A duality for finite lattices
(The OD-graph of a finite lattice)

Luigi Santocanale
LIF, Université de Provence
Marseille, FRANCE

Amsterdam, TACL 2009
Outline

The OD-graph of a finite lattice

A representation theorem

Lattice epimorphisms and P-embeddings

The general duality

Some applications
Outline

The \textit{OD}-graph of a finite lattice

A representation theorem

Lattice epimorphisms and P-embeddings

The general duality

Some applications
A bit of context

Semantics/representations for (finite) lattices:

▶ a doubly ordered set \((X, \leq_1, \leq_2)\)
 Urquhart

▶ a table \((J, \leq, M)\)
 Wille, FCA, Gehrke, Hartonas, Dunn

Goal:

“propose” a semantics framework

- attractive for modal logicians and co-algebraists
- useful in practice (for the working lattice theorist)

▶ an OD-graph \((J, \leq, M)\)

Nation, Freese, Ježek, Wehrung, Semenova, Grätzer,
Bertet, Caspard, Monjardet,
... Rob Goldblatt
A bit of context

Semantics/representations for (finite) lattices:
- a doubly ordered set \((X, \leq_1, \leq_2)\)
 Urquhart
- a table \((J, \leq, M)\)
 Wille, FCA, Gehrke, Hartonas, Dunn

Goal:
“propose” a semantics framework
- attractive for modal logicians and co-algebraists
- useful in practice (for the working lattice theorist)
- an \(OD\)-graph \((J, \leq, M)\)

Nation, Freese, Ježek, Wehrung, Semenova, Grätzer, Bertet, Caspard, Monjardet, … Rob Goldblatt
A bit of context

Semantics/representations for (finite) lattices:
 ▶ a doubly ordered set \((X, \leq_1, \leq_2)\)
 ▶ a table \((J, \leq, M)\)

Urquhart

Wille, FCA, Gehrke, Hartonas, Dunn

Goal:
“propose” a semantics framework
 - attractive for modal logicians and co-algebraists
 - useful in practice (for the working lattice theorist)

▶ an \(OD\)-graph \((J, \leq, M)\)

Nation, Freese, Ježek, Wehrung, Semenova, Grätzer,
Bertet, Caspard, Monjardet, ...

Rob Goldblatt
A bit of context

Semantics/representations for (finite) lattices:

- a doubly ordered set \((X, \leq_1, \leq_2)\)
 Urquhart

- a table \((J, \leq, M)\)
 Wille, FCA, Gehrke, Hartonas, Dunn

Goal:
“propose” a semantics framework
- attractive for modal logicians and co-algebraists
- useful in practice (for the working lattice theorist)

- an \(OD\)-graph \((J, \leq, M)\)

Nation, Freese, Ježek, Wehrung, Semenova, Grätzer,
Bertet, Caspard, Monjardet,
... Rob Goldblatt
The *OD*-graph of a lattice L

Definition
The *OD*-graph of a (finite) lattice L is the structure $(J(L), \leq, \mathcal{M})$ where

- $(J(L), \leq)$ is the restriction of the order to join-irreducible els,
- for each $j \in J(L)$ \[\mathcal{M}(j) = \{ C \mid C \text{ is a minimal join-cover of } j \} \]

and

- $O = \text{Order}$
- $D = \text{Dependency relation between join-irreducible els}$

defined by

\[jDk \text{ iff } j \neq k \text{ and } \exists C \in \mathcal{M}(j) \text{ s.t. } k \in C. \]
The OD-graph of a lattice L

Definition

The **OD-graph** of a (finite) lattice L is the structure $(J(L), \leq, \mathcal{M})$ where

1. $(J(L), \leq)$ is the restriction of the order to join-irreducible els,
2. for each $j \in J(L)$

 $$\mathcal{M}(j) = \{ C \mid C \text{ is a minimal join-cover of } j \}$$

and

- $O = \text{Order}$
- $D = \text{Dependency relation between join-irreducible els}$

defined by

$$jDk \text{ iff } j \neq k \text{ and } \exists C \in \mathcal{M}(j) \text{ s.t. } k \in C.$$
The *OD*-graph of a lattice L

Definition
The *OD*-graph of a (finite) lattice L is the structure $(J(L), \leq, \mathcal{M})$ where

1. $(J(L), \leq)$ is the restriction of the order to join-irreducible els,
2. for each $j \in J(L)$
 \[
 \mathcal{M}(j) = \{ C \mid C \text{ is a minimal join-cover of } j \}
 \]

and

- $O = \text{Order}$
- $D = \text{Dependency relation between join-irreducible els}$

defined by

\[
 jDk \text{ iff } j \neq k \text{ and } \exists C \in \mathcal{M}(j) \text{ s.t. } k \in C.
\]
Join-covers in a lattice

