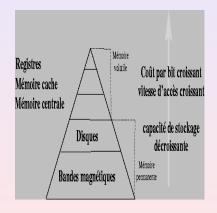
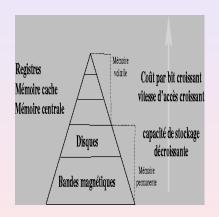
La gestion de la mémoire

Luigi Santocanale


Laboratoire d'Informatique Fondamentale, Centre de Mathématiques et Informatique, 39, rue Joliot-Curie - F-13453 Marseille

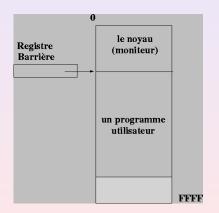
7 décembre 2005

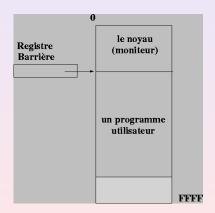

Plan

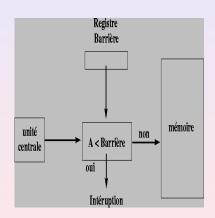
- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë: la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

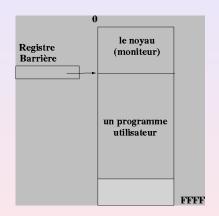
Les mémoires

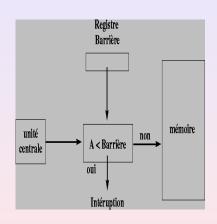
Les mémoires

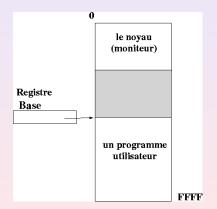

CARACTERISTIQUES DES TYPES DE MEMOIRES			
TYPE DE MEMOIRE	TAILLE (Octets)	TEMPS D'ACCES (secondes)	COUT RELATIF PAR BIT
CACHE	10 ³ -10 ⁴	10 ⁻⁸	10
MEMOIRE CENTRALE	10 ⁶ -10 ⁷	10 ⁻⁷	1
DISQUE	10 ⁸ -10 ⁹	10 ⁻³ -10 ⁻²	10 ⁻² -10 ⁻³
BANDE	10 ⁸ -10 ⁹	10-10 ²	10 ⁻⁴

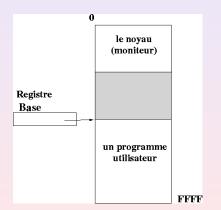

Plan

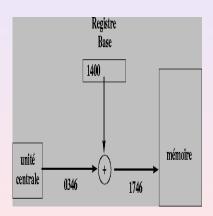

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

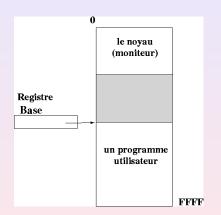


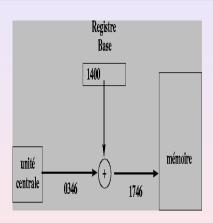











```
si ( adresse <= Barriere )
lever exception
sinon
utiliser adresse
```


adressephysique = adresselogique + Base

Adresses logiques vs. adresses physiques

Adresses logiques:

• privé au le programme, utilisé par l'unité centrale.

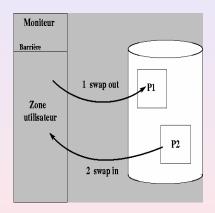
Adresses physiques

- accès à la mémoire, instructions de lecture/écriture de/à un registre,
- la MMU (« memory management unit ») transforme les adresses logiques en adresses physiques.

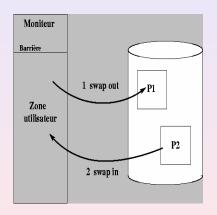
Adresses logiques vs. adresses physiques

Adresses logiques:

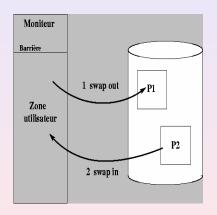
• privé au le programme, utilisé par l'unité centrale.

