The Nice Labelling Problem for Event Structures

Luigi Santocanale
Laboratoire d’Informatique Fondamentale
Université de Provence

LIAFA, 15 mai 2009
Introduction

The problem:

- given a concurrent process, s.t. in each global state at most k actions may be fired,

 can it be implemented as the behavior of a (concurrent, deterministic) automaton on the alphabet $\Sigma = \{a_1, \ldots, a_k\}$?

 If not, how large should be $\text{card}(\Sigma)$?

Motivations:

- The combinatorics of models of concurrency as a support for algorithmic issues.
- Verification tools designed upon these models.
Introduction

The problem:

- given a concurrent process,
 s.t. in each global state at most k actions may be fired,

 can it be implemented as the behavior of a
 (concurrent, deterministic) automaton
 on the alphabet $\Sigma = \{ a_1, \ldots, a_k \}$?

If not, how large should be $\text{card}(\Sigma)$?

Motivations:

- The combinatorics of models of concurrency
 as a support for algorithmic issues.
- Verification tools designed upon these models.
Introduction

The problem:

- given a concurrent process,
 s.t. in each global state at most \(k \) actions may be fired,

 can it be implemented as the behavior of a
 (concurrent, deterministic) automaton
 on the alphabet \(\Sigma = \{ a_1, \ldots, a_k \} \)?

If not, how large should be \(\text{card}(\Sigma) \)?

Motivations:

- The combinatorics of models of concurrency
 as a support for algorithmic issues.
- Verification tools designed upon these models.
Introduction

The problem:

- given a concurrent process, s.t. in each global state at most k actions may be fired,

 can it be implemented as the behavior of a (concurrent, deterministic) automaton on the alphabet $\Sigma = \{a_1, \ldots, a_k\}$?

If not, how large should be $\text{card}(\Sigma)$?

Motivations:

- The combinatorics of models of concurrency as a support for algorithmic issues.
- Verification tools designed upon these models.
Outline

Event Structures

The Nice Labelling Problem

Degree 2: a Proof of Assous et al. Theorem

Degree 3: Tree-like Event Structures

Perspectives
Outline

Event Structures

The Nice Labelling Problem

Degree 2: a Proof of Assous et al. Theorem

Degree 3: Tree-like Event Structures

Perspectives
Event structures

An event structure (with binary conflict) is a triple $\mathcal{E} = \langle E, \leq, \sim \rangle$, where

- E is a finite set of events,
- partially ordered by \leq, the causality relation,
- $\sim \subseteq E \times E$, the conflict relation, is
 - symmetric,
 - irreflexive, and
 - $x \sim y \leq z$ and implies $x \sim z$.

The (weak) concurrency relation:

$x \bowtie y$ iff not $x \sim y$.
Event structures

An event structure (with binary conflict) is a triple $\mathcal{E} = \langle E, \leq, \triangleright \rangle$, where

- E is a finite set of events,
- partially ordered by \leq, the causality relation,
- $\triangleright \subseteq E \times E$, the conflict relation, is
 - symmetric,
 - irreflexive, and
 - $x \triangleright y \leq z$ and implies $x \triangleright z$.

The (weak) concurrency relation:

$$x \triangleright y \text{ iff not } x \triangleright y.$$
The stable domain of an event structure

For \(\mathcal{E} = \langle E, \leq, \sim \rangle \) an e.s., define

\[
\mathcal{I}(\mathcal{E}) = \{ I \subseteq E \mid y \leq x \in I \text{ implies } y \in I \},
\]

\[
\mathcal{C}(\mathcal{E}) = \{ I \in \mathcal{I}(\mathcal{E}) \mid x, y \in I \text{ implies } x \sim y \},
\]

the set of (history aware) configurations of \(\mathcal{E} \),

\[
\mathcal{D}(\mathcal{E}) = \langle \mathcal{C}(\mathcal{E}), \subseteq \rangle,
\]

the domain of \(\mathcal{E} \).

The poset \(\mathcal{D}(\mathcal{E}) \) is a stable domain

i.e. a distributive chopped lattice

which moreover is coherent.