L a lattice, $J(L)$ set of join-irreducible els. For $C, D \subseteq J(L)$ let

$$C \ll D \quad \text{iff} \quad \forall c \in C \exists d \in D \text{ s.t. } c \leq d.$$

For $j \in J(L)$ and $C \subseteq J(L)$, say that

- C is a join-cover of j if $j \leq \bigvee C$,
- C is a minimal join-cover of j if $j \leq \bigvee C$, and $j \leq \bigvee D$ and $D \ll C$ implies $C \subseteq D$,
- C is a trivial join-cover of j if $\{j\} \ll C$.
Join-covers in a lattice

L a lattice, $J(L)$ set of join-irreducible els. For $C, D \subseteq J(L)$ let

$$C \ll D \quad \text{iff} \quad \forall c \in C \exists d \in D \text{ s.t. } c \leq d.$$

For $j \in J(L)$ and $C \subseteq J(L)$, say that

- C is a join-cover of j if
 $$j \leq \bigvee C$$

- C is a minimal join-cover of j if $j \leq \bigvee C$, and
 $$j \leq \bigvee D \quad \text{and} \quad D \ll C \quad \text{implies} \quad C \subseteq D$$

- C is a trivial join-cover of j if $\{j\} \ll C$.
Join-covers in a lattice

L a lattice, $J(L)$ set of join-irreducible els. For $C, D \subseteq J(L)$ let

$$C \ll D \quad \text{iff} \quad \forall c \in C \exists d \in D \quad \text{s.t.} \quad c \leq d.$$

For $j \in J(L)$ and $C \subseteq J(L)$, say that

- C is a **join-cover** of j if
 $$j \leq \bigvee C$$

- C is a **minimal join-cover** of j if $j \leq \bigvee C$, and
 $$j \leq \bigvee D \quad \text{and} \quad D \ll C \quad \text{implies} \quad C \subseteq D$$

- C is a **trivial join-cover** of j if $\{j\} \ll C$.
Join-covers in a lattice

L a lattice, $J(L)$ set of join-irreducible els. For $C, D \subseteq J(L)$ let

$$C \ll D \quad \text{iff} \quad \forall c \in C \exists d \in D \text{ s.t. } c \leq d.$$

For $j \in J(L)$ and $C \subseteq J(L)$, say that

- C is a join-cover of j if
 $$j \leq \bigvee C$$

- C is a minimal join-cover of j if $j \leq \bigvee C$, and
 $$j \leq \bigvee D \quad \text{and} \quad D \ll C \quad \text{implies} \quad C \subseteq D$$

- C is a trivial join-cover of j if $\{j\} \ll C$.

The standard representation

Theorem
Say that a downset $X \subseteq J(L)$ is closed if

$$C \subseteq X \text{ and } C \in \mathcal{M}(j) \text{ implies } j \in X$$

and let

$$\mathcal{L}(J(L), \leq, \mathcal{M}) = \text{ lattice of closed subsets of } J(L).$$

Then

$$L \simeq \mathcal{L}(J(L), \leq, \mathcal{M}).$$
The standard representation

Theorem

Say that a downset \(X \subseteq J(L) \) is closed if

\[
C \subseteq X \quad \text{and} \quad C \in \mathcal{M}(j) \quad \text{implies} \quad j \in X
\]

and let

\[
\mathcal{L}(J(L), \leq, \mathcal{M}) = \text{lattice of closed subsets of } J(L).
\]

Then

\[
L \simeq \mathcal{L}(J(L), \leq, \mathcal{M}).
\]
An example

A lattice L is *n-distributive*, that is, it satisfies

$$x \land (\bigvee_{i=0,\ldots,n} y_i) = \bigvee_{i=0,\ldots,n} (x \land \bigvee_{j \neq i} y_j)$$

if and only if

$$\#(C) \leq n$$

for each $j \in J(L)$ and $C \in \mathcal{M}(j)$.

A lattice L is *distributive* iff

$$\mathcal{M}(j) = \{ \{ j \} \}.$$
An example

A lattice L is *n-distributive*, that is, it satisfies

$$x \land (\bigvee_{i=0,\ldots,n} y_i) = \bigvee_{i=0,\ldots,n} (x \land \bigvee_{j \neq i} y_j)$$

if and only if

$$\#(C) \leq n$$

for each $j \in J(L)$ and $C \in \mathcal{M}(j)$.