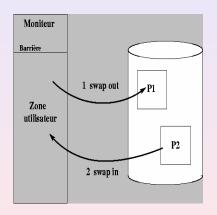

Adresses physiques:

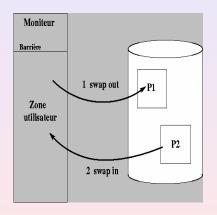
- accès à la mémoire, instructions de lecture/écriture de/à un registre,
- la MMU (« memory management unit ») transforme les adresses logiques en adresses physiques.

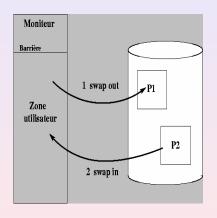

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages




- Cout
- Taille des processus
- Contraintes sur le E/S


- Coût
- Taille des processus
- Contraintes sur le E/S


- Coût
- Taille des processus
- Contraintes sur le E/S :

- Coût
- Taille des processus
- Contraintes sur le E/S :
 - ne pas swapper les processu
 - réaliser des buffers de E/S dans le noyau (voir UNIX).

- Coût
- Taille des processus
- Contraintes sur le E/S :
 - ne pas swapper les processus en attante de E/S
 - réaliser des buffers de E/S dans le noyau (voir UNIX).

- Coût
- Taille des processus
- Contraintes sur le E/S :
 - ne pas swapper les processus en attante de E/S
 - réaliser des buffers de E/S dans le noyau (voir UNIX).

Le partage de la mémoire entre processus

Proc1
Proc2

Procn

Problèmes:

- Protection entre processus
- Allocation de la mémoire aux processus (ordonnancement)

La protection entre processus : deux registres

Comment choisir l'endroit où charger un nouveaux processus :

- First-fit: premier bloc suffisamment grand.
- Best-fit: plus petit bloc suffisamment grand.
- Worst-fit : le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc)

Comment choisir l'endroit où charger un nouveaux processus :

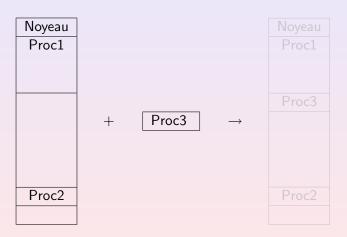
- First-fit: premier bloc suffisamment grand.
- Best-fit: plus petit bloc suffisamment grand.
- Worst-fit: le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc).

Comment choisir l'endroit où charger un nouveaux processus :

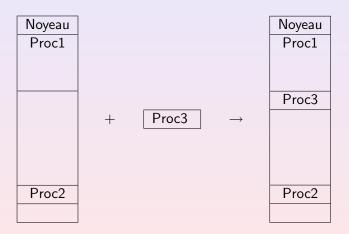
- First-fit: premier bloc suffisamment grand.
- Best-fit : plus petit bloc suffisamment grand.
- Worst-fit : le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc).

Comment choisir l'endroit où charger un nouveaux processus :

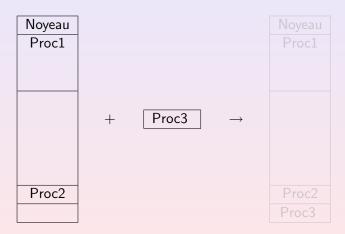
- First-fit: premier bloc suffisamment grand.
- Best-fit: plus petit bloc suffisamment grand.
- Worst-fit : le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc).

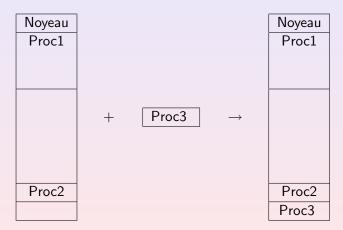

Comment choisir l'endroit où charger un nouveaux processus :

- First-fit : premier bloc suffisamment grand.
- Best-fit: plus petit bloc suffisamment grand.
- Worst-fit: le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc).

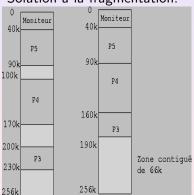

Comment choisir l'endroit où charger un nouveaux processus :

- First-fit : premier bloc suffisamment grand.
- Best-fit: plus petit bloc suffisamment grand.
- Worst-fit : le bloc qui nous laisse le plus grand bloc libre (le plus grand bloc).