Proposition

Every stable coherent domain is of the form \(\mathcal{D}(\mathcal{E}) \) for some e.s. \(\mathcal{E} \).
The stable domain of an event structure

For $\mathcal{E} = \langle E, \leq, \sim \rangle$ an e.s., define

$$\mathcal{I}(\mathcal{E}) = \{ I \subseteq E \mid y \leq x \in I \text{ implies } y \in I \}$$
$$\mathcal{C}(\mathcal{E}) = \{ I \in \mathcal{I}(\mathcal{E}) \mid x, y \in I \text{ implies } x \sim y \}$$

the set of (history aware) configurations of \mathcal{E},

$$\mathcal{D}(\mathcal{E}) = \langle \mathcal{C}(\mathcal{E}), \subseteq \rangle$$
the domain of \mathcal{E}.

The poset $\mathcal{D}(\mathcal{E})$ is a stable domain
– i.e. a distributive chopped lattice –
which moreover is coherent.

Proposition

Every stable coherent domain is of the form $\mathcal{D}(\mathcal{E})$ for some e.s. \mathcal{E}.
The stable domain of an event structure

For $\mathcal{E} = \langle E, \leq, \sim \rangle$ an e.s., define

$$\mathcal{I}(\mathcal{E}) = \{ I \subseteq E \mid y \leq x \in I \text{ implies } y \in I \},$$

$$\mathcal{C}(\mathcal{E}) = \{ I \in \mathcal{I}(\mathcal{E}) \mid x, y \in I \text{ implies } x \sim y \},$$

the set of (history aware) configurations of \mathcal{E},

$$\mathcal{D}(\mathcal{E}) = \langle \mathcal{C}(\mathcal{E}), \subseteq \rangle,$$

the domain of \mathcal{E}.

The poset $\mathcal{D}(\mathcal{E})$ is a stable domain

– i.e. a distributive chopped lattice –

which moreover is coherent.

Proposition

Every stable coherent domain is of the form $\mathcal{D}(\mathcal{E})$ for some e.s. \mathcal{E}.
Coherent stable domain: an example
Nice labelling: how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}) :
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.
Nice labelling: how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}): label edges of the Hasse diagram to obtain a concurrent deterministic automaton.
Nice labelling:
how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}):
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
Nice labelling:
how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}):
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
Nice labelling:
how to transform the domain into an automaton

Hasse diagram of $D(\mathcal{E}) =$ state-transition graph of the process \mathcal{E}

Goal (definition of nice labelling of \mathcal{E}) :
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
Nice labelling: how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}) :
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
Nice labelling:
how to transform the domain into an automaton

Hasse diagram of $D(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}): label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
Nice labelling:
how to transform the domain into an automaton

Hasse diagram of $\mathcal{D}(\mathcal{E}) = \text{state-transition graph of the process } \mathcal{E}$

Goal (definition of nice labelling of \mathcal{E}):
label edges of the Hasse diagram to obtain a concurrent deterministic automaton.

- Deterministic
- Concurrent
The nice labelling problem

Given an e.s. \mathcal{E}, compute

$$\chi(\mathcal{E}) = \min \{ \text{card}(\Sigma) \mid \text{there exists a nice labelling of } \mathcal{E} \text{ into } \Sigma \}.$$

Given a class of event structures \mathcal{K}, compute

$$\chi(\mathcal{K}) = \max \{ \chi(\mathcal{E}) \mid \mathcal{E} \in \mathcal{K} \}.$$

Compute $\chi(\mathcal{K}_n)$, where

$$\mathcal{K}_n = \{ \mathcal{E} \mid n \text{ is an upper bound for } \text{deg}(\mathcal{E}) \},$$

and

$$\text{deg}(\mathcal{E}) = \text{the maximum outdegree in the Hasse diagram of } D(\mathcal{E}).$$
The nice labelling problem

Given an e.s. \mathcal{E}, compute

$$\chi(\mathcal{E}) = \min\{ \text{card}(\Sigma) \mid \text{there exists a nice labelling of } \mathcal{E} \text{ into } \Sigma \}.$$

Given a class of event structures \mathcal{K}, compute

$$\chi(\mathcal{K}) = \max\{ \chi(\mathcal{E}) \mid \mathcal{E} \in \mathcal{K} \}.$$

