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Abstract9

The class of regular functions constitutes a new pillar of the theory of word transductions: it admits10

multiple characterizations (deterministic 2-way transducers, streaming string transducers, regular11

function expressions and MSO transductions), and numerous closure properties. In this work, we12

propose a new extension of this class beyond functionality, which enjoys multiple characterizations,13

including a Kleene-like theorem, as well as several closure properties.14

The starting point of our work is an extension of the set of operators introduced by Alur et al to15

characterize regular functions in two directions: first, we allow an ambiguous version of the sum16

operator, and second, we introduce the Hadamard star of a transduction f , which maps a word u to17

the language f(u)∗. We show this new class of transductions corresponds to (a decidable subclass18

of) a natural extension of streaming string transducers where the register updates are enriched to19

allow any regular expression involving the registers. We also identify an expressively equivalent20

restriction of non-deterministic 2-way transducers, which we call weakly ambiguous, based on a21

structural constraint on the ambiguity.22

The resulting class of transductions inherits many of the closure properties of regular functions23

(apart from composition). In addition, it is closed by Hadamard star, union and pre-composition24

with regular functions. Finally, we show one can effectively decide whether a 2-way transducer is25

weakly ambiguous.26
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1 Introduction30

One of the fundamental results in language theory is the characterization of regular languages31

by means of finite state automata, regular expressions and Monadic Second-Order formulae.32

While automata are particularly convenient for algorithmic purposes, regular expressions33

allow specifications in a declarative manner, and are widely used in practical applications.34

This theory has been extended in numerous directions, including finite and infinite trees.35

Another natural extension is moving from languages to transductions, namely, functions that36

map input words over an input alphabet A to (sets of) output words over an output alphabet37

B. In this setting, transducers constitute a fundamental extension of automata. Contrary to38

finite state automata, transducers are not robust under classical modifications in the model,39

as nondeterminism and two-wayness increase their expressive power.40

The class of functions realized by deterministic two-way transducers, so-called regular41

functions, has attracted recently a strong interest [6, 7, 17, 14, 20, 13, 12]. It is very expressive42

and allows the description of natural transformations that are not definable by one-way43

transducers (e.g. duplicate the input word, or produce its mirror image). This class enjoys44

a logical characterization using Monadic Second-Order graph transductions interpreted on45
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strings [16], is equivalent to functional or unambiguous two-way transducers [16], and can46

be defined using the model of copyless streaming string transducers (SST) [1], which are a47

one-way model updating write-only registers which store strings over the output alphabet.48

In [3], Alur, Freilich and Raghothaman showed a Kleene-like theorem for regular functions.49

They introduced a set of combinators to form expressions, called regular function expressions50

(RFEs), and showed their equivalence regarding expressiveness with the model of SST. RFEs51

allow unambiguous versions of natural operators such as sum, Cauchy and Hadamard product,52

and Kleene iteration, as well as their mirror images and another more involved iteration53

operator. Alternative proofs of this equivalence have been proposed in the last years, starting54

from deterministic [14] or unambiguous [5] two-way transducers.55

The work in this paper follows this trend. Here, we aim to get a Kleene-like theorem56

for a class of transductions that goes beyond functionality. Our starting point has been to57

extend RFEs to non-functional transductions in a very natural way, by allowing an ambiguous58

version of the sum operator and introducing the Hadamard star of a transduction f , that59

maps a string u to f(u)∗. The new expressions are called regular relation expressions (RREs).60

They define a new class of transductions that we believe is relevant for the following reasons.61

First it contains regular functions and is expressive enough to capture several interesting62

non-functional transductions, such as:63

The Subsequence relation that associates to each word u all the subsequences of u.64

The Iterative-Star relation, with domain (ba+)∗b, that associates to each word ban1ban2 . . .65

banib all the words bax1n1bax2n2 . . . baxinib with x1, . . . , xi ∈ N.66

The k-Evaluator relation that associates to each regular expression whose number of67

nested union or Kleene star combinators is less than k every word belonging to its68

associated language.69

Note that the last two cannot be defined by a nondeterministic SST.70

Then, this class inherits all of the closure properties of regular functions (except for71

composition), and is additionally closed under union, Hadamard star and pre-composition72

with regular functions. Last but not least, it admits characterizations in terms of two quite73

natural extensions of automaton-like models that we also introduce. The first one, called74

SST with regular updates (RSST), is an SST that produces regular expressions over the75

output alphabet B. The associated transduction maps a word to the language denoted76

by its corresponding output in the RSST. If the number of nested union and Kleene-star77

combinators in the output expressions is bounded, then the RSST is called nl-bounded. The78

second one, called weakly ambiguous two-way transducer (W2NFT), is a two-way transducer79

with a total order over its set of states. Because of nondeterminism, several runs are possible80

for a given input word. To be weakly ambiguous, we require that all these runs synchronize81

on the largest state. Now, we formally state the main result of this paper.82

I Theorem 1. Let f be a word-to-word transduction. The following are equivalent:83

f is denoted by a regular relation expression.84

f is recognized by a weakly ambiguous two-way transducer.85

f is recognized by a nl-bounded streaming string transducer with regular updates.86

Moreover, one can decide whether a non-deterministic transducers is weakly ambiguous87

and whether an RSST is nl-bounded.88

Organization of the paper The models we consider are presented in Section 2. Our main89

result, together with important closure properties of our class of transductions, are given in90

Section 3. Section 4 describes the translation of a W2NFT into an RRE. Lastly, a discussion91

is conducted in Section 5. Omitted proofs can be found in the Appendix.92
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Related works In [2], a non-deterministic version of SST is studied. In particular, it is93

shown that the model is equivalent to non-deterministic MSO transductions (NMSOT). This94

form of non-determinism is incomparable to the one we study in this work: in NMSOT, every95

input word is mapped to a finite set of output words, while we may have infinite sets using96