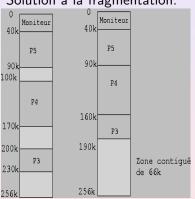

First fit


First fit

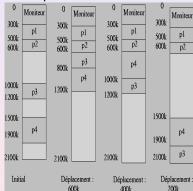
Best & worst fit



Best & worst fit


Le compactage

Solution à la fragmentation.



Le compactage

Solution à la fragmentation.

Exemples:

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

But : solution à la fragmentation, Voir : la gestion de l'espace sur disque, les bloques.

- La mémoire logique est découpée en pages
- Une adresse logique est découpée en une couple

(page, déplacement)

But : solution à la fragmentation,

Voir : la gestion de l'espace sur disque, les bloques.

- La mémoire logique est découpée en pages.
- Une adresse logique est découpée en une couple : (page, déplacement)

- (ロ) (団) (E) (E) (E) (O)

But : solution à la fragmentation,

Voir : la gestion de l'espace sur disque, les bloques.

- La mémoire logique est découpée en pages.
- Une adresse logique est découpée en une couple : (page, déplacement)

Si

$$A = adresse logique,$$

alors

$$page = A/T,$$

$$\mathsf{d}\mathsf{\acute{e}}\mathsf{placement} = A\%\,T$$

But : solution à la fragmentation,

Voir : la gestion de l'espace sur disque, les bloques.

- La mémoire logique est découpée en pages.
- Une adresse logique est découpée en une couple : (page, déplacement)

Si

$$A = adresse logique,$$

I = taille de page

alors

page =
$$A/T$$
,

déplacement = A%7

But : solution à la fragmentation,

Voir : la gestion de l'espace sur disque, les bloques.

- La mémoire logique est découpée en pages.
- Une adresse logique est découpée en une couple : (page, déplacement)

Si

$$A = adresse logique,$$

T =taille de page

alors

$$\mathsf{page} = A/T,$$

déplacement = A%T

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d)$$
 .

Gestion de la multiprogrammation

Le PTBR, registre de base de la table de page.

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d).$$

Gestion de la multiprogrammation

Le PTBR, registre de base de la table de page

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages.
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d).$$

Gestion de la multiprogrammation

Le PTBR, registre de base de la table de pages

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages.
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d).$$

Gestion de la multiprogrammation

• Le PTBR, registre de base de la table de pages

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages.
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d).$$

Gestion de la multiprogrammation :

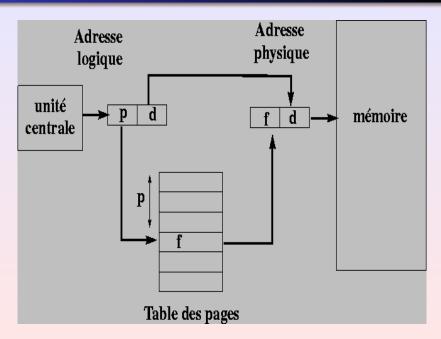
• Le PTBR, registre de base de la table de pages

- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages.
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

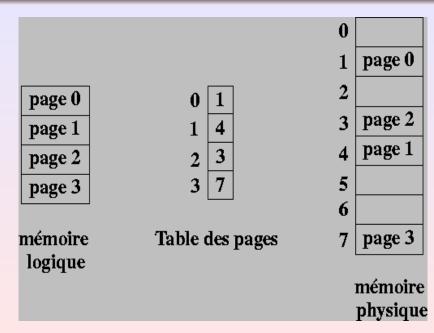
$$phys(p,d) = (f(p),d).$$

Gestion de la multiprogrammation :

• Le PTBR, registre de base de la table de pages,


- La mémoire physique est découpée en cadres de page (même taille d'une page).
- Adresses physique est un couple (f, d), cadre de pages et déplacement.
- A chaque page logique p peut correspondre un cadre de page f = f(p).
- Cette correspondance est maintenue dans la table des pages.
- La MMU (memory management unit) calcule un adresse physique à partir d'un adresse logique selon la formule

$$phys(p,d) = (f(p),d).$$


Gestion de la multiprogrammation :

- Le PTBR, registre de base de la table de pages,
 - « page-table base register ».

