} = (M, \leq, \cdot, \backslash, /)$ s.t. (M, \leq) is a poset such that (M, \cdot) is semigroup $\backslash, /$ are binary operations on M, respectively, satisfying the residuated law:

$$\tag{1} (RES) \quad a \cdot b \leq c \iff b \leq a \backslash c \iff a \leq c / b$$

A residuated groupoid: need not be associative

A valuation μ in \mathcal{M} is a homomorphism from the formula into algebra \mathcal{M}. A sequent $\Gamma \Rightarrow A$ is true in the model (\mathcal{M}, μ), if $\mu(\Gamma) \leq \mu(A)$.

L is strongly complete w.r.t. residuated semigroups. NL is strongly complete w.r.t. residuated groupoids.
CUT is not admissible in system with (D).

Distributive Full Nonassociative Lambek Calculus (DFNL) is strongly complete w.r.t. distributive lattice-ordered residuated groupoid.

A distributive lattice-ordered residuated groupoid: $(G, \wedge, \vee, \cdot, \backslash, /)$ such that (G, \wedge, \vee) is a distributive lattice and $(G, \cdot, \backslash, /)$ is a residuated groupoid, where the order is lattice order.

Full Lambek Calculus (FL) is strongly complete w.r.t. lattice-ordered residuated groupoid.

Full Nonassociative Lambek Calculus (FNL) is strongly complete w.r.t. lattice-ordered residuated groupoid.

(CUT) is not admissible in system with (D).

Distributive axiom: (D) $A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C)$.

(CUT) is not admissible in system with (D).

Distributive Full Nonassociative Lambek Calculus (DFNL) is strongly complete w.r.t. distributive lattice-ordered residuated groupoid.

A distributive lattice-ordered residuated groupoid: $(G, \wedge, \vee, \cdot, \backslash, /)$ such that (G, \wedge, \vee) is a distributive lattice and $(G, \cdot, \backslash, /)$ is a residuated groupoid, where the order is lattice order.

Full Lambek Calculus (FL) is strongly complete w.r.t. lattice-ordered residuated groupoid.

Full Nonassociative Lambek Calculus (FNL) is strongly complete w.r.t. lattice-ordered residuated groupoid.

(CUT) is not admissible in system with (D).
Modalities (MOORTGAT 1996)

\[
\begin{align*}
\text{(◊L) } & \frac{\Gamma[⟨A⟩] \Rightarrow B}{\Gamma[◊A] \Rightarrow B} \\
\text{(◊R) } & \frac{\Gamma \Rightarrow A}{⟨\Gamma⟩ \Rightarrow ◊A} \\
\text{(□ ↓ L) } & \frac{\Gamma[A] \Rightarrow B}{\Gamma[⟨□ ↓ A⟩] \Rightarrow B} \\
\text{(□ ↓ R) } & \frac{⟨\Gamma⟩ \Rightarrow A}{\Gamma \Rightarrow □ ↓ A} \\
\text{(4) } & \frac{\Gamma[⟨∆⟩] \Rightarrow A}{\Gamma[⟨⟨∆⟩⟩] \Rightarrow A} \\
\text{(T) } & \frac{\Gamma[⟨∆⟩] \Rightarrow A}{\Gamma[∆] \Rightarrow A}
\end{align*}
\]

A distributive lattice-ordered residuated groupoid with S4-operators (S4-\text{dlrg}) is a structure \((G, \wedge, \lor, ·, \setminus, /, ◊, □ ↓)\) such that \((G, \wedge, \lor)\) is a distributive lattice and \((G, ·, \setminus, /, ◊, □ ↓)\) is a structure such that ·, \setminus, / and ◊, □ ↓ are binary and unary operations on \(G\), respectively, satisfying the above conditions (1) and standard modal S4-axioms:

\[
\begin{align*}
\text{T } & a \leq ◊a, \\
\text{4 } & ◊◊a \leq ◊a \\
\text{K } & ◊(a \land b) \leq ◊a \land ◊b
\end{align*}
\]

Remark: K is admissible in S4-\text{dlrg}. Here after we slip this axiom.