Hadamard star. On the other hand, NMSOT allow to encode the transduction that maps97

any word u to the set of words vv, with v subword of u. This is not possible in our model as98

it requires to make the same guess of the positions to keep twice. In addition, to the best of99

our knowledge, no presentation of NMSOT by means of expressions is known.100

In [8], the authors aim at exhibiting a set of expressions to capture the expressiveness of101

the whole class of non-deterministic two-way transducers. This constitutes a challenging open102

problem, and a solution is provided for the case where both the input and output alphabets103

are unary. In [4], a Kleene-like theorem is given for the whole class of non-deterministic104

2-way transducers. However, the regular expressions proposed are rather machine oriented105

as they roughly encode the moves of the transducer, step-by-step. There is thus a lack of106

high-level operators, more amenable to an easy specification of transformations.107

In [12], the authors use an incomparable definition of RRE without Hadamard star but108

with an ambiguous version of the Cauchy product and chained star operator. They show that109

such RREs can be expressed as the pre-composition of a 2-way reversible transducer with a110

1-way-nondeterministic transducer. The latter parses the input word, non-deterministically111

adding parenthesis to disambiguate it according to the RRE, while the former evaluates the112

tagged word to a single output word. So the non-determinism consists in the different ways113

an RRE can parse an input word. In our work, we tackle a different problem: input words114

are always parsed by our RREs without ambiguity. However, the evaluation of an input word115

is done non-deterministically and then yields a possibly infinite set of output words.116

2 Models117

2.1 Preliminaries118

Let Σ be a finite alphabet, the empty word is denoted ε, and the set of words on Σ is denoted119

Σ∗. The length of a word w ∈ Σ∗ is denoted |w|. Given a non-empty word w ∈ Σ∗, its120

positions are numbered using integers i ∈ {0, . . . , |w| − 1} and w[i] is the letter at position i.121

Given two languages L1, L2 ⊆ Σ∗, we say that L1, L2 are unambiguously concatenable if122

any word u ∈ L1L2 uniquely decomposes into vw with v ∈ L1 and w ∈ L2. The language123

L ⊆ Σ∗ is unambiguously iterable1 if any word u ∈ L∗ uniquely decomposes into u1 . . . un,124

for some n ≥ 0, with each ui ∈ L.125

We consider the set U(Σ) of non-null regular expressions over Σ. We represent them using126

the following grammar : U(Σ) 3 α : 1 | a ∈ Σ | α1α2 | [α1 + α2] | 〈α1〉 where α1, α2 ∈ U(Σ).127

The term 〈α1〉 stands for α∗1. This grammar has the advantage to make easier the evaluation128

of the expression during a left-to-right parsing, since the next operator is fully determined129

by the type of the encountered “parenthesis”, namely [ or 〈. Given α ∈ U(Σ), we denote130

by L(α) ⊆ Σ∗ its associated language. It is well known that regular expressions allow to131

describe the class of regular languages over Σ, denoted RegΣ.132

A classical parameter often considered when dealing with expressions is the nesting133

level of parenthesis. It is defined recursively as follows: if b ∈ Σ and α1, α2 ∈ U(Σ), then134

nl(1) = nl(b) = 0, nl(α1α2) = max(nl(α1), nl(α2)), nl([α1 + α2]) = 1 + max(nl(α1), nl(α2))135

and nl(〈α1〉) = 1 + nl(α1). Note that we do not take into account the concatenation.136

1 Also called a code in the literature.
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Given two finite alphabets A,B, a transduction from A∗ to B∗ is a relation between A∗137

and B∗ (i.e. a subset of A∗ ×B∗). It can also be seen as a partial map from A∗ to P(B∗).138

2.2 Regular Relation Expressions139

Given two finite alphabets A and B, a regular relation expression f denotes a partial function140

JfK from A∗ to RegB , whose domain is written dom(f).141

I Definition 2 (Regular Relation Expressions (RRE for short)). Given two finite alphabets A142

and B, the class of regular relation expressions is the smallest class of functions from A∗ to143

RegB that satisfies the following properties:144

it contains the constant functions L/v where L ⊆ RegA \ {∅} and v ∈ B∗. Its domain is145

dom(L/v) = L and for all u ∈ L, JL/vK(u) = {v}.146

if f, g are RREs, then the sum f ⊕ g is an RRE such that dom(f ⊕ g) = dom(f)∪dom(g)147

and for all u ∈ dom(f ⊕ g), Jf ⊕ gK(u) =
⋃
h∈{f,g}|u∈dom(h)JhK(u).148

if f, g are RREs, then the Hadamard product f ⊗ g is an RRE such that dom(f ⊗ g) =149

dom(f) ∩ dom(g) and for all u ∈ dom(f ⊗ g), Jf ⊗ gK(u) = JfK(u) · JgK(u).150

if f is an RRE, then the Hadamard star f⊗ is an RRE such that dom(f⊗) = dom(f)151

and for all u ∈ dom(f⊗), Jf⊗K(u) = Jf(u)K∗.152

if f, g are RREs such that dom(f) and dom(g) are unambiguously concatenable, then153

the Cauchy product f • g is an RRE such that dom(f • g) = dom(f)dom(g), and for all154

u = u1u2 with u1 ∈ dom(f) and u2 ∈ dom(g) : Jf • gK(u) = JfK(u1) · JgK(u2).155

if f is an RRE and if L ⊆ RegA\{∅} is unambiguously iterable and such that Lk ⊆ dom(f),156

then the k-chained star f~,L,k, and the left k-chained star f
←
~,L,k, are RREs such that157

dom(f~,L,k) = dom(f
←
~,L,k) = L>k, and for all u = u1u2 . . . un with ui ∈ L for all i:158

Jf~,L,kK(u) = JfK(u1 . . . uk) · JfK(u2 . . . uk+1) · · · JfK(un−k+1 . . . un)159

Jf
←
~,L,kK(u) = JfK(un−k+1 . . . un) · · · JfK(u2 . . . uk+1) · JfK(u1 . . . uk)160

