Sémantique

Luigi Santocanale

Laboratoire d'Informatique Fondamentale, Centre de Mathématiques et Informatique, 39, rue Joliot-Curie - F-13453 Marseille

Plan

1 Le langage IML

2 Sémantique opérationnelle

3 Applications de la sémantique opérationnelle

Ensembles syntaxiques

 $\mathcal{N}\mathit{const}$: les constantes numériques :

$$\mathcal{N} \textit{const} := \hat{0}, \dots \hat{n}, \dots$$

Bconst : les constantes booléennes:

$$\mathcal{B}const := true, false,$$

 $\mathcal{L}oc$: les locations (identificateurs):

$$\mathcal{L}oc := [a - zA - Z][a - zA - Z0 - 9]*$$

Aexp: les expressions arithmétiques,

Bexp: les expressions booléennes,

Com: les commandes.

Ensembles syntaxiques (II)

$$\mathcal{A}$$
exp := \mathcal{N} const | \mathcal{L} oc | \mathcal{A} exp + \mathcal{A} exp | \mathcal{A} exp | \mathcal{A} exp * \mathcal{A} exp

$$\mathcal{B}$$
exp := \mathcal{B} const
 \mid not \mathcal{B} exp \mid \mathcal{B} exp or \mathcal{B} exp \mid \mathcal{B} exp and \mathcal{B} exp
 \mid \mathcal{A} exp $<=$ \mathcal{A} exp \mid \mathcal{A} exp $=$ \mathcal{A} exp

```
\textit{Com} := \textit{skip} \mid \textit{Com} \; ; \; \textit{Com} \mid \textit{Loc} := \textit{Aexp} \mid \textit{if} (\; \textit{Bexp} \;) \; \textit{then Com else Com}
```

Ensembles syntaxiques (II)

$$\mathcal{A}\mathit{exp} := \mathcal{N}\mathit{const} \mid \mathcal{L}\mathit{oc}$$

$$\mid \mathcal{A}\mathit{exp} \ + \ \mathcal{A}\mathit{exp} \mid \mathcal{A}\mathit{exp} \ - \ \mathcal{A}\mathit{exp} \mid \mathcal{A}\mathit{exp} \ * \ \mathcal{A}\mathit{exp}$$

$$\mathcal{B}$$
exp := \mathcal{B} const
 \mid not \mathcal{B} exp \mid \mathcal{B} exp or \mathcal{B} exp \mid \mathcal{B} exp and \mathcal{B} exp
 \mid \mathcal{A} exp $<=$ \mathcal{A} exp \mid \mathcal{A} exp $=$ \mathcal{A} exp

$$\mathit{Com} := \mathit{skip} \mid \mathit{Com} \; ; \; \mathit{Com}$$
 $\mid \mathit{Loc} := \mathit{Aexp}$ $\mid \mathit{if} (\; \mathit{Bexp} \;) \; \mathit{then} \; \mathit{Com} \; \mathit{else} \; \mathit{Com}$

Ensembles syntaxiques (II)

$$\mathcal{A}$$
exp := \mathcal{N} const | \mathcal{L} oc | \mathcal{A} exp + \mathcal{A} exp | \mathcal{A} exp - \mathcal{A} exp | \mathcal{A} exp * \mathcal{A} exp

$$\mathcal{B}$$
exp := \mathcal{B} const
 \mid not \mathcal{B} exp \mid \mathcal{B} exp or \mathcal{B} exp \mid \mathcal{B} exp and \mathcal{B} exp
 \mid \mathcal{A} exp $<=$ \mathcal{A} exp \mid \mathcal{A} exp $=$ \mathcal{A} exp

$$Com := skip \mid Com ; Com$$
 $\mid Loc := Aexp$
 $\mid if (Bexp) then Com else Com$