DNFL\text{S}_4 is strongly complete w.r.t S4-\text{dlrg}
A class of algebras \(\mathcal{K} \) is said to have the finite embeddability property (FEP) if for every algebra \(\mathcal{A} \) in \(\mathcal{K} \) and every finite partial subalgebra \(\mathcal{B} \) of \(\mathcal{A} \), there exists a finite algebra \(\mathcal{D} \) in \(\mathcal{K} \) such that \(\mathcal{B} \) embeds into \(\mathcal{D} \).
A class of algebras \mathcal{K} is said to have the finite embeddability property (FEP) if for every algebra A in \mathcal{K} and every finite partial subalgebra B of A, there exists a finite algebra D in \mathcal{K} such that B embeds into D.

- FEP imply the decidability of the universal theories of relative algebra.
- FEP imply consequence relation of the corresponding logic is decidable.
A class of algebras \mathcal{K} is said to have the finite embeddability property (FEP) if for every algebra \mathcal{A} in \mathcal{K} and every finite partial subalgebra \mathcal{B} of \mathcal{A}, there exists a finite algebra \mathcal{D} in \mathcal{K} such that \mathcal{B} embeds into \mathcal{D}.

- FEP imply the decidability of the universal theories of relative algebra.
- FEP imply consequence relation of the corresponding logic is decidable.

- FEP of residuated groupoids
- FEP of distributive lattice-ordered residuated groupoids
A class of algebras \mathcal{K} is said to have the finite embeddability property (FEP) if for every algebra A in \mathcal{K} and every finite partial subalgebra B of A, there exists a finite algebra D in \mathcal{K} such that B embeds into D.

- FEP imply the decidability of the universal theories of relative algebra.
- FEP imply consequence relation of the corresponding logic is decidable.

- FEP of residuated groupoids
- FEP of distributive lattice-ordered residuated groupoids

[5]. W. Buszkowski, Interpolation and FEP for Logic of Residuated Algebras, Logic Journal of the IGPL,

- FEP of RAs (residuated algebras), distributive lattice-ordered RAs, boolean RAs, Heyting RAs and double RAs
A class of algebras \mathcal{K} is said to have the finite embeddability property (FEP) if for every algebra A in \mathcal{K} and every finite partial subalgebra B of A, there exists a finite algebra D in \mathcal{K} such that B embeds into D.

- FEP imply the decidability of the universal theories of relative algebra.
- FEP imply consequence relation of the corresponding logic is decidable.

- FEP of residuated groupoids
- FEP of distributive lattice-ordered residuated groupoids

[5]. W. Buszkowski, Interpolation and FEP for Logic of Residuated Algebras, Logic Journal of the IGPL,

- FEP of RAs (residuated algebras), distributive lattice-ordered RAs, boolean RAs, Heyting RAs and double RAs

FEP of S4-$dlrgs$ (Our results also state for $dlrgs$ with modal operators satisfying 4 or T only).
A class \mathcal{K} of algebras has Strong Finite Model Property (SFMP) if every Horn clause that fails to hold in \mathcal{K} can be falsified in a finite member of \mathcal{K}.

Strong Finite Model Property (SFMP) of a formal system S: if $\vdash \phi \Rightarrow A$ does not hold in S, then there exist a finite model of $S (\mathcal{M}, \mu)$ such that all sequents from Φ are true, but $\Gamma \Rightarrow A$ is not in (\mathcal{M}, μ).

If a formal system S is strongly complete with respect to \mathcal{K}, then it yields, actually, an axiomatization of the Horn theory of \mathcal{K}; hence SFMP for S with respect to \mathcal{K} yields SFMP for \mathcal{K}.
A class \mathcal{K} of algebras has Strong Finite Model Property (SFMP) if every Horn clause that fails to hold in \mathcal{K} can be falsified in a finite member of \mathcal{K}.