161

I Remark 3. Actually, the 2-chained star and its left version suffice to define RREs. Indeed,162

other k-chained stars can be defined from them. For instance, the 3-chained star f~,L,3 is163

equivalent to g
def= ((f • L/ε)⊗ (L/ε • f))~,L2,2 on the domain (L2)>2 of g. It follows that164

f~,L,3 can be expressed as f ⊕ g⊕ ((g •L/ε)⊗ (L∗/ε • f)). However, 3-chained star naturally165

appears in our proofs when constructing RREs from non-deterministic transducers.166

Regular function expressions (RFEs) of [3, 5, 14] can be seen as a restriction of the class167

of regular relation expressions in which the Hadamard star is forbidden and the sum f ⊕ g168

is authorized only if f and g have disjoint domains. Other operators are introduced, but169

they are redundant. They can be derived from those presented here (see [5] and [14]). For170

instance, the Kleene star of a function f , noted here f~, simply corresponds to f~,dom(f),1.171

The addition to the original model of an ambiguous version of the sum together with172

Hadamard star, two natural operators, constitutes the starting point of our work. They help173

to design a new interesting class of transductions, some examples are presented below.174

I Example 4. Come back to the first two transductions presented in Section 1. The175

Subsequence relation can be expressed as fSub = ε/ε ⊕ (a/ε⊕ a/a⊕ b/ε⊕ b/b)~, and the176

Iterative-Star relation as fIS = b/b⊕
((

b/b • ((a/a)~)⊗
)~
• b/b

)
.177

On the other hand, the Suffix relation fSuf that associates to a word u all the suffixes of178

u cannot be specified by an RRE. Intuitively, this would require to ambiguously split the179

word u into u1u2 and output the suffix only. This cannot be done with unambiguous Cauchy180

product or chained star.181
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I Example 5 (Evaluation of regular expressions). Let Uk ⊆ U(Σ) be the set of expressions with182

a nesting level at most k. This set can be seen as a regular set of words over Σ∪{1, [,+, ], 〈, 〉}.183

Interestingly, we can define an RRE feval,k that associates to each expression α ∈ Uk the184

language denoted by α. It is inductively built as follows:185

k = 0: let Id = (1/ε)⊕⊕b∈Σ(b/b) be the function that evaluates a letter of Σ. Clearly,186

the base case is the RRE feval,0 = (Id)~ that evaluates expressions with nesting level 0.187

The RRE feval,k = (Id ⊕ feval,+,k ⊕ feval,∗,k)~ decomposes an expression into sub-188

expressions that are 1, a letter of Σ, a union expression [·+ ·] or a Kleene expression 〈·〉.189

It evaluates each sub-expression using Id, feval,+,k or feval,∗,k according to its type:190

feval,+,k = ([/ε) • ((feval,k−1 • (+/ε) • Uk−1/ε)⊕ (Uk−1/ε • (+/ε) • feval,k−1)) • (]/ε)191

simply inductively evaluates the left operand or the right operand of a union expression,192

and makes the union of the results.193

feval,∗,k = (〈/ε) • (f⊗eval,k−1 ⊕ Uk−1/ε) • (〉/ε) inductively evaluates the operand of a194

Kleene expression and iterates the result.195

2.3 Streaming String Transducers with Regular Updates196

I Definition 6 (Streaming String Transducers with Regular Updates (RSSTs for short)). Given197

two finite alphabets A and B, a streaming string transducer with regular updates S over198

(A,B) is a tuple S = (Q, i, F, δ,X , µ, ν) where A = (Q, i, F, δ) is a deterministic finite state199

automaton over A, i.e. Q is a finite set of states, i ∈ Q is the initial state, F ⊆ Q is the set200

of final states, and δ mapping from Q× A to Q. This automaton is equipped with a finite201

set of registers X , an update function µ : Q× A× X → U(B ∪ X ) and an output function202

ν : F → U(B ∪ X ), where U(B ∪ X ) denotes the set of regular expressions as specified in203

preliminaries.204

Intuitively, along an execution of an RSST, registers X ∈ X contain a word of U(B).205

Each transition step of A triggers register updates that depend on the current state and input206

letter. When A reaches a final configuration with final state q ∈ F , the RSST S outputs the207

regular expression obtained by substituting in ν(q) the registers with their values.208

Formally, a valuation of the registers is a function χ : X → U(B). We extend this notion209

to regular expressions α of U(X ∪ B) writing χ(α) to denote the regular expression α in210

which each register X is replaced with χ(X). A configuration of S is a triple (q, χ, i) where211

q ∈ Q, χ is a valuation that describes the current value of registers and i is the position of212

the reading head on the input word. The initial configuration is (i, χ0, 0), where χ0 maps213

every register to 1. Two configurations (q, χ, i) and (q′, χ′, i′) are consecutive on u ∈ A∗214

if δ(q, u[i]) = q′, i′ = i + 1 and, for every X ∈ X , χ′(X) = χ(µ(q, u[i], X)). A run on u is215

a sequence of consecutive configurations on u. It is accepting if it starts from the initial216

configuration and ends in a final configuration (q, χ, |u|) with q ∈ F . In this case, the RSST217

S outputs the regular expression χ(ν(q)). Since S is deterministic, there is at most one218

accepting run on u for all u ∈ A∗. Thus, S describes a transduction JSK from A∗ to U(B).219

Since an RSST outputs a regular expression, we can also define the evaluated semantics of S220

as the word-to-word relation JSKeval over (A,B) that maps any word u ∈ A∗ to the regular221

language L(JSK(u)) ⊆ B∗.222

Streaming string transducers (SST) [1] are simply RSSTs whose updates are restricted to223

words in (B ∪ X )∗ (i.e. union and Kleene operators are forbidden).224

Copyless SSTs is a classical restriction well-studied in the literature. The copyless property225

states that, for all states q ∈ Q and letter a ∈ A, a register X can appear at most once in all226

the regular expressions in {µ(q, a,X) | X ∈ X} and at most once in the regular expression227

ν(q). In this paper, we consider copyless RSSTs only.228

C V I T 2 0 1 6
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i Y

σ|Y ← [Y σ + 1]

SSuf

i f

Y

1
b|Y ← b

a|X ← Xa

a|X ← Xa

b

∣∣∣∣ X ← 1
Y ← Y 〈X〉b

SISSIS

Figure 1 Two examples of RSSTs. The one on the right is nl-bounded.