Compute $\chi(\mathcal{K}_n)$, where

$$\mathcal{K}_n = \{ \mathcal{E} \mid n \text{ is an upper bound for } \text{deg}(\mathcal{E}) \},$$

and

$$\text{deg}(\mathcal{E}) = \text{the maximum outdegree in the Hasse diagram of } D(\mathcal{E}).$$
Graph theoretic interpretation of the problem

For $E = \langle E, \leq, \sim \rangle$, say that

$x \sim y$ iff x, y are not comparable and

$x \preceq y$ or x, y are in minimal conflict,

where x, y are in minimal conflict if $x \sim y$ and

$$\forall x' < x \; x' \sim y \quad \text{and} \quad \forall y' < y \; x \sim y'.$$

Then:

$$\deg(E) = \text{clique number of } \langle E, \sim \rangle,$$

$$\chi(E) = \text{chromatic number of } \langle E, \sim \rangle.$$
Graph theoretic interpretation of the problem

For $\mathcal{E} = \langle E, \leq, \prec \rangle$, say that

$$x \preceq y \text{ iff } x, y \text{ are not comparable and }$$

$$x \prec y \text{ or } x, y \text{ are in minimal conflict},$$

where x, y are in minimal conflict if $x \prec y$ and

$$\forall x' < x \ x' \prec y \text{ and } \forall y' < y \ x \prec y'.$$

Then:

$$\deg(\mathcal{E}) = \text{clique number of } \langle E, \preceq \rangle,$$
$$\chi(\mathcal{E}) = \text{chromatic number of } \langle E, \preceq \rangle.$$
State of Art

Proposition (Assous, Bouchitté, Charretton, Rozoy, 1994)
\[\chi(K_2) = 2, \text{ and } \chi(K_n) \geq n + 1 \text{ for } n \geq 3. \]

Proposition (Dilworth, 1950)
Every finite poset can be covered with \(k \) antichains, where \(k \) is its width.

Equivalently: if \(x \sim y \) for all \(x, y \in E \), then \(\chi(E) = \deg(E) \).

Proposition (Assous et al., 1994)
There exists \(K(n, m) \) such that if \(\deg(E) \leq n \) and \(E \) has at most \(m \) pairs in minimal conflict, then \(\chi(E) \leq K(n, m) \).
State of Art

Proposition (Assous, Bouchitté, Charretton, Rozoy, 1994)
\(\chi(K_2) = 2, \) and \(\chi(K_n) \geq n + 1 \) for \(n \geq 3. \)

Proposition (Dilworth, 1950)
Every finite poset can be covered with \(k \) antichains, where \(k \) is its width.

Equivalently: if \(x \sim y \) for all \(x, y \in E \), then \(\chi(E) = \text{deg}(E) \).

Proposition (Assous et al., 1994)
There exists \(K(n, m) \) such that if \(\text{deg}(E) \leq n \) and \(E \) has at most \(m \) pairs in minimal conflict, then \(\chi(E) \leq K(n, m) \).
State of Art

Proposition (Assous, Bouchitté, Charretton, Rozoy, 1994)
\[\chi(K_2) = 2, \text{ and } \chi(K_n) \geq n + 1 \text{ for } n \geq 3. \]

Proposition (Dilworth, 1950)

Every finite poset can be covered with \(k \) antichains, where \(k \) is its width.

Equivalently: if \(x \sim y \) forall \(x, y \in E \), then \(\chi(E) = \deg(E) \).

Proposition (Assous et al., 1994)

There exists \(K(n, m) \) such that if \(\deg(E) \leq n \) and \(E \) has at most \(m \) pairs in minimal conflict, then \(\chi(E) \leq K(n, m) \).
Outline

Event Structures

The Nice Labelling Problem

Degree 2: a Proof of Assous et al. Theorem

Degree 3: Tree-like Event Structures

Perspectives
Proof of Assous et al. Thm

Theorem (Assous, Bouchitté, Charretton, Rozoy)
If $\mathcal{E} \in \mathcal{K}_2$, then $\gamma(\mathcal{E}) \leq 2$.