La notion d'état

Fonction associant un valeur entier positif à chaque location :

$$\sigma: \mathcal{L}oc \longrightarrow \mathcal{N}$$

L'ensemble des états :

$$\mathcal{S} := \{ \sigma \, | \, \sigma : \mathcal{L}oc \longrightarrow \mathcal{N} \}.$$

Sémantique opérationnelle structurelle

Exemple:

on veut définir une relation

$$(a, \sigma) \rightarrow n$$

à lire :

l'expression a, dans l'état σ , s'évalue à l'entier positif n.

opérationnelle : on peut traduire la sémantique en algorithme pour décider si $(a, \sigma) \rightarrow n$,

structurelle : dirigé par la syntaxe.

Sémantique opérationnelle structurelle

Exemple:

on veut définir une relation

$$(a,\sigma)\to n$$

à lire :

l'expression a, dans l'état σ , s'évalue à l'entier positif n.

opérationnelle : on peut traduire la sémantique en algorithme pour

décider si $(a, \sigma) \rightarrow n$,

structurelle : dirigé par la syntaxe.

$$\frac{1}{(\hat{n},\sigma) \to n} \hat{n} \in \mathcal{N} const$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L} oc$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0+a_1,\sigma) \to n} \text{ et } n = n_0 + n_1$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0-a_1,\sigma) \to n} \text{ et } n = n_0 - n_1$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1} \text{ et } n = n_0 n_1$$

$$\frac{1}{(\hat{n},\sigma) \to n} \hat{n} \in \mathcal{N} const$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L} oc$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0+a_1,\sigma) \to n} \quad \text{et } n = n_0 + n_0$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0-a_1,\sigma) \to n} \quad \text{et } n = n_0 - n_0$$

$$\frac{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1}{(a_0,\sigma) \to n_0 \quad (a_1,\sigma) \to n_1} \quad \text{et } n = n_0 n_1$$

$$\frac{1}{(\hat{n},\sigma) \to n} \hat{n} \in \mathcal{N} const$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L} oc$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L} oc$$

$$\frac{1}{(A_0,\sigma) \to n_0} (A_1,\sigma) \to n_1}{(A_0+A_1,\sigma) \to n} \text{ et } n = n_0 + n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} (A_1,\sigma) \to n_1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} (A_1,\sigma) \to n_1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} (A_1,\sigma) \to n_1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(\hat{n},\sigma) \to n} \hat{n} \in \mathcal{N}const$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L}oc$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L}oc$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0+A_1,\sigma) \to n_1} \text{ et } n = n_0 + n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(\hat{n},\sigma) \to n} \hat{n} \in \mathcal{N}const$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L}oc$$

$$\frac{1}{(X,\sigma) \to \sigma(X)} X \in \mathcal{L}oc$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0+A_1,\sigma) \to n_1} \text{ et } n = n_0 + n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_1} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

$$\frac{1}{(A_0,\sigma) \to n_0} \frac{1}{(A_0,\sigma) \to n_0} \text{ et } n = n_0 - n_1$$

Définition de la relation \rightarrow_{Aexp}

Definition

Posons $(a, \sigma) \to_{\mathcal{A}exp} n$ ssi il est possible de construire une arbre étiqueté (arbre de dérivation), à l'aide de telles règles, dont la racine est étiquetée par $(a, \sigma) \to n$.

Exemple : supposons que $\sigma(init) = 0$, montrons que

$$((init + \hat{5}) + (\hat{7} + \hat{9}), \sigma) \rightarrow 21:$$

$$(init,\sigma) o 0$$
 $(\hat{5},\sigma) o 5$ $(\hat{7},\sigma) o 7$ $(\hat{9},\sigma) o 9$ $(init+\hat{5},\sigma) o 5$ $(\hat{7}+\hat{9},\sigma) o 16$ $((init+\hat{5})+(\hat{7}+\hat{9}),\sigma) o 21$

Définition de la relation \rightarrow_{Aexp}

Definition

Posons $(a, \sigma) \to_{\mathcal{A}exp} n$ ssi il est possible de construire une arbre étiqueté (arbre de dérivation), à l'aide de telles règles, dont la racine est étiquetée par $(a, \sigma) \to n$.