A lattice L is *distributive* iff

$$\mathcal{M}(j) = \{ \{j\} \}.$$
Outline

The \textit{OD}-graph of a finite lattice

A representation theorem

Lattice epimorphisms and P-embeddings

The general duality

Some applications
Characterizing OD-graphs

Theorem

A relational structure (J, \leq, M) is isomorphic to an OD-graph of some lattice iff (J, \leq) is a poset and, for each $j \in J$, the following hold:

1. $\{ j \} \in M(j)$
2. C is an antichain w.r.t. \leq – for each $C \in M(j)$
3. $M(j)$ is an antichain w.r.t. \ll
4. $C \in M(j)$ and $C \ll \{ k \}$ implies $j \leq k$
5. if $C \in M(j)$ and $D_c \in M(c)$, $c \in C$, then there exists $E \in M(j)$ such that $E \ll \bigcup_{c \in C} D_c$
Characterizing OD-graphs

Theorem

A relational structure (J, \leq, M) is isomorphic to an OD-graph of some lattice iff (J, \leq) is a poset and, for each $j \in J$, the following hold:

1. $\{ j \} \in M(j)$
2. C is an antichain w.r.t. \leq – for each $C \in M(j)$
3. $M(j)$ is an antichain w.r.t. \ll
4. $C \in M(j)$ and $C \ll \{ k \}$ implies $j \leq k$
5. if $C \in M(j)$ and $D_c \in M(c)$, $c \in C$, then

 there exists $E \in M(j)$ such that $E \ll \bigcup_{c \in C} D_c$
Theorem

A relational structure \((J, \leq, M)\) is isomorphic to an OD-graph of some lattice iff \((J, \leq)\) is a poset and, for each \(j \in J\), the following hold:

1. \(\{j\} \in M(j)\)
2. \(C\) is an antichain w.r.t. \(\leq\) – for each \(C \in M(j)\)
3. \(M(j)\) is an antichain w.r.t. \(\ll\)
4. \(C \in M(j)\) and \(C \ll \{k\}\) implies \(j \leq k\)
5. if \(C \in M(j)\) and \(D_c \in M(c), c \in C\), then there exists \(E \in M(j)\) such that \(E \ll \bigcup_{c \in C} D_c\)
Characterizing \(OD \)-graphs

Theorem

A relational structure \((J, \leq, M)\) is isomorphic to an \(OD \)-graph of some lattice iff \((J, \leq)\) is a poset and, for each \(j \in J \), the following hold:

1. \(\{ j \} \in M(j) \)
2. \(C \) is an antichain w.r.t. \(\leq \) – for each \(C \in M(j) \)
3. \(M(j) \) is an antichain w.r.t. \(\ll \)
4. \(C \in M(j) \) and \(C \ll \{ k \} \) implies \(j \leq k \)
5. if \(C \in M(j) \) and \(D_c \in M(c), c \in C \), then
 \[\text{there exists } E \in M(j) \text{ such that } E \ll \bigcup_{c \in C} D_c \]
Characterizing OD-graphs

Theorem
A relational structure \((J, \leq, M)\) is isomorphic to an OD-graph of some lattice iff \((J, \leq)\) is a poset and, for each \(j \in J\), the following hold:

1. \(\{j\} \in M(j)\)
2. \(C\) is an antichain w.r.t. \(\leq\) – for each \(C \in M(j)\)
3. \(M(j)\) is an antichain w.r.t. \(<\)
4. \(C \in M(j)\) and \(C \ll \{k\}\) implies \(j \leq k\)
5. if \(C \in M(j)\) and \(D_c \in M(c), c \in C\), then there exists \(E \in M(j)\) such that \(E \ll \bigcup_{c \in C} D_c\)
Outline

- The OD-graph of a finite lattice
- A representation theorem
- Lattice epimorphisms and P-embeddings
- The general duality
- Some applications
Lattice epimorphisms and P-embeddings

- If \(f : L \to M \) is a lattice morphism, then \(\ell \dashv f \), with \(\ell : M \to L \).

- \(f \) is an epimorphism iff \(\ell \) is monic (an embedding) and moreover
 \[
 \ell_{|J(M)} : J(M) \longrightarrow J(L).
 \]

Theorem

If \(f \) is an epimorphism, then the restriction \(\ell_{|J(M)} \) is a P-morphism:

\[
C \in M(\ell(j)) \text{ iff there exists } D \in M(j) \text{ s.t. } \ell(D) = C.
\]
Lattice epimorphisms and P-embeddings

If $f : L \to M$ is a lattice morphism, then $\ell \dashv f$, with $\ell : M \to L$.

f is an epimorphism iff ℓ is monic (an embedding) and moreover

$$\ell_{|J(M)} : J(M) \to J(L).$$

Theorem

If f is an epimorphism, then the restriction $\ell_{|J(M)}$ is a P-morphism:

$$C \in \mathcal{M}(\ell(j)) \iff \text{there exists } D \in \mathcal{M}(j) \text{ s.t. } \ell(D) = C.$$
Lattice epimorphisms and P-embeddings

- If \(f : L \to M \) is a lattice morphism, then \(\ell \dashv f \), with \(\ell : M \to L \).