The clock property:
If $x \preceq y \succeq z$, then $x \preceq z$ or $x \succeq z$.

Lemma (Antichains in degree 2)
If $x \simeq y \simeq z$, then \{ x, z \} are comparable.
Proof of Assous et al. Thm

Theorem (Assous, Bouchitté, Charretton, Rozoy)
If $\mathcal{E} \in \mathcal{K}_2$, then $\gamma(\mathcal{E}) \leq 2$.

The clock property:
If $x \leq y \not\sim z$, then $x \leq z$ or $x \not\sim z$.

Lemma (Antichains in degree 2)
If $x \not\sim y \not\sim z$, then $\{x, z\}$ are comparable.
Theorem (Assous, Bouchitté, Charretton, Rozoy)
If \(\mathcal{E} \in \mathcal{K}_2 \), then \(\gamma(\mathcal{E}) \leq 2 \).

The clock property:
If \(x \triangleleft y \triangleleft z \), then \(x \leq z \) or \(x \triangleright z \).

Lemma (Antichains in degree 2)
If \(x \triangleright y \triangleright z \), then \(\{ x, z \} \) are comparable.
Lemma

If a graph contains no cordless odd-length simple cycle, then it contains no odd-length simple cycle. Hence it is bipartite and can be colored with 2 colors.

Proposition

Let $E = \langle E, \leq, \sim \rangle$, with $\deg E = 2$. Then $G = \langle E, \sim \rangle$ contains no simple cordless cycle of length strictly greater than 4.

Proof.

- We can divide vertices into minima and maxima.
- This is a 2-coloring of the complement of a cycle.
- If the length of a cycle > 4, then its complement contains an odd length cycle.
Lemma
If a graph contains no cordless odd-length simple cycle, then it contains no odd-length simple cycle. Hence it is bipartite and can be colored with 2 colors.

Proposition
Let \(\mathcal{E} = \langle E, \leq, \succ \rangle \), with \(\deg \mathcal{E} = 2 \).
Then \(G = \langle E, \cong \rangle \) contains no simple cordless cycle of length strictly greater than 4.

Proof.
- We can divide vertices into minima and maxima
- This is a 2-coloring of the complement of a cycle
- If the length of a cycle > 4, then its complement contains an odd length cycle.
Lemma
If a graph contains no cordless odd-length simple cycle, then it contains no odd-length simple cycle. Hence it is bipartite and can be colored with 2 colors.

Proposition
Let $\mathcal{E} = \langle E, \leq, \preceq \rangle$, with $\deg \mathcal{E} = 2$. Then $G = \langle E, \preceq \rangle$ contains no simple cordless cycle of length strictly greater than 4.

Proof.
- We can divide vertices into minima and maxima
- This is a 2-coloring of the complement of a cycle
- If the length of a cycle > 4, then its complement contains an odd length cycle.
Lemma
If a graph contains no cordless odd-length simple cycle, then it contains no odd-length simple cycle. Hence it is bipartite and can be colored with 2 colors.

Proposition
Let $\mathcal{E} = \langle E, \leq, < \rangle$, with $\deg \mathcal{E} = 2$. Then $G = \langle E, \sim \rangle$ contains no simple cordless cycle of length strictly greater than 4.

Proof.

- We can divide vertices into minima and maxima
- This is a 2-coloring of the complement of a cycle
- If the length of a cycle > 4, then its complement contains an odd length cycle.
Lemma

If a graph contains no cordless odd-length simple cycle, then it contains no odd-length simple cycle. Hence it is bipartite and can be colored with 2 colors.

Proposition

Let $\mathcal{E} = \langle E, \leq, \bowtie \rangle$, with $\deg \mathcal{E} = 2$.
Then $G = \langle E, \bowtie \rangle$ contains no simple cordless cycle of length strictly greater than 4.

Proof.

- We can divide vertices into minima and maxima
- This is a 2-coloring of the complement of a cycle
- If the length of a cycle > 4,
 then its complement contains an odd length cycle.
Outline

Event Structures

The Nice Labelling Problem

Degree 2: a Proof of Assous et al. Theorem

Degree 3: Tree-like Event Structures

Perspectives
A result in degree 3

What about $\chi(K_3)$?