I Example 7. Figure 1 depicts two copyless RSSTs. The RSST SSuf recognizes the Suffix229

relation and SIS recognizes the Iterative-Star relation of Example 4. We recall that the Suffix230

relation cannot be specified by an RRE.231

If we look more closely at SSuf , we can see it outputs regular expressions whose nesting232

level (as defined in Subsection 3.1) depends on the size of the input. On the other hand, if233

we identify the image of an input word u under an RRE f as a regular expression α ∈ U(B)234

(this is quite simple), one can check that the nesting level of α is bounded by the number of235

operators used in f . This observation leads us to consider the restriction below that we will236

prove to be equivalent to RREs.237

I Definition 8. An RSST S is nl-bounded by n if all the regular expressions in the image238

of JSK have nesting level at most n. We say that S is nl-bounded if it is for some n.239

For instance, the RSST SIS of Figure 1 is nl-bounded (by 1). In contrast, SSuf is not.240

By analysing the updates of registers along simple cycles, one can prove:241

I Proposition 9. Given an RSST S, one can decide whether S is nl-bounded in PTime.242

2.4 Weakly Ambiguous Two-Way Finite State Transducers243

When studying two-way automata and transducers, it is classical to use additional symbols `244

and a to surround the input word, thus allowing the two-way device to identify the beginning245

and the end of the input. Given a finite alphabet A, we let A`a = A ∪ {`,a}.246

I Definition 10 (Two-way finite state automata (2NFA for short)). Given a finite alphabet A,247

a two-way (non-deterministic) finite state automaton over A is a tuple A = (Q→, Q←, i, f, δ)248

where Q = Q→ ]Q← is a finite set of states, i ∈ Q→ is the initial state, f ∈ Q→ is the final249

state. The transition relation δ is included in the union of the following relations:250

({i} ∪Q←)× {`} ×Q→;251

Q \ {i, f} ×A×Q \ {i, f};252

Q→ \ {i, f} × {a} × (Q← ∪ {f}).253

The automaton is deterministic if δ is a partial function from Q×A`a to Q.254

We describe the behaviors of a 2NFA A on some input word u in A∗`a. A configuration255

of A is a pair (q, i) ∈ Q× N, where i is the position of the reading head. The reading head256

always points between symbols of u, and possibly on the left of the first one and on the right257

of the last one. The type of states, Q→ or Q←, indicates whether the next input letter read258

is on the right or on the left of the reading head. Two configurations (q, i) and (q′, i′) are259

consecutive on u if 0 6 i+mq < |u|, (q, u[i+mq], q′) ∈ δ and i′ = i+mq +mq′ + 1, where260

mq (respectively mq′) equals 0 or −1 depending on whether q (respectively q′) belongs to261

Q→ or Q←. Thus, the reading head moves right (respectively left) when a transition with262

two states in Q→ (respectively in Q←) is fired. Otherwise, it does not move.263
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A run r on u@i, j from p to q is any finite sequence (q0, i0) · · · (qn, in) of consecutive264

configurations on u that starts at configuration (p, i) and ends at configuration (q, j). As265

usual in two-way automata, one can define when two runs r1 and r2 can be concatenated, in266

which case we write this concatenation as r1 :: r2 (see Appendix C.1 for a formal definition).267

This notation is extended to sets of runs in the expected way. At many places, we distinguish268

runs according to the way in which they go through a word:269

r has type LL if q0 ∈ Q→, qn ∈ Q←, i0 = in and i0 < ij for all 0 < j < n;270

r has type RR if q0 ∈ Q←, qn ∈ Q→, i0 = in and ij < i0 for all 0 < j < n;271

r has type LR if q0, qn ∈ Q→, i0 < in and i0 < ij < in for all 0 < j < n;272

r has type RL if q0, qn ∈ Q←, in < i0 and in < ij < i0 for all 0 < j < n;273

r is a return run if it is LL or RR, and a transversal run if it is LR or RL;274

r is proper if it is a return or transversal run and i0, in ∈ {0, |u|}.275

In particular, a proper LL-run (respectively RR-run) starts and ends at position 0 (respectively276

position |u|). Note that no end marker can be read along a return run, and a traversal run277

can read them at most once. So all traversal proper runs are on words in {`, ε} ·A∗ · {ε,a}.278

A run is accepting if the first configuration is (i, 0) and the last one is (f, |u|). Accepting279

runs are only possible for words with end markers, namely of the form `ua with u ∈ A∗.280

They are always proper and of type LR. Note that the final configuration does not allow281

additional transitions. The word language L(A) of a 2NFA A consists of the set of words282

u ∈ A∗ such that there exists an accepting run on `ua.283

We recall the standard notion of transition monoid of A, denoted MA, which is included284

in P(Q2), and such that the mapping ϕ from A∗ to MA that associates to a word u ∈ A∗ the285

set of pairs (p, q) such that there is a proper run from p to q on u, is a morphism of monoids.286

We say that A has a finite degree of ambiguity if there exists some integer k such that for287

any word u ∈ A∗, there are at most k accepting runs of A on `ua. Otherwise, we say that288

A is infinitely ambiguous.289

290

We define the projection pos : (Q×N)∗ → N∗ that erases the states of a run to keep only291

the sequence of positions of the reading head. In addition, we also define for every state k292

the projection πk : (Q × N)∗ → ({k} × N)∗ that erases from a run the configurations that293

are not in {k} × N, and we set posk = pos ◦ πk. Then, for a run r, posk(r) represents the294

sequence of reading head positions at which the state k occurs along r.295

I Definition 11. Let A be a 2NFA, k be a state of A and i ∈ N.296

A set R of runs synchronizes on (k, i) if (k, i) appears in all r ∈ R.297

A set R of runs is k-synchronized if {posk(r) | r ∈ R} is a singleton.298

A set R of runs is k-stationary if {posk(r) | r ∈ R} ⊆ {j}+ for some j ∈ N.299

From now on, we consider a total order ≺ on the states of Q, and identify Q with300