Exemple : supposons que $\sigma(init) = 0$, montrons que

$$((init + \hat{5}) + (\hat{7} + \hat{9}), \sigma) \rightarrow 21:$$

$$\begin{array}{c|c} \hline (\textit{init},\sigma) \rightarrow 0 & \hline (\hat{5},\sigma) \rightarrow 5 \\ \hline (\textit{init}+\hat{5},\sigma) \rightarrow 5 & \hline (\hat{7},\sigma) \rightarrow 7 & \hline (\hat{9},\sigma) \rightarrow 9 \\ \hline (\textit{init}+\hat{5}) + (\hat{7}+\hat{9}),\sigma) \rightarrow 21 \\ \hline \end{array}$$

Définition de la relation \rightarrow_{Aexp}

Definition

Posons $(a, \sigma) \to_{\mathcal{A}exp} n$ ssi il est possible de construire une arbre étiqueté (arbre de dérivation), à l'aide de telles règles, dont la racine est étiquetée par $(a, \sigma) \to n$.

Exemple : supposons que $\sigma(init) = 0$, montrons que

$$((init + \hat{5}) + (\hat{7} + \hat{9}), \sigma) \rightarrow 21:$$

$$(\mathit{true}, \sigma) \rightarrow 1$$

$$(\mathit{false}, \sigma) \to 0$$

$$\frac{(a_0,\sigma)\to n_0 \quad (a_1,\sigma)\to n_1}{(a_0=a_1,\sigma)\to 1} \text{ et } n_0=n_1$$

$$\frac{(a_0,\sigma)\to n_0 \quad (a_1,\sigma)\to n_1}{(a_0=a_1,\sigma)\to 0} \text{ et } n_0\neq n_1$$

$$\overline{(a_0 \leq a_1, \sigma)
ightarrow 1} \quad \overline{(a_0 \leq a_1, \sigma)
ightarrow 0}$$

$$(\mathit{true}, \sigma) \rightarrow 1$$

(false,
$$\sigma$$
) \rightarrow 0

$$\frac{(a_0,\sigma)\to n_0 \quad (a_1,\sigma)\to n_1}{(a_0=a_1,\sigma)\to 1} \text{ et } n_0=n_1$$

$$\frac{(a_0,\sigma)\to n_0 \quad (a_1,\sigma)\to n_1}{(a_0=a_1,\sigma)\to 0} \text{ et } n_0\neq n_1$$

$$\overline{\left(a_0 \leq a_1, \sigma\right) \to 1} \quad \overline{\left(a_0 \leq a_1, \sigma\right) \to 0}$$

$$\overline{(true,\sigma) o 1}$$
 $\overline{(false,\sigma) o 0}$
 $\overline{(false,\sigma) o 0}$
 $\overline{(a_0,\sigma) o n_0 \quad (a_1,\sigma) o n_1} \quad \text{et } n_0 = n_1$
 $\overline{(a_0 = a_1,\sigma) o 1} \quad \text{et } n_0 = n_1$
 $\overline{(a_0,\sigma) o n_0 \quad (a_1,\sigma) o n_1} \quad \text{et } n_0 \neq n_1$
 $\overline{(a_0 = a_1,\sigma) o 0} \quad \cdots$
 $\overline{(a_0 \le a_1,\sigma) o 1} \quad \overline{(a_0 \le a_1,\sigma) o 0}$

$$egin{aligned} (b,\sigma) &
ightarrow 0 \ (ext{not } b,\sigma) &
ightarrow 1 \ \hline (b,\sigma) &
ightarrow 1 \ \hline (ext{not } b,\sigma) &
ightarrow 0 \end{aligned}$$