Let us say that $\mathcal{E} = \langle E, \leq, \triangleright \rangle$ is tree-like if $\langle E, \leq \rangle$ is a tree.

Theorem
If \mathcal{E} is tree-like and $\text{deg}(\mathcal{E}) \leq 3$, then $\chi(\mathcal{E}) \leq 3$.
A result in degree 3

What about $\chi(K_3)$?

Let us say that $\mathcal{E} = \langle E, \leq, \sim \rangle$ is tree-like if $\langle E, \leq \rangle$ is a tree.

Theorem
If \mathcal{E} is tree-like and $\deg(\mathcal{E}) \leq 3$, then $\chi(\mathcal{E}) \leq 3$.
A result in degree 3

What about $\chi(K_3)$?

Let us say that $\mathcal{E} = \langle E, \leq, \prec \rangle$ is tree-like if $\langle E, \leq \rangle$ is a tree.

Theorem

If \mathcal{E} is tree-like and $\deg(\mathcal{E}) \leq 3$, then $\chi(\mathcal{E}) \leq 3$.
Some ideas behind the proof

We say that $x, y \in E$ are *brothers* iff they have the same parents.

If E is tree-like, then it contains many brothers.
We can have at most $\deg(E)$ pairwise brothers.

Let

$$S_x = \{ z \in E, x \cong z \mid y \not\cong z \text{ if } y \text{ is a brother of } x \}.$$

Lemma

Let E be s.t. $\deg(E) \leq 3$. If x, y are brothers, then S_x and S_y are comparable w.r.t. set inclusion and $S_x \cap S_y$ is a linear order.
Some ideas behind the proof

We say that $x, y \in E$ are \textit{brothers} iff they have the same parents.

If \mathcal{E} is tree-like, then it contains many brothers.
We can have at most $\deg(\mathcal{E})$ pairwise brothers.

Let

$$S_x = \{ z \in E, x \sim z \mid y \not\leq z \text{ if } y \text{ is a brother of } x \}.$$

Lemma

Let \mathcal{E} be s.t. $\deg(\mathcal{E}) \leq 3$. If x, y are brothers, then S_x and S_y are comparable w.r.t. set inclusion and $S_x \cap S_y$ is a linear order.
Some ideas behind the proof

We say that \(x, y \in E \) are \textit{brothers} iff they have the same parents.

If \(E \) is tree-like, then it contains many brothers. We can have at most \(\text{deg}(E) \) pairwise brothers.

Let

\[
S_x = \{ z \in E, x \divides z \mid y \not\divides z \text{ if } y \text{ is a brother of } x \}.
\]

Lemma

Let \(E \) be s.t. \(\text{deg}(E) \leq 3 \). If \(x, y \) are brothers, then \(S_x \) and \(S_y \) are comparable w.r.t. set inclusion and \(S_x \cap S_y \) is a linear order.
Some ideas behind the proof

We say that \(x, y \in E \) are \textit{brothers} iff they have the same parents.

If \(E \) is tree-like, then it contains many brothers. We can have at most \(\text{deg}(E) \) pairwise brothers.

Let

\[
S_x = \{ z \in E, \ x \divides z \mid y \not\divides z \text{ if } y \text{ is a brother of } x \}.
\]

Lemma

Let \(E \) be s.t. \(\text{deg}(E) \leq 3 \). If \(x, y \) are brothers, then \(S_x \) and \(S_y \) are comparable w.r.t. set inclusion and \(S_x \cap S_y \) is a linear order.
Ideas (contd.)

If x, y are brothers, say that

\[x \text{ is more experienced than } y \text{ if } S_x \supset S_y. \]

Let \prec a strict linear order on E (an age) respecting the height and the more experienced relation between brothers.

Define $\lambda(x)$ assuming it is already defined on

\[\{ y \in E \mid y \prec x \}, \]

taking care of

\[\{ y \prec x \mid y \simeq x \}. \]
Ideas (contd.)

If x, y are brothers, say that

x is *more experienced* than y if $S_x \supset S_y$.

Let \triangleleft a strict linear order on E (an age) respecting
the height and the more experienced relation between brothers.