{1, . . . , |Q|}. We define the rank of a run cr, with c a configuration, as the greatest state301

occurring in r. Note that the first configuration is not considered. Let e = (p, k, q) ∈ Q3. We302

denote R(e, L) as the set of proper runs on u ∈ L from p to q of rank k. For readability, we303

simply write R(e, u) when L = {u}.304

We finally have all the necessary tools to define weakly ambiguous automata: intuitively305

such an automaton may be infinitely ambiguous, but different runs on a same input word306

should have similar behaviour w.r.t. a state of highest rank. This structural condition emerges307

naturally when looking at 2NFT built from expressions. For instance when defining a 2NFT308

for the union of two 2NFTs, one introduces a new state over which all runs synchronize: they309

start in the new state then non-deterministically jump to one of the two 2NFTs. Such a310

”hierarchical” definition is a useful approach to build weakly ambiguous 2NFT, as done in311

the proof of Proposition 18.312
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Figure 2 A weakly ambiguous 2NFT TIS that recognizes fIS , and two of its LR proper runs on
(ba)4 from state 2 to state 2. We can see they are 3-synchronized.

I Definition 12. A 2NFA A is weakly ambiguous with respect to ≺ if for all words u ∈ A∗313

and all (p, k, q) ∈ Q3, the set R((p, k, q), u) is either empty, k-synchronized or k-stationary.314

Note that deterministic 2NFAs are trivially weakly ambiguous w.r.t. any order since, in this315

case, the sets R((p, k, q), u) contain at most one run. One can decide weak ambiguity:316

I Proposition 13. One can decide whether a 2NFA is weakly ambiguous with respect to a317

given order over its states, in ExpTime.318

I Definition 14 (Two-Way Finite State Transducers (2NFTs for short)). Given two finite319

alphabets A and B, a two-way finite state transducer from A to B is a pair T = (A, out),320

where A = (Q→, Q←, i, f, δ) is a 2NFA over A, and out : δ → B∗ is an output function that321

maps transitions of A to words over B.322

Intuitively, T extends A with a one-way left-to-right output tape containing elements of B∗.323

When a transition t ∈ δ is fired, the word out(t) is appended to the right of the output tape.324

The word written on the output tape at the end of a run r is denoted output(r).325

A 2NFT T thus defines a transduction JT K from2 A∗ to RegB . Its domain is dom(T ) =326

L(A). For all u ∈ dom(T ), v ∈ JT K(u) if v is the output of an accepting run on `ua.327

A 2NFT is deterministic (2DFT) or weakly ambiguous (W2NFT) if its underlying auto-328

maton is. So the class of 2DFTs is strictly included in the class of W2NFTs. In particular,329

any regular function (i.e. recognized by a 2DFT) is recognized by a W2NFT.330

Lastly, the transition monoid of T , denoted as MT , is defined as the one of A.331

I Example 15. Figure 2 depicts a weakly ambiguous 2NFT TIS with order i ≺ f ≺ 1 ≺ 2 ≺332

4 ≺ 5 ≺ 6 ≺ 7 ≺ 3. The arrows in the states, represented by circles, indicate the reading333

direction. It has domain (ba+)∗b and recognizes the transduction fIS of Example 4. Two LR334

proper runs on (ba)4 from state 2 to itself are depicted in Figure 2. In the second run, we335

can see that state 5 occurs multiple times at the same position. The piece of run between336

these two occurrences can be repeated any number of time, giving rise to new runs: TIS does337

not have a finite degree of ambiguity. All these runs have rank 3 and are 3-synchronized.338

2 It is easy to verify that for every u ∈ A∗, JT K(u) is a regular language on B.
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3 Main result339

3.1 Preliminary properties340

The following properties give a clue as to why the class of transductions we study behaves341

nicely, namely the good closure properties it enjoys.342

The following proposition is proved using decomposition theorems: according to [15], any343

rational function is the composition of a sequential and a co-sequential function. Moreover,344

using the result of Krohn-Rhodes [19], sequential functions can be further decomposed.345

I Proposition 16. RSSTs are closed by RRE operations. Moreover this preserves nl-346

boundedness.347

The next proposition is shown using a result of [11] stating that regular functions can be348

realized by reversible transducers, and that pre-composition with reversible transducers is349

well-behaved.350

I Proposition 17. W2NFTs are closed by pre-composition with a regular function.351

Finally the evaluation relation which inputs a regular expression (of bounded nesting352

level) can be realized by a weakly ambiguous transducer.353

I Proposition 18. For all n, the transduction feval,n which evaluates a regular expression354

can be recognized by a W2NFT Teval,n.355

Sketch of proof. We can build two-way transducers for feval,n by induction over n. Base356

cases are easy, and the inductive step uses a modular construction which naturally entails357

that the resulting transducers are weakly ambiguous.358

Alternatively, we could use the fact that weakly ambiguous transducers are closed under359

pre-composition by regular functions to show that they are closed under RRE operations (as360

is done for RSSTs), and thus subsume RREs. J361

3.2 Main theorem362

Now that we have formally defined the models we study, we can (re)state our main result:363

I Theorem 1. Let f be a word-to-word transduction. The following are equivalent:364

f is denoted by a regular relation expression.365

f is recognized by a weakly ambiguous two-way transducer.366

f is recognized by a nl-bounded streaming string transducer with regular updates.367