- \(f \) is an epimorphism iff \(\ell \) is monic (an embedding) and moreover

\[
\ell|_{J(M)} : J(M) \to J(L).
\]

Theorem

If \(f \) is an epimorphism, then the restriction \(\ell|_{J(M)} \) is a P-morphism:

\[
C \in \mathcal{M}(\ell(j)) \ \text{iff} \ \text{there exists} \ D \in \mathcal{M}(j) \ s.t. \ \ell(D) = C.
\]
Lattice epimorphisms and P-embeddings

- If \(f : L \rightarrow M \) is a lattice morphism, then \(\ell \dashv f \), with \(\ell : M \rightarrow L \).

- \(f \) is an epimorphism iff \(\ell \) is monic (an embedding) and moreover
 \[
 \ell_{|J(M)} : J(M) \rightarrow J(L).
 \]

Theorem

If \(f \) is an epimorphism, then the restriction \(\ell_{|J(M)} \) is a P-morphism:

\[
C \in M(\ell(j)) \iff \text{there exists } D \in M(j) \text{ s.t. } \ell(D) = C.
\]
A first duality

\(\text{Latt}_{\text{fin, epi}} : \) category of finite lattices and epimorphisms

\(\text{OD-Gr}_{\text{pe}} : \) category of OD-graphs and \(P \)-embeddings

Theorem

The contravariant functor

\[
(J(_), \leq, M) : \text{Latt}_{\text{fin, epi}} \longrightarrow \text{OD-Gr}_{\text{pe}}
\]

is full and faithful.

Its pseudo-inverse is given by the closure lattice of an OD-graph:

\[
\mathcal{L}(_) : \text{OD-Gr}_{\text{pe}} \longrightarrow \text{Latt}_{\text{fin, epi}}.
\]
A first duality

\[\mathbb{Latt}_{\text{fin, epi}} : \text{category of finite lattices and epimorphisms} \]
\[\mathbb{OD-Gr}_\text{pe} : \text{category of } \mathbb{OD}\text{-graphs and } P\text{-embeddings} \]

Theorem

The contravariant functor

\[(J(_), \leq, M) : \mathbb{Latt}_{\text{fin, epi}} \longrightarrow \mathbb{OD-Gr}_\text{pe} \]

is full and faithful.

Its pseudo-inverse is given by the closure lattice of an \(\mathbb{OD}\)-graph:

\[\mathbb{L}(_): \mathbb{OD-Gr}_\text{pe} \longrightarrow \mathbb{Latt}_{\text{fin, epi}}. \]
A first duality

\(\mathsf{Latt}_{\text{fin, epi}} \) : category of finite lattices and epimorphisms

\(\mathit{OD-Gr}_{\text{pe}} \) : category of \(\mathit{OD} \)-graphs and \(P \)-embeddings

Theorem

The contravariant functor

\[
(J(_), \leq, \mathcal{M}) : \mathsf{Latt}_{\text{fin, epi}} \longrightarrow \mathit{OD-Gr}_{\text{pe}}
\]

is full and faithful.

Its pseudo-inverse is given by the closure lattice of an \(\mathit{OD} \)-graph:

\[
\mathcal{L}(_): \mathit{OD-Gr}_{\text{pe}} \longrightarrow \mathsf{Latt}_{\text{fin, epi}}.
\]
A first duality

\(\mathbb{L} \text{att}_{\text{fin, epi}} : \) category of finite lattices and epimorphisms

\(\mathcal{O}D\mathcal{G} \text{r}_{\text{pe}} : \) category of \(\mathcal{O}D \)-graphs and \(P \)-embeddings

Theorem

The contravariant functor

\[
(J(-), \leq, \mathcal{M}) : \mathbb{L} \text{att}_{\text{fin, epi}} \longrightarrow \mathcal{O}D\mathcal{G} \text{r}_{\text{pe}}
\]

is full and faithful.