Traduction des adresses logiques en adresses physiques

Exemple

Les tables de pages : temps d'accès

Problème:

• Le temps d'acces en mémoire est doublé.

Solution

- Les TLBs, registres associatifs,
 - « translation look-aside buffers »:
 - on y cache la correspondance $p \rightarrow f(p)$,
 - recherche de la valeur f(p) assez efficace,
 - haut coût de ce matériel.

Les tables de pages : temps d'accès

Problème:

• Le temps d'acces en mémoire est doublé.

Solution:

- Les TLBs, registres associatifs,
 - « translation look-aside buffers »:
 - on y cache la correspondance $p \rightarrow f(p)$,
 - recherche de la valeur f(p) assez efficace,
 - haut coût de ce matériel.

Taux de présence et coût d'accès en mémoire

Taux de présence :

probabilité que la valeur f(p) se trouve dans un TLB.

taux de présence = 0,80

temps d'un accès en mémoire = 100 nanosecondes

temps d'accès aux TLBs = 20 nanosecondes

temps effectif d'accès en mémoire = 0, 8 * 120 + 0, 2 * 220

nanosecondes

Taux de présence et coût d'accès en mémoire

Taux de présence :

probabilité que la valeur f(p) se trouve dans un TLB.

taux de présence = 0,80

temps d'un accès en mémoire = 100 nanosecondes

temps d'accès aux TLBs = 20 nanosecondes

temps effectif d'accès en mémoire = 0, 8 * 120 + 0, 2 * 220nanosecondes

Les tables de pages : utilisation de la mémoire

Remarque: une table par processus.

Problème: si

adresse logique
$$\in \{0, \dots, 2^{32} - 1\}$$
taille d'une page $= 4K = 2^{12}$,

alors

taille de la table de pages
$$= 2^{20}$$
.

Solutions :

- plusieurs niveaux d'indirection,
- tables de pages inversées.

Les tables de pages : utilisation de la mémoire

Remarque : une table par processus.

Problème: si

adresse logique
$$\in \{0, \dots, 2^{32} - 1\}$$
 taille d'une page $= 4K = 2^{12}$,

alors

taille de la table de pages
$$= 2^{20}$$
.

Solutions

- plusieurs niveaux d'indirection,
- tables de pages inversées.

Les tables de pages : utilisation de la mémoire

Remarque : une table par processus.

Problème: si

adresse logique
$$\in \{0, \dots, 2^{32} - 1\}$$
 taille d'une page $= 4K = 2^{12}$,

alors

taille de la table de pages
$$= 2^{20}$$
.

Solutions:

- plusieurs niveaux d'indirection,
- tables de pages inversées.

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

La mémoire segmentée

But:

- Partage des ressources (le code) entre plusieurs programmes.
- Organisation de la mémoire en unités logiques :
 - code (TEXT),
 - données statiques initialisés (DATA),
 - données statiques non initialisés (BSS),
 - données dynamiques (TAS),
 - pile d'exécution.

Solution à la fragmentation : on couple segmentation et pagination.

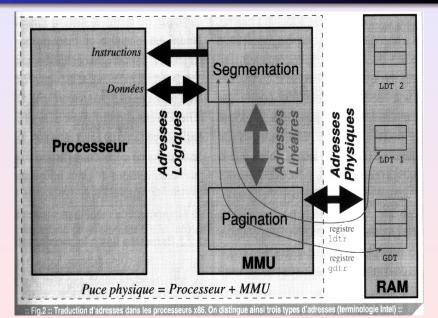
La mémoire segmentée

But:

- Partage des ressources (le code) entre plusieurs programmes.
- Organisation de la mémoire en unités logiques :
 - code (TEXT),
 - données statiques initialisés (DATA),
 - données statiques non initialisés (BSS),
 - données dynamiques (TAS),
 - pile d'exécution.

Solution à la fragmentation : on couple segmentation et pagination.