$$\frac{(b_0,\sigma) \rightarrow v_0 \quad (b_1,\sigma) \rightarrow v_1}{(b_0 \text{ and } b_1,\sigma) \rightarrow v} \text{ et } v = \textit{min}(v_0,v_1)$$

$$\frac{(b_0,\sigma)\to v_0 \quad (b_1,\sigma)\to v_1}{(b_0 \text{ or } b_1,\sigma)\to v} \text{ et } v=max(v_0,v_1)$$

$$(b,\sigma) o 0$$
 $(not\ b,\sigma) o 1$
 $(b,\sigma) o 1$
 $(b,\sigma) o 1$
 $(not\ b,\sigma) o 0$
 $(b_0,\sigma) o v_0 \quad (b_1,\sigma) o v_1$
 $(b_0\ and\ b_1,\sigma) o v$ et $v = min(v_0,v_1)$
 $(b_0,\sigma) o v_0 \quad (b_1,\sigma) o v_1$
 $(b_0,\sigma) o v_0 \quad (b_1,\sigma) o v_1$
 $(b_0\ or\ b_1,\sigma) o v$ et $v = max(v_0,v_1)$

$$egin{aligned} & \dfrac{(b,\sigma)
ightarrow 0}{(not\ b,\sigma)
ightarrow 1} \ & \dfrac{(b,\sigma)
ightarrow 1}{(not\ b,\sigma)
ightarrow 0} \ & \dfrac{(b,\sigma)
ightarrow v_0 \qquad (b_1,\sigma)
ightarrow v_1}{(b_0\ and\ b_1,\sigma)
ightarrow v} \ \ ext{et}\ v = ext{min}(v_0,v_1) \ & \dfrac{(b_0,\sigma)
ightarrow v_0 \qquad (b_1,\sigma)
ightarrow v_1}{(b_0\ or\ b_1,\sigma)
ightarrow v} \ \ ext{et}\ v = ext{max}(v_0,v_1) \end{aligned}$$

Évaluation des commandes

On veut définir une relation

$$(c,\sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

à lire :

si on exécute le commande c de l'état σ , alors cette commande se termine, et à la terminaison on se trouvera dans l'état σ' .

Remarque : une exécution peut ne pas se terminer.

Notation:

$$\sigma[m/X](Y) = \begin{cases} m, & \text{si } Y = X \\ \sigma(Y), & \text{sinon.} \end{cases}$$

Évaluation des commandes

On veut définir une relation

$$(c,\sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

à lire :

si on exécute le commande c de l'état σ , alors cette commande se termine, et à la terminaison on se trouvera dans l'état σ' .

Remarque : une exécution peut ne pas se terminer.

Notation:

$$\sigma[m/X](Y) = \begin{cases} m, & \text{si } Y = X \\ \sigma(Y), & \text{sinon.} \end{cases}$$

Évaluation des commandes

On veut définir une relation

$$(c,\sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

à lire :

si on exécute le commande c de l'état σ , alors cette commande se termine, et à la terminaison on se trouvera dans l'état σ' .

Remarque : une exécution peut ne pas se terminer.

Notation:

$$\sigma[m/X](Y) = \begin{cases} m, & \text{si } Y = X \\ \sigma(Y), & \text{sinon.} \end{cases}$$

$$(\textit{skip}, \sigma) \rightarrow \sigma$$

$$\frac{(c_0,\sigma)\to \tilde{\sigma} \quad (c_1,\tilde{\sigma})\to \sigma'}{(c_0;c_1,\sigma)\to \sigma'}$$

$$\frac{(a,\sigma)\to m}{(X:=a,\sigma)\to\sigma[m/X]}$$

$$(\mathit{skip}, \sigma) o \sigma$$

$$\frac{(c_0,\sigma)\to\tilde{\sigma}\quad (c_1,\tilde{\sigma})\to\sigma'}{(c_0;c_1,\sigma)\to\sigma'}$$