Strong Finite Model Property (SFMP) of a formal system S: if $\vdash \phi \Rightarrow A$ does not hold in S, then there exist a finite model of S ((M, μ)) such that all sequents from Φ are true, but $\Gamma \Rightarrow A$ is not in (M, μ).

If a formal system S is strongly complete with respect to \mathcal{K}, then it yields, actually, an axiomatization of the Horn theory of \mathcal{K}; hence SFMP for S with respect to \mathcal{K} yields SFMP for \mathcal{K}.

Theorem

If a class of algebras \mathcal{K} is closed under (finite) products, then SFMP for \mathcal{K} is equivalent to FEP for \mathcal{K}.
A class \mathcal{K} of algebras has Strong Finite Model Property (SFMP) if every Horn clause that fails to hold in \mathcal{K} can be falsified in a finite member of \mathcal{K}.

Strong Finite Model Property (SFMP) of a formal system S: if $\vdash \phi \implies A$ does not hold in S, then there exist a finite model of S (M, μ) such that all sequents from Φ are true, but $\Gamma \implies A$ is not in (M, μ).

If a formal system S is strongly complete with respect to \mathcal{K}, then it yields, actually, an axiomatization of the Horn theory of \mathcal{K}; hence SFMP for S with respect to \mathcal{K} yields SFMP for \mathcal{K}.

Theorem

If a class of algebras \mathcal{K} is closed under (finite) products, then SFMP for \mathcal{K} is equivalent to FEP for \mathcal{K}.

SFMP for DNFL_{S_4}(FEP of S_4-$drlgs$)
Linguistic analysis of modalities and additives

L or NL enriched with modalities or additive can be used to analysis some linguistic phenomenon like feature agreement, feature description, parasitic gap and so on.

Let me show some very easy example:

\(\Box \downarrow_{\text{sing}} np \) denote singular noun phrase and \(\Box \downarrow_{\text{pl}} np \) denote plural noun phrase

1. \(\text{walks} \rightarrow \Box \downarrow_{\text{sing}} np \backslash s \)
2. \(\text{walk} \rightarrow \Box \downarrow_{\text{pl}} np \backslash s \)
3. \(\text{walked} \rightarrow np \backslash s \)
4. \(\text{John} \rightarrow \Box \downarrow_{\text{sing}} np \)
5. \(\text{the Beatles} \rightarrow \Box \downarrow_{\text{pl}} np \)
6. \(\text{the Chinese} \rightarrow \Box \downarrow_{\text{sing}} \Box \downarrow_{\text{pl}} np \)

The Chinese walk. The Chinese walks.

\[
\frac{np \Rightarrow np}{\langle \square \downarrow_{pl} np \rangle \Rightarrow np} \quad (\square \downarrow L), (T)
\]

\[
\frac{\square \downarrow sing \square \downarrow_{pl} np \Rightarrow \square \downarrow_{sing} np}{\square \downarrow sing \square \downarrow_{pl} np \circ \square \downarrow sing np \sRightarrow s} \quad (\backslash L)
\]

1. become → $vp/np \lor ap$
2. wealthy → ap
3. and → $(ap \lor np \setminus ap \lor np)/ap \lor np$
4. a professor → np

become a professor and wealthy
Interpolation property

Lemma

If $\Phi \vdash_{NL} \Gamma[\Delta] \Rightarrow A$, then there exists a formula D such that $\Phi \vdash_{NL} \Delta \Rightarrow D$ and $\Phi \vdash_{NL} \Gamma[D] \Rightarrow A$, where D is a subformula of some formulae appearing in $\Gamma[\Delta] \Rightarrow A$ and Φ.