Sketch of proof. From RRE to RSST: Using Proposition 16, we only have to notice that368

constant functions can be realized by nl-bounded RSSTs.369

From RSST to 2NFT: By definition, the semantics of an RSST S with nesting level370

n can be expressed as the composition JSKeval = JTeval,nK ◦ JSK. One can thus see an371

nl-bounded RSST as a regular function. Using Proposition 17 we know that W2NFTs are372

closed under pre-composition by regular functions. We can conclude since the evaluation373

relation can be realized by a W2NFT (Proposition 18).374

From W2NFT to RRE. This last inclusion is proved in the next Section.375

J376

I Remark 19. Word-to-word regular functions are also characterized as word-to-word MSO377

transductions [16], in the sense of Courcelle [9]. As a consequence, our class of transductions378

is equivalent to that of MSO transductions from words to regular expressions, which have a379

bounded nested-level, i.e. such that there exists a bound on the nesting level of all the regular380

expressions they may output. Indeed, the reasoning of the previous proof to go from RSST381

to 2NFT is also valid for any MSO transduction of bounded nested-level.382

C V I T 2 0 1 6



23:10 A robust class of transductions beyond functionality

4 From Two-Way Transducers to Expressions383

Our construction is based on the one of [14] for deterministic 2NFT. It strongly relies on the384

following unambiguous version of Simon’s factorization forest theorem [22]:385

I Theorem 20 ([14]). Let M be a finite monoid and ϕ be a monoid morphism from A∗ to386

M . For each m ∈ M , there is an ε-free ϕ-good regular expression Em such that L(Em) =387

ϕ−1(m) \ {ε} ⊆ A+.388

In this statement, an ε-free regular expression cannot use ε nor Kleene star, but can use389

Kleene plus. Goodness means that the expression Em is unambiguous and that the image390

ϕ(L(E)) of any sub-expression E of Em is a singleton {mE}. As a consequence, Kleene plus391

connectors only occur on sub-expressions whose image by ϕ is an idempotent element.392

The approach of [14] uses the transition monoid MT and properties of its idempotents.393

A recap is given in Appendix B. Roughly, the determinism of the transducer entails strong394

properties on idempotents elements of MT , such as nice decompositions of runs. In this395

paper, we start from a weakly ambiguous 2NFT T . Because it is non-deterministic, the396

study of the shape of its runs is more difficult.397

4.1 Analysis of the shape of runs398

Preliminaries We slightly modify the classical definition of transition monoid to keep track399

of run ranks. We denote by M r
T ⊆ P(Q3) this new monoid. To each input word u ∈ A∗`a400

we associate the set m = µ(u) ∈M r
T defined by (p, k, q) ∈ µ(u) if there is a proper run in T401

on u of rank k from p to q. One can verify that M r
T is a monoid, and that µ is a monoid402

morphism. For e = (p, k, q) ∈ m, we denote by R(e,m) the set of all proper runs of rank k403

from p to q on words u ∈ µ−1(m), and we have that R(e,m) =
⋃
µ(u)=mR(e, u). Observe404

that given an element e ∈ m, all the proper runs in R(e,m) have the same type and the405

same rank. We define this way the type and the rank of e.406

Given an element m ∈M r
T , we define the labelled graph Gm by interpreting elements of407

m as edges: (p, k, q) ∈ m yields an edge from p to q labelled by k. An example is given on408

Figure 3, which corresponds to the W2NFT of Example 15.409

Let L1 and L2 be two unambiguously concatenable languages and u = vw ∈ L1L2, with410

v in L1 and w in L2. We say that a run r on u is L1, L2-quasi-proper if it starts and411

ends at positions 0, |v| or |u|. Such a run can uniquely be decomposed into a sequence412

∆L1,L2(r) = (t1, . . . , tn) where the ti’s are proper sub-runs alternatively on v or w such that413

r = t1 :: · · · :: tn. This notion can easily be adapted to the unambiguous Kleene iteration of414

a language L: given a quasi-proper run r on u ∈ L+, there exists a unique L-decomposition415

∆L(r) = (t0, t1, . . . , tl) of proper sub-runs over L such that t0 :: t1 · · · :: tl = r.416

I Remark 21. There is a bijection between L-quasi-proper runs r on some word in L+, and417

paths ρ of Gm from p to q. It follows from the (unique) decomposition r = t0 :: · · · :: tl, where418

∆L(r) = (t0, . . . , tl), which corresponds to the path (p0, k0, q0) . . . (pl, kl, ql) in Gm, with419

ti = (pi, ki, qi) for every i. In particular, observe that the rank of r is max{ki | 0 6 i 6 l}.420

Analysis of runs in L+ From now on, we suppose that L is an unambiguously iterable421

language whose image m by µ is an idempotent element of M . We first state an easy property:422

I Lemma 22. The L-decomposition of a quasi-proper run r on u ∈ L∗ cannot contain both423

an LR-run and an RL-run.424

In general, we can tell nothing about the rank of the runs in the decomposition of r. But425

interesting properties can be exhibited when the starting and ending states of r are in the426
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Figure 3 On the left, the graph Gbaba associated to the idempotent element mbaba. On the right,
the graph Ga associated to the idempotent element ma.

same (non-trivial) strongly connected component (SCC) of Gm. This relies on the particular427

structure of the SCCs of Gm, characterized by Proposition 23. We write p ∼m q if p and q428

are states of the same non-trivial SCC C of Gm. We also use letter C to denote a non-trivial429

SCC of Gm. The rank of C, denoted kC , is the maximum of the ranks of its edges.430

I Proposition 23.431

1. All transversal edges of an SCC C of Gm have the same type, and the same rank as C.432

2. Let C1 and C2 be two non-trivial SCCs of Gm that contain transversal edges of m. If433

there is a path from a state of C1 to a state of C2 in Gm then C1 = C2.434

I Example 24. Following Example 15 (remember that 3 is the greatest state here), one can435

check that the element mbaba = µ(baba) is idempotent. Its graph is depicted on Figure 3.436

As expected, all the transversal edges of the strongly connected component {2, 5, 6, 7} have437

the same type and the same rank 3. Those with a different rank are LL or RR edges. If we438

look at the graph Ga of the idempotent element µ(a), we can see four strongly connected439

components. Each of them has transversal edges of a single type. The rank of transversal440

edges in different components can be different.441

Thanks to Remark 21, Proposition 23.1 can be reformulated in terms of runs.442

I Corollary 25. Let r be a quasi-proper run on u from p to q with p, q in an SCC C.443