$$\frac{(a,\sigma)\to m}{(X:=a,\sigma)\to\sigma[m/X]}$$

$$(\mathit{skip}, \sigma) \rightarrow \sigma$$

$$rac{(c_0,\sigma)
ightarrow ilde{\sigma}\quad (c_1, ilde{\sigma})
ightarrow\sigma'}{(c_0;c_1,\sigma)
ightarrow\sigma'}$$

$$\frac{(a,\sigma)\to m}{(X:=a,\sigma)\to\sigma[m/X]}$$

$$(b,\sigma)
ightarrow 1 \quad (c_0,\sigma)
ightarrow \sigma'$$
 (if b then c_0 else $c_1,\sigma)
ightarrow \sigma'$ $(b,\sigma)
ightarrow 0 \quad (c_1,\sigma)
ightarrow \sigma'$ (if b then c_0 else $c_1,\sigma)
ightarrow \sigma'$ $(b,\sigma)
ightarrow 0$ (while b do $c,\sigma)
ightarrow \sigma$

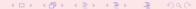
$$\frac{(b,\sigma) \to 1 \quad (c,\sigma) \to \tilde{\sigma} \quad (\textit{while b do } c,\tilde{\sigma}) \to \sigma'}{(\textit{while b do } c,\sigma) \to \sigma'}$$

$$\frac{(b,\sigma)\to 1 \quad (c_0,\sigma)\to\sigma'}{(\textit{if b then } c_0 \textit{ else } c_1,\sigma)\to\sigma'}$$

$$\frac{(b,\sigma)\to 0 \quad (c_1,\sigma)\to\sigma'}{(\textit{if b then } c_0 \textit{ else } c_1,\sigma)\to\sigma'}$$

$$\frac{(b,\sigma)\to 0}{(\textit{while b do } c,\sigma)\to\sigma}$$

$$\frac{(b,\sigma) \to 1 \quad (c,\sigma) \to \tilde{\sigma} \quad (\textit{while b do } c,\tilde{\sigma}) \to \sigma'}{(\textit{while b do } c,\sigma) \to \sigma'}$$



$$egin{aligned} & (b,\sigma)
ightarrow 1 & (c_0,\sigma)
ightarrow \sigma' \ \hline (\emph{if b then } c_0 \ \emph{else } c_1,\sigma)
ightarrow \sigma' \ \hline & (b,\sigma)
ightarrow 0 & (c_1,\sigma)
ightarrow \sigma' \ \hline & (\emph{if b then } c_0 \ \emph{else } c_1,\sigma)
ightarrow \sigma' \ \hline & (b,\sigma)
ightarrow 0 \ \hline & (\emph{while b do } c,\sigma)
ightarrow \sigma \end{aligned}$$

$$\frac{(b,\sigma) \to 1 \quad (c,\sigma) \to \tilde{\sigma} \quad (\textit{while b do } c,\tilde{\sigma}) \to \sigma'}{(\textit{while b do } c,\sigma) \to \sigma'}$$

Les relations \rightarrow

Definition

Posons

$$(b,\sigma) \rightarrow_{\mathcal{B}\mathsf{exp}} \mathsf{v} \qquad \qquad (c,\sigma) \rightarrow_{\mathcal{C}\mathsf{om}} \sigma'$$

ssi il est possible de construire, à l'aide de telles règles, une arbre de dérivation dont la racine est étiquetée par

$$(b,\sigma) \to v$$
 $(c,\sigma) \to \sigma'$

Équivalences

Definition

$$a \sim_{\mathcal{A}exp} a' \text{ ssi } \forall \sigma \in \mathcal{S}, n \in \mathcal{N}$$

$$(a, \sigma) \to_{\mathcal{A}exp} n \text{ ssi } (a', \sigma) \to_{\mathcal{A}exp} n$$

$$c \sim_{\mathcal{C}om} c' \text{ ssi } \forall \sigma, \sigma' \in \mathcal{S}$$

$$(c, \sigma) \rightarrow_{\mathcal{C}om} \sigma' \text{ ssi } (c', \sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