Its pseudo-inverse is given by the closure lattice of an \(\mathcal{O}D \)-graph:

\[
\mathcal{L}(-) : \mathcal{O}D\mathcal{G} \text{r}_{\text{pe}} \longrightarrow \mathbb{L} \text{att}_{\text{fin, epi}}.
\]
Outline

The OD-graph of a finite lattice

A representation theorem

Lattice epimorphisms and P-embeddings

The general duality

Some applications
Directed bisimulations

Let \(X = (X, \leq, M) \), \(Y = (Y, \leq, M) \) be two OD-graphs.

Definition

A relation \(L \subseteq X \times Y \) is a directed bisimulation if

- \(L \) is an downset of \(X^{op} \times Y \)
- \(xL \) is closed, for each \(x \in X \)
- \(\forall x \in X \exists C \in M(x) \text{ s.t. } \bigcup_{c \in C} cL \subseteq xL \)
- \(xLy \) and \(D \in M(y) \) implies there exists \(C \in M(x) \) s.t. \(C \subseteq \bigcup_{d \in D} \bar{L}d \)

where

\(x \bar{L} y \) iff \(y \geq z \) for all \(z \) s.t. \(xLz \).
Directed bisimulations

Let \(X = (X, \leq, M), \ Y = (Y, \leq, M) \) be two \(OD \)-graphs.

Definition

A relation \(L \subseteq X \times Y \) is a directed bisimulation if

- \(L \) is an downset of \(X^{op} \times Y \)
- \(xL \) is closed, for each \(x \in X \)
- \(\forall x \in X \exists C \in M(x) \text{ s.t. } \bigcup_{c \in C} cL \subseteq xL \)
- \(xLy \) and \(C \in M(x) \) implies there exists \(D \in M(y) \text{ s.t. } \bigcup_{c \in C} cL \supseteq D \),
- \(x\bar{L}y \) and \(D \in M(y) \) implies there exists \(C \in M(x) \text{ s.t. } C \subseteq \bigcup_{d \in D} \bar{L}d \),

where

\[
x\bar{L}y \text{ iff } y \geq z \text{ for all } z \text{ s.t. } xLz .
\]
Directed bisimulations

Let $X = (X, \leq, M), \ Y = (Y, \leq, M)$ be two OD-graphs.

Definition

A relation $L \subseteq X \times Y$ is a directed bisimulation if

- L is an downset of $X^{op} \times Y$
- xL is closed, for each $x \in X$
 - $\forall x \in X \exists C \in M(x)$ s.t. $\bigcup_{c \in C} cL \subseteq xL$
- xLy and $C \in M(x)$ implies there exists $D \in M(y)$ s.t. $\bigcup_{c \in C} cL \supseteq D$,
- $x\bar{L}y$ and $D \in M(y)$ implies there exists $C \in M(x)$ s.t. $C \subseteq \bigcup_{d \in D} \bar{L}d$

where

$x\bar{L}y$ iff $y \geq z$ for all z s.t. xLz.
Directed bisimulations

Let $X = (X, \leq, M)$, $Y = (Y, \leq, M)$ be two OD-graphs.

Definition
A relation $L \subseteq X \times Y$ is a directed bisimulation if

- L is an downset of $X^{op} \times Y$
- xL is closed, for each $x \in X$
- $\forall x \in X \exists C \in M(x)$ s.t. $\bigcup_{c \in C} cL \subseteq xL$
- xLy and $C \in M(x)$ implies there exists $D \in M(y)$ s.t. $\bigcup_{c \in C} cL \supseteq D$,
- $x\bar{L}y$ and $D \in M(y)$ implies there exists $C \in M(x)$ s.t. $C \subseteq \bigcup_{d \in D} \bar{L}d$

where $x\bar{L}y$ iff $y \geq z$ for all z s.t. xLz.
Directed bisimulations

Let $X = (X, \leq, M)$, $Y = (Y, \leq, M)$ be two OD-graphs.

Definition
A relation $L \subseteq X \times Y$ is a directed bisimulation if

1. L is an downset of $X^{op} \times Y$
2. xL is closed, for each $x \in X$
3. $\forall x \in X \exists C \in M(x)$ s.t. $\bigcup_{c \in C} cL \subseteq xL$
4. xLy and $C \in M(x)$ implies there exists $D \in M(y)$ s.t. $\bigcup_{c \in C} cL \supseteq D$,
5. $x\bar{L}y$ and $D \in M(y)$ implies there exists $C \in M(x)$ s.t. $C \subseteq \bigcup_{d \in D} \bar{L}d$

where $x\bar{L}y$ iff $y \geq z$ for all z s.t. xLz.

Back 15/23
Directed bisimulations

Let $X = (X, \leq, M)$, $Y = (Y, \leq, M)$ be two OD-graphs.