Define $\lambda(x)$ assuming it is already defined on

$$\{ y \in E \mid y \triangleleft x \} ,$$

taking care of

$$\{ y \triangleleft x \mid y \asymp x \}$$
Ideas (contd.)

If x, y are brothers, say that

x is *more experienced* than y if $S_x \supset S_y$.

Let \triangleleft a strict linear order on E (an age) respecting the height and the more experienced relation bewteen brothers.

Define $\lambda(x)$ assuming it is already defined on

$$\{ y \in E \mid y \triangleleft x \},$$

taking care of

$$\{ y \triangleleft x \mid y \approx x \}.$$
Ideas (contd.)

If x, y are brothers, say that

\[x \text{ is more experienced than } y \text{ if } S_x \supseteq S_y. \]

Let \prec a strict linear order on E (an age) respecting the height and the more experienced relation between brothers.

Define $\lambda(x)$ assuming it is already defined on

\[\{ y \in E \mid y \prec x \}, \]

taking care of

\[\{ y \prec x \mid y \simeq x \} = \{ y \in S_x \mid y \prec x \} \cup \{ \text{elder brothers of } x \}. \]
We define the coloring λ by saying that:

1. if x is an eldest brother, then x inherits the color of the father:

 $$\lambda(x) = \lambda(\pi(x)).$$

2. if x has two brothers, then $S_x = \emptyset$, then

 $$\{ y \triangleleft x \mid y \simeq x \} = \text{brothers of } x.$$

3. if x has one (eldest and more experienced) brother y, then $S_x = S_x \cap S_y$ has an ancestor z. We let:

 $$\lambda(x) \notin \{ \lambda(y), \lambda(z) \}. $$
We define the coloring λ by saying that:

1. if x is an eldest brother, then x inherits the color of the father:

 $$\lambda(x) = \lambda(\pi(x)).$$

2. if x has two brothers, then $S_x = \emptyset$, then

 $$\{ y \triangleleft x \mid y \trianglerighteq x \} = \text{brothers of } x.$$

3. if x has one (eldest and more experienced) brother y, then $S_x = S_x \cap S_y$ has an ancestor z. We let:

 $$\lambda(x) \notin \{ \lambda(y), \lambda(z) \}.$$
The labelling

We define the coloring λ by saying that:

1. if x is an eldest brother, then x inherits the color of the father:

 $$\lambda(x) = \lambda(\pi(x)).$$

2. if x has two brothers, then $S_x = \emptyset$, then

 $$\{ y \prec x \mid y \simeq x \} = \text{brothers of } x.$$

3. if x has one (eldest and more experienced) brother y, then $S_x = S_x \cap S_y$ has an ancestor z. We let:

 $$\lambda(x) \notin \{ \lambda(y), \lambda(z) \}.$$
Outline

Event Structures

The Nice Labelling Problem

Degree 2: a Proof of Assous et al. Theorem

Degree 3: Tree-like Event Structures

Perspectives
Tree-like event structures in higher degree?

Proposition (Assous et al., 1994)

There exists a family \(\mathcal{E}_n \) of tree-like event structures for which

\[
\chi(\mathcal{E}_n) - \deg(\mathcal{E}_n) \geq \log n - 2.
\]

Proposition (Pouzet, L.S.)

There exists a family \(\mathcal{E}_n \) of tree-like event structures for which

\[
\frac{\chi(\mathcal{E}_n)}{\deg(\mathcal{E}_n)} \geq \left(\frac{5}{4} \right)^{n-1}.
\]
Tree-like event structures in higher degree?

Proposition (Assous et al., 1994)

There exists a family \mathcal{E}_n of tree-like event structures for which

$$\chi(\mathcal{E}_n) - \deg(\mathcal{E}_n) \geq \log n - 2.$$

Proposition (Pouzet, L.S.)

There exists a family \mathcal{E}_n of tree-like event structures for which

$$\frac{\chi(\mathcal{E}_n)}{\deg(\mathcal{E}_n)} \geq \left(\frac{5}{4}\right)^{n-1}.$$
Patching nice labellings, in degree 3

If $\deg(\mathcal{E}) = 3$, many subsets of E may be labeled with 3 colors:

- configurations:
 \[C \in \mathcal{I}(E) \text{ such that } C \text{ is a clique w.r.t. } \]
 by Dilworth’s Theorem.