La mémoire segmentée


But:

- Partage des ressources (le code) entre plusieurs programmes.
- Organisation de la mémoire en unités logiques :
 - code (TEXT),
 - données statiques initialisés (DATA),
 - données statiques non initialisés (BSS),
 - données dynamiques (TAS),
 - pile d'exécution.

Solution à la fragmentation : on couple segmentation et pagination.

magasine)

...sur un x86

GDT : Global descriptor table. Description des adresses et attributs des segments partagés.

Appartient aux noyau.

LDT : Local descriptor table. Description des adresses et attributs des segments appartenant à un processus donné.

Appartient au processus.

gdtr, ldtr:

...sur un x86

GDT : Global descriptor table. Description des adresses et attributs des segments partagés.

Appartient aux noyau.

LDT : Local descriptor table. Description des adresses et attributs des segments appartenant à un processus donné. Appartient au processus.

gdtr, ldtr

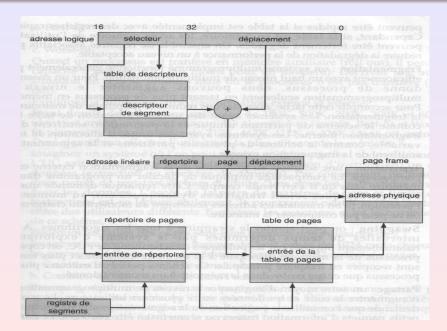
... sur un x86

GDT : Global descriptor table. Description des adresses et attributs des segments partagés.

Appartient aux noyau.

LDT : Local descriptor table. Description des adresses et attributs des segments appartenant à un processus donné. Appartient au processus.

gdtr, ldtr


...sur un x86

GDT : Global descriptor table. Description des adresses et attributs des segments partagés.

Appartient aux noyau.

LDT : Local descriptor table. Description des adresses et attributs des segments appartenant à un processus donné. Appartient au processus.

gdtr, ldtr:

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

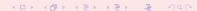
Les limites du swap

Problèmes avec le swap :

- o coût.
- pas possible avoir des processus plus grand que la mémoire vive.

Remarques

- portions du code très souvent utilisés, portions du code peu souvent utilisés,
- de même, pour les données.


Les limites du swap

Problèmes avec le swap :

- o coût.
- pas possible avoir des processus plus grand que la mémoire vive.

Remarques:

- portions du code très souvent utilisés, portions du code peu souvent utilisés,
- de même, pour les données.

Solutions

Les « overlays » :

 morceaux d'un programme chargé en mémoire de façon séquentielle.

Chargement dynamique

• une fonction est chargée en mémoire seulement à son appel.

Problèmes

• le travail est laissé au programmeur.

Solutions

Les « overlays » :

 morceaux d'un programme chargé en mémoire de façon séquentielle.

Chargement dynamique:

• une fonction est chargée en mémoire seulement à son appel.

Problèmes

• le travail est laissé au programmeur.

Solutions

Les « overlays » :

 morceaux d'un programme chargé en mémoire de façon séquentielle.

Chargement dynamique:

• une fonction est chargée en mémoire seulement à son appel.

Problèmes:

• le travail est laissé au programmeur.

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état
 - Pour y accéder il faut préalablement la charger en mémoirne

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état

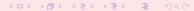
- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état:

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état:

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,


- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état:
 - valide : le cadre de pages est en mémoire vive,
 - invalide : le cadre de page se trouve sur disque
 - Pour y accéder il faut préalablement la charger en mémoire.

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état:
 - valide : le cadre de pages est en mémoire vive,
 - invalide : le cadre de page se trouve sur disque.

 Pour y accéder il faut préalablement la charger en mémoire.

- La mémoire logique (virtuelle) est découpée en pages.
- La mémoire virtuelle est potentiellement infinie.
- La mémoire physique est découpée en cadres de page.
- La mémoire physique est composée de : mémoire vive, mémoire sur support swap,

- Un nombre restreint de pages est chargé en mémoire vive.
- Une entrée dans la table des pages peut être dans l'état:
 - valide : le cadre de pages est en mémoire vive,
 - invalide : le cadre de page se trouve sur disque.
 Pour y accéder il faut préalablement la charger en mémoire.