Definition

A relation $L \subseteq X \times Y$ is a directed bisimulation if

- L is an downset of $X^{op} \times Y$
- xL is closed, for each $x \in X$
- $\forall x \in X \exists C \in M(x)$ s.t. $\bigcup_{c \in C} cL \subseteq xL$
- xLy and $C \in M(x)$ implies there exists $D \in M(y)$ s.t. $\bigcup_{c \in C} cL \supseteq D$,
- $x\bar{L}y$ and $D \in M(y)$ implies there exists $C \in M(x)$ s.t. $C \subseteq \bigcup_{d \in D} \bar{L}d$

where

$x\bar{L}y$ iff $y \geq z$ for all z s.t. xLz.
Directed bisimulations

Let \(X = (X, \leq, M) \), \(Y = (Y, \leq, M) \) be two OD-graphs.

Definition

A relation \(L \subseteq X \times Y \) is a directed bisimulation if

- \(L \) is an downset of \(X^{op} \times Y \)
- \(xL \) is closed, for each \(x \in X \)
- \(\forall x \in X \exists C \in M(x) \) s.t. \(\bigcup_{c \in C} cL \subseteq xL \)
- \(xLy \) and \(C \in M(x) \) implies there exists \(D \in M(y) \) s.t. \(\bigcup_{c \in C} cL \supseteq D \),
- \(x\bar{L}y \) and \(D \in M(y) \) implies there exists \(C \in M(x) \) s.t. \(C \subseteq \bigcup_{d \in D} \bar{L}d \)

where

\(x\bar{L}y \) iff \(y \geq z \) for all \(z \) s.t. \(xLz \).
Directed bisimulations

Let \(X = (X, \leq, M) \), \(Y = (Y, \leq, M) \) be two \(OD \)-graphs.

Definition

A relation \(L \subseteq X \times Y \) is a directed bisimulation if

- \(L \) is an downset of \(X^{op} \times Y \)
- \(xL \) is closed, for each \(x \in X \)
- \(\forall x \in X \exists C \in M(x) \) s.t. \(\bigcup_{c \in C} cL \subseteq xL \)
- \(xLy \) and \(C \in M(x) \) implies there exists \(D \in M(y) \) s.t. \(\bigcup_{c \in C} cL \supseteq D \),
- \(x\bar{L}y \) and \(D \in M(y) \) implies there exists \(C \in M(x) \) s.t. \(C \subseteq \bigcup_{d \in D} \bar{L}d \)

where

\[x\bar{L}y \text{ iff } y \geq z \text{ for all } z \text{ s.t. } xLz. \]
The general duality (representation theorem)

\(\mathbf{Latt}_{\text{fin}} \): the category of finite lattices

\(\mathbf{OD-Gr} \): category of OD-graphs and directed bisimulations

Theorem

The contravariant functor

\[(J(_), \leq, M) : \mathbf{Latt}_{\text{fin}} \rightarrow \mathbf{OD-Gr} \]

is full and faithful.

The lattice of closed subsets of an OD-graph

\[\mathcal{L}(_): \mathbf{OD-Gr} \rightarrow \mathbf{Latt}_{\text{fin}} \]

gives rise to a contravariant pseudo-inverse.
The general duality (representation theorem)

\(\mathcal{L}_{\text{fin}} : \) the category of finite lattices

\(OD-\mathcal{Gr} : \) category of \(OD \)-graphs and directed bisimulations

Theorem

The contravariant functor
\[
(J(_), \leq, M) : \mathcal{L}_{\text{fin}} \longrightarrow OD-\mathcal{Gr}
\]

is full and faithful.

The lattice of closed subsets of an \(OD \)-graph
\[
\mathcal{L}(_): OD-\mathcal{Gr} \longrightarrow \mathcal{L}_{\text{fin}}
\]
gives rise to a contravariant pseudo-inverse.
The general duality (representation theorem)

\(\mathbb{Latt}_{\text{fin}} \): the category of finite lattices

\(\mathbb{OD-Gr} \): category of \(\mathbb{OD} \)-graphs and directed bisimulations

Theorem

The contravariant functor

\[
(J(_), \leq, M) : \mathbb{Latt}_{\text{fin}} \longrightarrow \mathbb{OD-Gr}
\]

is full and faithful.

The lattice of closed subsets of an \(\mathbb{OD} \)-graph

\[
\mathbb{L}(_): \mathbb{OD-Gr} \longrightarrow \mathbb{Latt}_{\text{fin}}
\]

gives rise to a contravariant pseudo-inverse.
The representation of arrows

An OD-graph (X, \leq, M):

a presentation of a join-semilattice:

$$j_X : \mathcal{O}(X, \leq) \longrightarrow \mathcal{O}(X, \leq)/j_X = \mathcal{L}(X, \leq, M)$$

with j_X is the closure operator induced by M.