All the transversal runs of ∆L(r) have the same type and rank kC ;444

All the return runs of ∆L(r) have rank less than or equal to kC .445

I Proposition 26. Let w = w1 . . . wn ∈ L+. The runs in
⋃
p,q∈C∩Q→ R((p, kC , q), w) (resp.446 ⋃

p,q∈C∩Q← R((p, kC , q), w)) synchronize on kC . More precisely, they do it at least once447

between positions |w1 . . . wi|+ 1 and |w1 . . . wi+1| for all 0 ≤ i < n.448

Sketch of proof. Consider two proper transversal runs r1, r2 on some word w = w1 . . . wn449

in some SCC C. Given p, q ∈ Q→ ∩ C, we can extend them so as to obtain two transversal450

runs extp,q(r1) and extp,q(r2) on the word w1wwn, which both start in p and end in q. This451

is possible as the two runs belong to the same SCC. Since T is weakly unambiguous, the two452

extended runs are kC-synchronized, which is possible by construction only if r1 and r2 are.453

The second part of the corollary holds because of Corollary 25. J454

From Proposition 23.2, it results that we can decompose any long enough transversal455

proper run into 3 transversal (quasi-)proper sub-runs. The length of the prefix and the suffix456

sub-runs depends on the number of states of T . The infix sub-runs “live” in an SCC whose457

rank is smaller than those of the other sub-runs. Thus, Corollary 25 holds for this sub-run.458

I Proposition 27. If r is a proper transversal run on u ∈ L>2|Q|+3 where Q is the number459

of states of the 2NFT, then it can be decomposed into r1 :: r2 :: r3 such that460
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r1 is a proper transversal run to p on the prefix u1 of u in L|Q|+1;461

r3 is a proper transversal run from q on the suffix u2 of u in L|Q|+1;462

the states p and q are ∼m-equivalent.463

the ranks of r1 and r3 are greater than, or equal to, the rank of r2.464

4.2 Building expressions from transducers465

Let T be a weakly ambiguous transducer w.r.t. some order ≺ on its states. Without loss of466

generality, we can suppose that the final state f of T is the largest state because it appears467

at most once in any run (at the last configuration). We aim to build a RRE fT equivalent to468

JT K. Our construction relies on the following key lemma.469

I Lemma 28. For any ε-free µ-good regular expression F and e = (p, k, q) ∈ µ(L(F )), we can470

compute an RRE outF,e with domain L(F ) such that JoutF,eK(u) = {output(r) | r ∈ R(e, u)}.471

Intuitively, the proof proceeds by induction on F . The main difficulty arises when472

considering Kleene iteration. In this case, we use Proposition 27 to show that we can build473

outF,e as a finite sum by distinguishing the SCC and the inner states p, q. The detailed proof is474

given in Appendix D. We explain how to use it to get fT . We let P = {µ(`ua) | u ∈ dom(T )}.475

For each m ∈ P , ε does not belong to µ−1(m), and by Theorem 20, we can find an ε-free476

µ-good regular expression Em for µ−1(m). We let ef = (i, f, f). We get by Lemma 28:477

JT K(u) = J
⊕
m∈P

outEm,efK(`ua) for all u ∈ dom(T ).478

Using small technicalities to get rid of endmarkers, one can then derive fT from
⊕

m∈P outEm,ef .479

5 Discussion480

We have introduced a class of relations which subsumes regular functions, has several distinct481

characterizations and enjoys multiple closure properties.482

We have also investigated other aspects of this class. Firstly, while we have shown483

that this class is closed under pre-composition by regular functions, it is not closed under484

post-composition by regular functions. For instance the relation which maps a word to any485

square of a subword is not recognizable by a two-way transducer since one cannot make the486

same guess of which positions to keep twice. We actually think that it is not even closed487

under post-compostion by sequential functions. Second, for the sake of simplicity, we have488

not mentionned yet a rather natural restriction of RRE which would correspond to one-way489

weakly ambiguous transducers. We strongly believe that such an equivalence should hold490

by removing all operations which are not one-way and having an unambiguous Kleene star491

operation. Lastly, the equivalence of two weakly ambiguous transducers is unfortunately492

undecidable, the classical proof being incidentally valid for weakly ambiguous transducers.493

Natural extensions of this work would be to allow ambiguity for the Cauchy product or494

the chained-star operators. Note however that two-way transducers are not closed under495

these operations, so such a class would go beyond two-way transducers. One possibility496

to circumvent this problem would be to consider transducers with common guess: such a497

transducer can non-deterministically guess a coloring of its input and thus perform such498

operations. Finally, we do not know whether weak ambiguity subsumes finite ambiguity. A499

sufficient condition is that finitely ambiguous transducers coincide in expressiveness with500

finite unions of unambiguous transducers, but this is an open problem.501
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A Proofs of Subsection 3.1574

The following proposition is proved using decomposition theorems: according to [15], any575

rational function is the composition of a sequential and a co-sequential function. Moreover,576

using the result of Krohn-Rhodes [19], sequential functions can be further decomposed.577

I Proposition 29. RSSTs are closed by pre-composition with a letter-to-letter rational578

function. Moreover this preserves nl-boundedness.579

Proof. In order to prove this we rely on two decomposition results. The first is the result580

of Elgot and Mezei [15] which states that any rational function is the composition of a581

sequential and a co-sequential function. The second is the result of Krohn and Rhodes [19]582

which says that any letter-to-letter sequential function (ie realized by a Mealy machine) is583

the composition of two kinds of functions:584

functions realized by Mealy machines where each letter induces a permutation of the585

states.586

functions realized by 2 state Mealy machines where each letter induces either a constant587

function over the states or the identity function.588

Of course the symmetric result holds for co-sequential functions. Thus we only need to show589

closure under pre-composition by these simpler classes of functions. This is what we do590

in Lemmas 30, 31 and 32. The fact that nl-boundedness is preserved is clear since it is a591

semantic restriction.592

J593

I Lemma 30. RSSTs are closed by pre-composition with letter-to-letter sequential functions.594