- $NL\diamond$ (Jäger 2004) $NL\land$ (Farulewski 2008) $DFNL$ (Buszkowski, and Farulewski 2009) NL_{S4} (Plummer 2008).
- The consequence relation of NL is decidable in polynomial time (Buszkowski 2005).
- Context-freeness of $NL\diamond$ (Jäger 2004), NL_{S4} (Plummer 2008), $DFNL$ (Buszkowski, and Farulewski).
- FEP of Rgs, Dlrgs (Farulewski 2008, Buszkowski, and Farulewski 2009), FEP of RAs, distributive lattice-ordered RAs, boolean RAs, Heyting RAs and double RAs (Buszkowski 2010).
Question:

? interpolation property for DNFL_{S4} YES

Let T denote a set of formulas

- T-sequent: A sequent such that all formulas occurring in it belong to T.
- $\Phi \vdash_S \Gamma \Rightarrow_T A$: If $\Gamma \Rightarrow A$ has a deduction from Φ (in the given calculus S) which consists of T-sequents only (called a T-deduction).
- T-equivalent: Two formulae A and B are said to be T-equivalent in calculus S, if and only if $\vdash_S A \Rightarrow_T B$ and $\vdash_S B \Rightarrow_T A$.
Lemma

Let T be a set of formulae closed under \lor, \land. If $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[\langle \Delta \rangle] \Rightarrow_T A$ then there exists a $D \in T$ such that $\Phi \vdash_{\text{DFNL}_{S4}} \langle \Delta \rangle \Rightarrow_T D$, $\Phi \vdash_{\text{DFNL}_{S4}} \langle D \rangle \Rightarrow_T D$, and $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[D] \Rightarrow_T A$.
Lemma

Let T be a set of formulae closed under \lor, \land. If $\Phi \vdash_{\text{DFNL}_{S_4}} \Gamma[\langle \Delta \rangle] \Rightarrow_T A$ then there exists a $D \in T$ such that $\Phi \vdash_{\text{DFNL}_{S_4}} \langle \Delta \rangle \Rightarrow_T D$, $\Phi \vdash_{\text{DFNL}_{S_4}} \langle D \rangle \Rightarrow_T D$, and $\Phi \vdash_{\text{DFNL}_{S_4}} \Gamma[D] \Rightarrow_T A$.

Lemma

Let T be a set of formulae closed under \lor, \land. If $\Phi \vdash_{\text{DFNL}_{S_4}} \Gamma[\Delta] \Rightarrow_T A$ then there exists a $D \in T$ such that $\Phi \vdash_{\text{DFNL}_{S_4}} \Delta \Rightarrow_T D$ and $\Phi \vdash_{\text{DFNL}_{S_4}} \Gamma[D] \Rightarrow_T A$.
Lemma

Let T be a set of formulae closed under \lor, \land. If $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[\langle \Delta \rangle] \Rightarrow_T A$ then there exists a $D \in T$ such that $\Phi \vdash_{\text{DFNL}_{S4}} \langle \Delta \rangle \Rightarrow_T D$, $\Phi \vdash_{\text{DFNL}_{S4}} \langle D \rangle \Rightarrow_T D$, and $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[D] \Rightarrow_T A$.

Lemma

Let T be a set of formulae closed under \lor, \land. If $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[\Delta] \Rightarrow_T A$ then there exists a $D \in T$ such that $\Phi \vdash_{\text{DFNL}_{S4}} \Delta \Rightarrow_T D$ and $\Phi \vdash_{\text{DFNL}_{S4}} \Gamma[D] \Rightarrow_T A$.

Lemma

If T is set of formulas generated from a finite set and closed under \land, \lor, then T is finite up to the relation of T-equivalence in DFNL_{S4}.
Let $\mathcal{M} = (M, \cdot, \diamondsuit)$ be a groupoid with a unary operation \diamondsuit.

$$U \diamond V = \{a \cdot b \in G : a \in U, b \in V\} \quad U \setminus V = \{z \in G : U \odot \{z\} \subseteq V\}, \quad V/U = \{z \in M; \{z\} \odot U \subseteq V\}$$

$C : P(M) \to P(M)$ (4T-closure operator on \mathcal{M})

- (C1) $U \subseteq C(U)$. (C2) if $U \subseteq V$ then $C(U) \subseteq C(V)$

For any $U \subseteq M$: U is C-closed, if $C(U) = U$. $C(M)$: the family of all closed subsets of M. Operation on $C(M)$ are defined as follows:

$$U \otimes V = C(U \odot V), \quad \blacklozenge U = C(\blacklozenge U), \quad U \lor_C V = C(U \lor V), \quad \setminus, \quad /, \quad \blacksquare \downarrow, \quad \land, \quad \lor_C$$ as above.