- stars:
 \[\{x\} \cup \{y | x = y\} \]
 by Rozoy’ (et al.) Theorem.

- antichains, trees, . . .

Sometimes this might be of help . . .
Patching nice labellings, in degree 3

If \(\text{deg}(\mathcal{E}) = 3 \), many subsets of \(E \) may be labeled with 3 colors:

- configurations:
 \[C \in \mathcal{I}(\mathcal{E}) \text{ such that } C \text{ is a clique w.r.t. } \sim \]
 by Dilworth's Theorem.

- stars:
 \[\{ x \} \cup \{ y \mid x \sim y \}, \]
 by Rozoy' (et al.) Theorem.

- antichains, trees, . . .

Sometimes this might be of help . . .
If $\deg(\mathcal{E}) = 3$, many subsets of E may be labeled with 3 colors:

- configurations: $C \in \mathcal{I}(E)$ such that C is a clique w.r.t. \prec by Dilworth’s Theorem.
- stars: $\{x\} \cup \{y \mid x \prec y\}$, by Rozoy’ (et al.) Theorem.
- antichains, trees, . . .

Sometimes this might be of help . . .
Patching nice labellings, in degree 3

If $\deg(E) = 3$, many subsets of E may be labeled with 3 colors:

- configurations:
 \[C \in \mathcal{I}(E) \text{ such that } C \text{ is a clique w.r.t. } \sim \]
 by Dilworth’s Theorem.

- stars:
 \[\{ x \} \cup \{ y \mid x \sim y \}, \]
 by Rozoy’ (et al.) Theorem.

- antichains, trees, . . .

Sometimes this might be of help . . .
Patching nice labellings, in degree 3

If $\text{deg}(\mathcal{E}) = 3$, many subsets of E may be labeled with 3 colors:

- configurations: $C \in \mathcal{I}(E)$ such that C is a clique w.r.t. \bowtie by Dilworth’s Theorem.

- stars: $\{x\} \cup \{y \mid x \bowtie y\}$, by Rozoy’ (et al.) Theorem.

- antichains, trees, . . .

Sometimes this might be of help . . .
Patching nice labellings, in degree 3

If $\text{deg}(\mathcal{E}) = 3$, many subsets of E may be labeled with 3 colors:

- **configurations:**
 \[C \in \mathcal{I}(E) \text{ such that } C \text{ is a clique w.r.t. } \sim \]
 by Dilworth’s Theorem.

- **stars:**
 \[\{ x \} \cup \{ y \mid x \sim y \}, \]
 by Rozoy’ (et al.) Theorem.

- **antichains, trees, . . .**

Sometimes this might be of help . . .
Antichains

An antichain of \mathcal{E}: a subset A of E of pairwise uncomparable events.

If $\text{deg}(\mathcal{E}) = 3$, then the restriction of \preceq to A is almost a tree: its biconnected components are either edges or triangles.

Therefore the graph $\langle A, \preceq |_A \rangle$ can be colored with 3 colors.

Proposition

Let

$$\text{skew}(\mathcal{E}) = \max \{ |\text{hgt}(x) - \text{hgt}(y)| \mid x, y \in E, x \preceq y \}$$

If $\text{skew}(\mathcal{E}) < k$, then $\chi(\mathcal{E}) \leq 3k$.
Antichains

An antichain of \mathcal{E}:
a subset A of E of pairwise incomparable events.

If $\deg(\mathcal{E}) = 3$, then the restriction of \preceq to A is almost a tree:
its biconnected components are either edges or triangles.

Therefore the graph $\langle A, \preceq|_A \rangle$ can be colored with 3 colors.

Proposition

Let

$$\text{skew}(\mathcal{E}) = \max\{ |\text{hgt}(x) - \text{hgt}(y)| \mid x, y \in E, x \not\preceq y \}$$

If $\text{skew}(\mathcal{E}) < k$, then $\chi(\mathcal{E}) \leq 3k$.
Proof idea
Proof idea
Proof idea
Proof idea
Thank you (merci)