A simulation from (X, \leq, M) to (Y, \leq, M):

a join-homomorphism F s.t. $\text{Ker}(j_X) \subseteq \text{Ker}(f)$:

$$\begin{array}{ccc}
\mathcal{O}(X, \leq) & \xrightarrow{j_X} & \mathcal{L}(X, \leq, M) \\
\downarrow & & \downarrow \\
\mathcal{L}(X, \leq, M) & \xrightarrow{F} & \mathcal{L}(Y, \leq, M)
\end{array}$$
The representation of arrows

An \(OD \)-graph \((X, \leq, M)\):

a presentation of a join-semilattice:

\[
j_X : \mathcal{O}(X, \leq) \rightarrow \mathcal{O}(X, \leq)/j_X = \mathcal{L}(X, \leq, M)
\]

with \(j_X \) is the closure operator induced by \(M \).

A simulation from \((X, \leq, M)\) to \((Y, \leq, M)\):

a join-homomorphism \(F \) s.t. \(\ker(j_X) \subseteq \ker(f) \):

\[
\begin{array}{c}
\mathcal{O}(X, \leq) \\
\downarrow j_X \\
\mathcal{L}(X, \leq, M) \\
\end{array}
\xrightarrow{F}
\begin{array}{c}
\mathcal{L}(Y, \leq, M)
\end{array}
\]
Lemma

Let $X = (X, \leq, M)$ and $Y = (Y, \leq, M)$. There is a posets-iso

$$\mathbb{L}_{\text{fin}, \lor}(\mathcal{L}(X), \mathcal{L}(Y)) \simeq \text{OD-Gr}_{\text{sim}}(X, Y)$$

where $\text{OD-Gr}_{\text{sim}}(X, Y)$ is the set of simulations $R \subseteq X \times Y$, i.e.:

- R is a lower set of $X^{\text{op}} \times Y$
- xR is closed, for each $x \in X$
- R is a simulation:

 xRy and $C \in M(x)$ implies there exists $D \in M(y)$ s.t. $\bigcup_{c \in C} cR \supseteq D$.
Simulations

Lemma

Let $X = (X, \leq, M)$ and $Y = (Y, \leq, M)$. There is a posets-iso

$$\mathbb{L}_{\text{fin}, \lor}(\mathcal{L}(X), \mathcal{L}(Y)) \simeq \text{OD-Gr}_{\text{sim}}(X, Y)$$

where $\text{OD-Gr}_{\text{sim}}(X, Y)$ is the set of simulations $R \subseteq X \times Y$, i.e.:

- R is a lower set of $X^{\text{op}} \times Y$
- xR is closed, for each $x \in X$
- R is a simulation:

\[xRy \text{ and } C \in M(x) \text{ implies } \exists D \in M(y) \text{ s.t. } \bigcup_{c \in C} cR \supseteq D.\]
Lemma

Let \(X = (X, \leq, M) \) and \(Y = (Y, \leq, M) \). There is a posets-iso

\[\mathbb{L}_{\text{fin}, \vee}(\mathcal{L}(X), \mathcal{L}(Y)) \cong OD-\mathcal{G}_{\text{sim}}(X, Y) \]

where \(OD-\mathcal{G}_{\text{sim}}(X, Y) \) is the set of simulations \(R \subseteq X \times Y \), i.e.:

- \(R \) is a lower set of \(X^{\text{op}} \times Y \)
- \(xR \) is closed, for each \(x \in X \)
- \(R \) is a simulation:

\[\text{xRy and } C \in M(x) \text{ implies there exists } D \in M(y) \text{ s.t. } \bigcup_{c \in C} cR \supseteq D. \]
Left adjoints in OD-Gr_{sim}

\[\text{Latt}_{\text{fin}}(X, Y) = \{ \text{right adjoints in Latt}_{\text{fin}, \lor}(X, Y) \} \]
\[= \{ \text{left adjoints in Latt}_{\text{fin}, \lor}(Y, X) \} \]

\[\text{Latt}_{\text{fin}}^{\text{op}}(Y, X) = \{ \ell \in \text{Latt}_{\text{fin}, \lor}(X, Y) \mid \ell \text{ is a left adjoint} \} \]
\[= \{ L \in OD$-$Gr_{\text{sim}}(X, Y) \mid L \text{ is a left adjoint} \} \].