Theorem

$C(\mathcal{M}) = (C(M), \otimes, \setminus, /, \blacklozenge, \blacksquare \downarrow, \land, \lor_C)$ is an S_4-lattice order residuated groupoid.
Let $\mathcal{M} = (M, \cdot, \diamond)$ be a groupoid with a unary operation \diamond.

- $U \odot V = \{ a \cdot b \in G : a \in U, b \in V \}$
- $U \setminus V = \{ z \in G : U \odot \{ z \} \subseteq V \}$
- $V/U = \{ z \in M ; \{ z \} \odot U \subseteq V \}$
- $\diamond U = \{ \diamond a \in M | a \in U \}$
- $\square \downarrow U = \{ z \in M | \diamond z \in U \}$

$C : P(M) \rightarrow P(M) \ (4T\text{-closure operator on } \mathcal{M})$

- (C1) $U \subseteq C(U)$.
- (C2) if $U \subseteq V$ then $C(U) \subseteq C(V)$
- (C3) $C(C(U)) \subseteq C(U)$.
- (C4) $C(U) \odot C(V) \subseteq C(U \odot V)$

For any $U \subseteq M$: U is C-closed, if $C(U) = U$. $C(M)$: the family of all closed subsets of M. Operation on $C(M)$ are defined as follows:

$U \otimes V = C(U \odot V)$, $\blacklozenge U = C(\diamond U)$, $U \lor_C V = C(U \lor V)$, $\setminus, /, \square \downarrow, \land, \lor_C$ as above.

Theorem

$C(\mathcal{M}) = (C(M), \otimes, \setminus, /, \blacklozenge, \square \downarrow, \land, \lor_C)$ is an S_4-lattice order residuated groupoid.
Let $\mathcal{M} = (M, \cdot, \Diamond)$ be a groupoid with a unary operation \Diamond.

- $U \odot V = \{a \cdot b \in G : a \in U, b \in V\}$
- $U \backslash V = \{z \in G : U \odot \{z\} \subseteq V\}$
- $V/U = \{z \in M : \{z\} \odot U \subseteq V\}$

- $\Diamond U = \{\Diamond a \in M | a \in U\}$
- $\Box \downarrow U = \{z \in M | \Diamond z \in U\}$

- $U \vee V = U \cup V$, $U \wedge V = U \cap V$

$C : P(M) \rightarrow P(M)$ (4T-closure operator on \mathcal{M})

- (C1) $U \subseteq C(U)$.
- (C2) if $U \subseteq V$ then $C(U) \subseteq C(V)$
- (C3) $C(C(U)) \subseteq C(U)$.
- (C4) $C(U) \odot C(V) \subseteq C(U \odot V)$
- (C5) $\Diamond C(U) \subseteq C(\Diamond U)$

For any $U \subseteq M$: U is C-closed, if $C(U) = U$. $C(M)$: the family of all closed subsets of M. Operation on $C(M)$ are defined as follows:

- $U \otimes V = C(U \odot V)$,
- $\Diamond U = C(\Diamond U)$,
- $U \vee_C V = C(U \vee V)$,
- \backslash, $/$, $\Box \downarrow$, \land, \lor as above.

Theorem

$C(\mathcal{M}) = (C(M), \otimes, \backslash$, $/$, \Diamond, $\Box \downarrow$, \land, $\lor_C)$ is an S_4-lattice order residuated groupoid.
Let $\mathcal{M} = (M, \cdot, \diamond)$ be a groupoid with a unary operation \diamond.