Accès à un adresses logique

On demande l'accès à un adresses logique :

- si la page se trouve en mémoire vive continuer,
- sinon, lever une interruption Page Fault, et
- traiter l'interruption : charger la page en mémoire vive,
- une fois que la page demandé est en place, executer à nouveaux l'opération qui a declanché le Page Fault.

Remarque

une instruction doit être interruptible, par exemple :

add A B in C

avec un Page Fault sur l'accès à C.

Accès à un adresses logique

On demande l'accès à un adresses logique :

- si la page se trouve en mémoire vive continuer,
- sinon, lever une interruption Page Fault, et
- traiter l'interruption : charger la page en mémoire vive,
- une fois que la page demandé est en place, executer à nouveaux l'opération qui a declanché le Page Fault.

Remarque:

une instruction doit être interruptible, par exemple :

add A B in C

avec un Page Fault sur l'accès à C.

- interruption,
- sauvegarde du contexte
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages
- état : en attente de se dérouler,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus
- interruption périphérique
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique.
- mise à jour table des pages
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,

- restauration du contexte du processus ←□ → ←□ → ←□ → ←□ → ←□ →

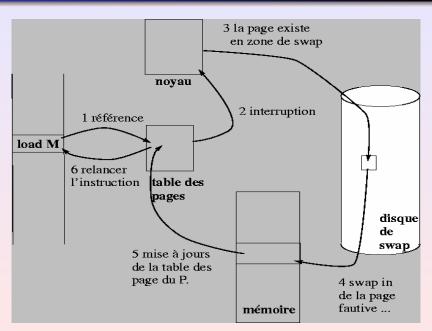
- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages,
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus
- reconnaissance interruption périphérique
- mise à jour table des pages
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus
- reconnaissance interruption périphérique
- mise à jour table des pages
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,



- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages
- état : en attente de se dérouler,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages,
- état : en attente de se dérouler,

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages,
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,
 restauration du contexte du processus.

- interruption,
- sauvegarde du contexte,
- reconnaissance erreur de page,
- déterminer où la page se trouve sur la mémoire secondaire,
- charger la page dans en endroit libre, ou remplacer une page,
- attente du transfert de la périphérique, et allocation la CPU à quelques autre processus,
- interruption périphérique,
- sauvegarde du contexte du processus,
- reconnaissance interruption périphérique,
- mise à jour table des pages,
- état : en attente de se dérouler,
- quand choisi par l'ordonnanceur,
 restauration du contexte du processus.

Coût du Demand Paging

Calcul du coût :

temps effectif =
$$(1 - p) * ma + p * (temps traitement)$$

οù

Exemple: si

$$\it ma=1$$
 microseconde emps traitement = 5000 microsecondes $\it p=1/1000$ (un Page Fault chaque 1000 accès)

alors

temps effectif =
$$(1-p) + p * 5000 = 5,999$$

Coût du Demand Paging

Calcul du coût :

temps effectif =
$$(1 - p) * ma + p * (temps traitement)$$

οù

p =probabilité du Page Fault

ma = temps acces à la mémoire

Exemple: si

ma = 1 microseconde

temps traitement = 5000 microsecondes

p=1/1000 (un Page Fault chaque 1000 accès)

alors

temps effectif =
$$(1-p) + p * 5000 = 5,999$$

Coût du Demand Paging

Calcul du coût :

temps effectif =
$$(1 - p) * ma + p * (temps traitement)$$

οù

$$p = \text{probabilit\'e du Page Fault}$$

Exemple: si

$$ma = 1$$
 microseconde

temps traitement = 5000 microsecondes

$$p=1/1000$$
 (un Page Fault chaque 1000 accès)

alors

temps effectif =
$$(1 - p) + p * 5000 = 5,999$$

Plan

- Préambule
- 2 Le partage de la mémoire
 - Protection de l'espace d'adressage
 - Allocation de la mémoire contiguë
 - Allocation non-contiguë : la pagination
 - Segmentation
- 3 La mémoire virtuelle
 - Les limites du swap
 - La pagination à la demande
 - Algorithmes de remplacement de pages

Contexte

- Un accès en mémoire déclenche un page fault.
- Il faut allouer un cadre de page libre en mémoire vive.
- Tous les cadres de page sont occupés.
- Choisir une victime :
 - un cadre à déplacer en mémoire secondaire.
- On libère ce cadre, on y transfère le cadre demandé.