Lemma
$L : X \rightarrow Y$ is a left adjoint in OD-Gr_{sim}, that is, there exists $R : Y \rightarrow X$ such that

\[L \supseteq R \subseteq \text{Id}_X, \quad \text{Id}_Y \subseteq R \supseteq L, \]

iff L is a directed bisimulation.
Left adjoints in OD-Gr_{sim}

\[
\text{Latt}_{\text{fin}}(X, Y) = \{ \text{right adjoints in } \text{Latt}_{\text{fin}, \vee}(X, Y) \} \\
= \{ \text{left adjoints in } \text{Latt}_{\text{fin}, \vee}(Y, X) \}
\]

\[
\text{Latt}_{\text{fin}}^{op}(Y, X) = \{ \ell \in \text{Latt}_{\text{fin}, \vee}(X, Y) \mid \ell \text{ is a left adjoint } \} \\
= \{ L \in OD$-$Gr_{sim}(X, Y) \mid L \text{ is a left adjoint } \}
\]

Lemma

$L : X \rightarrow Y$ is a left adjoint in OD-Gr_{sim}, that is, there exists $R : Y \rightarrow X$ such that

\[
L \; \overline{;;} \; R \subseteq \text{Id}_X, \quad \text{Id}_Y \subseteq R \; \overline{;;} \; L,
\]

iff L is a directed bisimulation.
Outline

The OD-graph of a finite lattice

A representation theorem

Lattice epimorphisms and P-embeddings

The general duality

Some applications
A Kripke (cover) semantics for lattice terms

Let (J, \leq, M) be an OD-graph and $\nu : X \rightarrow P(J)$ be closed.

\[
\begin{align*}
j \models x & \iff j \in \nu(x) \\
j \models \bigwedge_{i \in I} t_i & \iff j \models t_i, \ \forall i \in I \\
j \models \bigvee_{i \in I} t_i & \iff \exists C \in M(j) \text{ s.t. } \forall c \in C \exists i \in I \text{ s.t. } c \models t_i
\end{align*}
\]

For a lattice terms t, we have

\[
j \models t \iff j \in \tilde{\nu}(t).
\]
Extremal fixed-points on finite lattices

Context, the μ-terms:

$$ t = x \mid \bigwedge_{i \in I} t_i \mid \bigvee_{i \in I} t_i \mid \mu_x.t \mid \nu_x.t. $$

Theorem

For each n, there is a variety of lattices \mathcal{D}_n such that, for any lattice polynomial ϕ, the equation

$$ \phi^{n+1}(\bot) = \phi^n(\bot) $$

holds on its finite members.

Moreover, on \mathcal{D}_{3n}, we have that

$$ \phi^n(\bot) \neq \phi^{n-1}(\bot). $$
Extremal fixed-points on finite lattices

Context, the μ-terms:

$$t = x \mid \bigwedge_{i \in I} t_i \mid \bigvee_{i \in I} t_i \mid \mu_x.t \mid \nu_x.t.$$

Theorem

For each n, there is a variety of lattices \mathcal{D}_n such that, for any lattice polynomial ϕ, the equation

$$\phi^{n+1}(\bot) = \phi^n(\bot)$$

holds on its finite members.

Moreover, on \mathcal{D}_{3n}, we have that

$$\phi^n(\bot) \neq \phi^{n-1}(\bot).$$
Extremal fixed-points on finite lattices

Context, the μ-terms:

$$t = x \mid \bigwedge_{i \in I} t_i \mid \bigvee_{i \in I} t_i \mid \mu_x.t \mid \nu_x.t.$$

Theorem

For each n, there is a variety of lattices \mathcal{D}_n such that, for any lattice polynomial ϕ, the equation

$$\phi^{n+1}(\bot) = \phi^n(\bot) \quad (= \mu_x.\phi),$$

holds on its finite members.

Moreover, on \mathcal{D}_{3n}, we have that

$$\phi^n(\bot) \neq \phi^{n-1}(\bot).$$
Extremal fixed-points on finite lattices

Context, the μ-terms:

$$ t = x \mid \bigwedge_{i \in I} t_i \mid \bigvee_{i \in I} t_i \mid \mu_x.t \mid \nu_x.t. $$

Theorem

For each n, there is a variety of lattices D_n such that, for any lattice polynomial ϕ, the equation

$$ \phi^{n+1}(\bot) = \phi^n(\bot) \quad (= \mu_x.\phi), $$

holds on its finite members.
Moreover, on D_{3n}, we have that

$$ \phi^n(\bot) \neq \phi^{n-1}(\bot). $$
Thank you for the attention, ... questions?