- $U \odot V = \{a \cdot b \in G : a \in U, b \in V\}$
- $U \\setminus V = \{z \in G : U \odot \{z\} \subseteq V\}$
- $V/U = \{z \in M ; \{z\} \odot U \subseteq V\}$
- $\diamond U = \{\diamond a \in M | a \in U\}$
- $\Box \downarrow U = \{z \in M | \diamond z \in U\}$
- $U \lor V = U \cup V, U \land V = U \cap V$

$C : P(M) \to P(M)$ (4T-closure operator on \mathcal{M})

(C1) $U \subseteq C(U)$. (C2) if $U \subseteq V$ then $C(U) \subseteq C(V)$
(C3) $C(C(U)) \subseteq C(U)$. (C4) $C(U) \odot C(V) \subseteq C(U \odot V)$
(C5) $\diamond C(U) \subseteq C(\diamond U)$
(C6) $C(\diamond C(\diamond C(U))) \subseteq C(\diamond U)$. (C7) $C(U) \subseteq C(\diamond U)$

For any $U \subseteq M$: U is C-closed, if $C(U) = U$. $C(M)$: the family of all closed subsets of M. Operation on $C(M)$ are defined as follows:

$U \otimes V = C(U \odot V)$, $\ast_U = C(\diamond U)$, $U \lor_C V = C(U \lor V)$, \setminus, $/ \Box \downarrow, \land$ as above.

Theorem

$C(\mathcal{M}) = (C(M), \otimes, \setminus, /, \ast, \Box \downarrow, \land, \lor_C)$ is an S_4-lattice order residuated groupoid.
T: nonempty set of formulae containing all subformulae of formulae in Φ; T^*: all formula structures form out of formulae in T. Similarly; $T^* [\circ]$: all contexts in which all formulae belong to T.

Let $\Gamma[\circ] \in T^*$ and $A \in T$; $B(T)$: the family of all sets $[\Gamma[\circ], A]$

$$[\Gamma[\circ], A] = \{ \Delta : \Delta \in T^* \text{ and } \Phi \models_{DFNLS_4} \Gamma[\Delta] \Rightarrow_T A \}$$

$$C_T(U) = \bigcap \{ [\Gamma[\circ], A] \in B(T) : U \subseteq [\Gamma[\circ], A] \}$$

Lemma

C_T is a S4-modal closed operator.

T: containing all formulae in Φ, closed under subformulae, \wedge and \lor. $G(T^*) = (T^*, \circ, \langle \rangle)$: a groupoid, $\langle \rangle$ is an unary operation on T^*.

Lemma

$C_T(G(T^*))$ is a S4-lrg
\(\mu : \mu(p) = [p]. \)

\[
\begin{align*}
\Diamond [A] &= \Diamond A & \Box \downarrow [A] &= \Box \downarrow A \\
\end{align*}
\] (4)

all formulas appearing in them belong to \(T \).

Lemma

For any nontrivial closed set \(U \in C_T(G(T^)) \), there exists a formula \(A \in R \) such that \(U = [A] \).*

Lemma

\(C_T(G(T^*)) \) is a finite \(4T - dlr g \).
Lemma

T denotes a set of formulae, containing all formulae in Φ and closed under \land, \lor, and subformulae. Let μ be a valuation in $C_T(G(T^*))$ such that $\mu(p) = [p]$. For any T-sequent $\Gamma \Rightarrow A$, this sequent is true in $(C_T(G(T^*)), \mu)$ if and only if $\Phi \vdash_{DFNL_{S4}} \Gamma \Rightarrow_T A$.

Theorem

Assume that $\Phi \vdash_{DFNL_{S4}} \Gamma \Rightarrow A$ does not hold. Then there exist a finite distributive lattice ordered residuated groupoid with $4T$-operators G and a valuation μ such that all sequents from Φ are true but $\Gamma \Rightarrow A$ is not true in (G, μ).

Corollary

$S4 - dlr gs$ has FEP.
References

Thank you