Équivalences

Definition

$$a \sim_{\mathcal{A}exp} a' \text{ ssi } \forall \sigma \in \mathcal{S}, n \in \mathcal{N}$$

$$(a, \sigma) \to_{\mathcal{A}exp} n \text{ ssi } (a', \sigma) \to_{\mathcal{A}exp} n$$

$$b \sim_{\mathcal{B}\mathsf{exp}} b' \text{ ssi } \forall \sigma \in \mathcal{S}, v \in \{0, 1\}$$
$$(b, \sigma) \to_{\mathcal{B}\mathsf{exp}} v \text{ ssi } (v', \sigma) \to_{\mathcal{B}\mathsf{exp}} v$$

$$c \sim_{\mathcal{C}om} c' \operatorname{ssi} \ \forall \sigma, \sigma' \in \mathcal{S}$$

$$(c, \sigma) \rightarrow_{\mathcal{C}om} \sigma' \operatorname{ssi} (c', \sigma) \rightarrow_{\mathcal{C}om} \sigma$$

Équivalences

Definition

$$a \sim_{\mathcal{A}exp} a' \text{ ssi } \forall \sigma \in \mathcal{S}, n \in \mathcal{N}$$

$$(a, \sigma) \to_{\mathcal{A}exp} n \text{ ssi } (a', \sigma) \to_{\mathcal{A}exp} n$$

$$b \sim_{\mathcal{B}\mathsf{exp}} b' \text{ ssi } \forall \sigma \in \mathcal{S}, v \in \{0, 1\}$$
$$(b, \sigma) \to_{\mathcal{B}\mathsf{exp}} v \text{ ssi } (v', \sigma) \to_{\mathcal{B}\mathsf{exp}} v$$

$$c \sim_{\mathcal{C}om} c' \text{ ssi } \forall \sigma, \sigma' \in \mathcal{S}$$

$$(c, \sigma) \rightarrow_{\mathcal{C}om} \sigma' \text{ ssi } (c', \sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

Un exemple étendu

Soit

$$p_0 = while \ b \ do \ c$$

 $p_1 = if \ b \ then \ c; p_0 \ else \ skip$

On a

$$p_0 \sim_{\mathcal{C}om} p_1$$

c.-à-d.

$$(p_0,\sigma) \rightarrow_{\mathcal{C}om} \sigma' \text{ ssi } (p_1,\sigma) \rightarrow_{\mathcal{C}om} \sigma'$$

pour toute couple d'états σ , σ' .

Ou bien $\sigma' = \sigma$ et

$$\frac{\vdots}{(b,\sigma)\to 0}$$
(while b do c,σ) $\to \sigma$

$$\cfrac{\vdots}{(b,\sigma)\to 0} \qquad \cfrac{(skip,\sigma)\to \sigma}{(if\ b\ then\ c;\ p_0\ else\ skip,\sigma)\to \sigma}$$

Ou bien $\sigma' = \sigma$ et

$$\cfrac{\cfrac{\vdots}{(b,\sigma)\to 0}}{(\textit{while b do } c,\sigma)\to \sigma}$$

$$\cfrac{rac{\vdots}{(b,\sigma) o 0}\qquad \cfrac{(\mathit{skip},\sigma) o \sigma}{(\mathit{if}\ b\ \mathit{then}\ c;p_0\ \mathit{else}\ \mathit{skip},\sigma) o \sigma}$$