Remarques

- Le nombre de remplacements augmente avec le niveaux de multiprogrammation.
- Un remplacement nécessite deux transferts vers/du disque : si le cadre n'est pas sale et s'il existe une copie sur disque, alors il n'est pas nécessaire le recopier sur disque

Contexte

- Un accès en mémoire déclenche un page fault.
- Il faut allouer un cadre de page libre en mémoire vive.
- Tous les cadres de page sont occupés.
- Choisir une victime:

un cadre à déplacer en mémoire secondaire.

• On libère ce cadre, on y transfère le cadre demandé.

Remarques:

- Le nombre de remplacements augmente avec le niveaux de multiprogrammation.
- Un remplacement nécessite deux transferts vers/du disque : si le cadre n'est pas sale et s'il existe une copie sur disque, alors il n'est pas nécessaire le recopier sur disque.

Les limites du swap La pagination à la demande Algorithmes de remplacement de pages

Objectifs

Minimiser le taux de remplacement.

La page la plus ancienne est remplacée.

Etat des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

La page la *plus ancienne* est remplacée. État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

```
La page la plus ancienne est remplacée.
```

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7 xx 1

La page la plus ancienne est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7 7xx 1 0 70x 2

La page la *plus ancienne* est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4

La page la *plus ancienne* est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6

La page la *plus ancienne* est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6
3	230	6

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6
3	230	6
0	230	6

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6
3	230	6
0	230	6
4	430	7

La page la plus ancienne est remplacée.

État des pages en mémoire au début : xxx

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6
3	230	6
0	230	6
4	430	7
2	420	8

◆□→ ◆圖→ ◆圖→ ◆圖→

La page la plus ancienne est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	231	5
0	230	6
3	230	6
0	230	6
4	430	7
2	420	8
1	421	→ <□ → <q: <="→</p" →=""></q:>

La page *referencée plus tard* est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

La page *referencée plus tard* est remplacée. État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

La page *referencée plus tard* est remplacée. État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

7 7xx

La page referencée plus tard est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7xx

70x

La page referencée plus tard est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3

La page referencée plus tard est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4

La page referencée plus tard est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5

La page referencée plus tard est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5

aults

La page referencée plus tard est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	243	6
2	243	6

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	243	6
2	243	6
1	2/11	□

La page moins recemment utilisée est remplacée.

Etat des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

La page moins recemment utilisée est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

La page moins recemment utilisée est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7 xx 1

La page moins recemment utilisée est remplacée.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7 xx 1

70x

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6

Remplacement LRU

La page moins recemment utilisée est remplacée.

État des pages en mémoire au début : xxx

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6
2	402	7

4日 > 4日 > 4日 > 4日 >

Remplacement LRU

La page moins recemment utilisée est remplacée.

Page démandée	Pages en mémoire (après)	No Page Faults
7	7×x	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6
2	402	7
1	412	→ 4□→ 4≥→ 4 ≥→

Remplacement Deuxième Chance

- Chaque cadre de page possède un bit de référence (niveaux matériel).
- Si un cadre est referencé, son bit est placé à 1.
- Un algorithme de type FIFO est utilisé.
- La tète de la file est remplacée, si son bit est à 0.
- Si le bit de la tète est 1, en met ce bit à 0, et on place ce cadre en queue.

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults

État des pages en mémoire au début : xxx

Page démandée Pages en mémoire (après) No Page Faults 7 xx 1

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6
2	423	7

Page démandée	Pages en mémoire (après)	No Page Faults
7	7xx	1
0	70×	2
1	701	3
2	201	4
0	201	4
3	203	5
0	203	5
3	203	5
0	203	5
4	403	6
2	423	7
1	421	8