Sinon:

$$egin{array}{ccccc} dots & dots &$$

et donc

$$\frac{\vdots}{(b,\sigma) \to 1} \frac{\vdots}{(c,\sigma) \to \tilde{\sigma}} \frac{\vdots}{(p_0,\tilde{\sigma}) \to \sigma'}$$

$$\frac{(c;p_0,\sigma) \to \sigma}{(c;p_0,\sigma) \to \sigma'}$$

Sinon:

$$egin{array}{ccccc} dots & dots &$$

$$\dfrac{\vdots}{(b,\sigma) \to 1} \dfrac{\dfrac{\vdots}{(c,\sigma) \to \widetilde{\sigma}} \dfrac{\vdots}{(p_0,\widetilde{\sigma}) \to \sigma'}}{(c;p_0,\sigma) \to \sigma} \\ \dfrac{(c;p_0,\sigma) \to \sigma'}{(c;p_0,\sigma) \to \sigma'}$$

Ou bien

$$\frac{\vdots}{(b,\sigma)\to 0} \qquad \overline{(skip,\sigma)\to \sigma'}$$

$$(if \ b \ then \ c; p_0 \ else \ skip,\sigma)\to \sigma'$$

et donc $\sigma' = \sigma$ et

$$\cfrac{\cfrac{\vdots}{(b,\sigma)\to 0}}{(\textit{while b do } c,\sigma)\to \sigma}$$

Ou bien

$$\frac{\vdots}{(b,\sigma)\to 0} \qquad \overline{(skip,\sigma)\to \sigma'}$$

$$(if \ b \ then \ c; p_0 \ else \ skip,\sigma)\to \sigma'$$

et donc $\sigma' = \sigma$ et

$$\cfrac{\cfrac{\vdots}{(b,\sigma)\to 0}}{(\textit{while b do } c,\sigma)\to \sigma}$$

Sinon:

$$\cfrac{\vdots}{\cfrac{(b,\sigma)\to 1}} \cfrac{\cfrac{\vdots}{(c,\sigma)\to \tilde{\sigma}} \cfrac{(p_0,\tilde{\sigma})\to \sigma'}{(p_0,\sigma)\to \sigma} }$$
 (if b then c; p_0 else skip, σ) $\rightarrow \sigma'$

$$\dfrac{\vdots}{(b,\sigma) \to 1} \quad \dfrac{\vdots}{(c,\sigma) \to \tilde{\sigma}} \quad \dfrac{\vdots}{(\textit{while b do } c, \tilde{\sigma}) \to \sigma'} \\ \qquad \qquad (\textit{while b do } c, \sigma) \to \sigma'$$

Sinon:

$$\dfrac{\vdots}{(b,\sigma) \to 1} \dfrac{\dfrac{\vdots}{(c,\sigma) \to \tilde{\sigma}} \dfrac{\vdots}{(p_0,\tilde{\sigma}) \to \sigma'}}{(c;p_0,\sigma) \to \sigma} \\ \dfrac{(c;p_0,\sigma) \to \sigma'}{(if\ b\ then\ c;p_0\ else\ skip,\sigma) \to \sigma'}$$

$$egin{array}{ccccc} dots & dots & dots & dots & dots \ \hline (b,\sigma)
ightarrow 1 & (c,\sigma)
ightarrow ilde{\sigma} & (ext{while b do } c, ilde{\sigma})
ightarrow \sigma' \ & (ext{while b do } c,\sigma)
ightarrow \sigma' \end{array}$$

Sinon:

$$\frac{\vdots}{(b,\sigma) \to 1} \frac{\overline{(c,\sigma) \to \tilde{\sigma}} \quad \overline{(p_0,\tilde{\sigma}) \to \sigma'}}{(c;p_0,\sigma) \to \sigma}$$

$$(if \ b \ then \ c; p_0 \ else \ skip,\sigma) \to \sigma'$$

$$egin{array}{ccccc} dots & dots & dots & dots & dots \ \hline (b,\sigma)
ightarrow 1 & (c,\sigma)
ightarrow ilde{\sigma} & (ext{while b do } c, ilde{\sigma})
ightarrow \sigma' \ & (ext{while b do } c,\sigma)
ightarrow \sigma' \end{array}$$