Proof. Let A,B,C be three alphabets. Let Sf = (Qf , if , Ff , δf ,Xf , µf , νf ) be a RSST over595

(B,C) and g a letter-to-letter sequential function. Then g is recognized by a mealy machine596

A = (QA, iA, FA, δA, λA) over (A,B). We build a RRST S = (Q, i, F, δ,X , µ, ν) over (A,C)597

such that JSK = JSf K ◦ JAK. For readability, the states of Sf are denoted as p, p1, . . . , the598

one of A as q, q1, . . . and those of S as s, s1, . . . .599

The RSST S results from the product construction between Sf and A: Q = Qf ×QA,600

i = (if , iA), F = Ff × FA. On reading an input letter a from a state s = (p, q), the RSST S601

first simulates A on a from q, which produces an output b, and then simulates Sf on b. Thus,602

S uses the same registers as Sf and δ(p, q) = (p′, q′) if δA(q, a) = q′, λ(q, a) = b, δf (p, b) = p′603

and µ((p, q), b) = µ(p, b). Moreover, for all final states (p, q) ∈ F , ν(p, q) = ν(p). Clearly,604

S is a RSST since the updates are the same as the ones of Sf . A simple induction on the605

length of runs shows that JSK = JSf K ◦ JAK.606

J607

I Lemma 31. RSSTs are closed by pre-composition with functions that are recognized by the608

transpose of two-state Mealy machines where every input letter acts as a constant function or609

the identity function on the states.610

Proof. Let A,B,C be three alphabets. Let Sf = (Qf , if , Ff , δf ,Xf , µf , νf ) be a RSST over611

(B,C) and A = (QA, IA, FA, δA, λA) be the transpose of a Mealy machine over (A,B) as in612

the lemma. We denote its two states as f and f̄, both are initial and f is final. The transition613

relation is δ ⊆ QA × A × QA and the output function is λA : δ → B. We build a RRST614

S = (Q, i, F, δ,X , µ, ν) over (A,C) such that JSK = JSf K ◦ JAK. For readability, the states of615

Sf are denoted as p, p1, . . . , the one of A as q, q1, . . . and those of S as s, s1, . . . .616

We explain the ideas behind the construction. For a given input word u ∈ A∗, S simulates617

at the same time all the runs of A on u, and for each of these runs r, the (unique) run of618
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Sf on the output of r. Since A is the transpose of a two-state Mealy machine where every619

input letter a acts as the identity function or as a constant function on the states, either620

δA(f, a) 6= δA(f̄ , a) or one of these two transitions is undefined (*). Consequently, it cannot621

have more than two runs on A on any word u, and at most two runs of Sf need to be622

simulated at the same time for each input word u ∈ A∗. Thus, a state of Q consists in one623

or two pairs of Qf ×QA (depending on whether one or two runs need to be simulated at624

the same time). The initial state is i = {(if , f), (if , f̄)}. The RSSTs S uses two copies of Xf :625

X = Xf ×QA. When S simulates a transition of Sf , it updates its registers by mimicking626

the corresponding updates, which ensures that the updates of S are still regular.627

We formally define the transition function, the update function and the output function628

of S. Let % : QA × U(Xf )→ U(X ) such that %(q, α) substitutes in α every register x ∈ Xf629

with (x, q) ∈ X . For all v ∈ Q and a ∈ A, we define δ(v, a) (noted v′) and µ(v, a) (noted σ)630

as follows: if (p, q) ∈ v, t = (q, a, q′) ∈ δA, λ(t, a) = b and δf (p, b) = p′ then (p′, q′) ∈ v′ and,631

for all x ∈ Xf , σ(x, q′) = %(q, α) where α = µf (p, b, x). Note that σ is well-defined thanks to632

(*). Finally, v ∈ F if (p, f) ∈ v for some p ∈ Ff , and we set ν(v) = %(f, νf (p)).633

Using a simple induction on the length of input word u ∈ A∗, it is easy to show that the634

next statement holds: For all p ∈ Qf and q ∈ QA, there are a run from iA to q on u in A635

that outputs v and a run from (if ,Xf → {ε}) to (p, χ) on v in Sf , if and only if, there is a636

run from (i,X → {ε}) to some (s, χ′) on u in S such that (p, q) ∈ s. Moreover, whenever637

these runs exist, we have χ′(x, qn) = χ(x) for all x ∈ Xf . The proof of the lemma follows638

when considering accepting runs.639

J640

I Lemma 32. RSSTs are closed by pre-composition with functions that are recognized by the641

transpose of Mealy machines where every input letter acts as a permutation on the states.642

Proof. We only give the main ideas behind the construction. An induction on the runs643

suffices to show the built RSST recognize what is expected. The nl-boundedness is quite644

obvious.645

Let Sf be a RSST with set of states Qf and initial state if . Let A be the transpose646

of a Mealy machines where every input letter acts as a permutation on the states, with647

set of states QA. This machine is deterministic and complete. Its transition function is648

injective. All its states are initial, and only one is final, noted f. We build a RRST S such649

that JSK = JSf K ◦ JAK. The ideas behind the construction are the follows. For a given input650

word u, S simulates at the same time all the runs of A on u, and for each of these runs r, the651

(unique) run of Sf on the output of r. Since all the states of the complete and deterministic652

machine A are initial, there are precisely n = |QA| runs on A on any word u, and as many653

runs of Sf to be simulated at the same time (by using a product construction for each run).654

Thus, a state s of S consist in a sequence (p1, q1), . . . , (pn, qn) of n pairs of Qf ×QA. We655

arbitrarily choose a state of S with all its first components at if as the initial state of S. Note656

that, any reachable state of S have pairewise distinct qi’s because the transition function of657

A is injective. The RSST S uses n copies of Xf : X = Xf × {1, . . . , n}. When S simulates a658

transition t of Sf from the i-th pair of the sequence, it updates the registers in Xf × {i} by659

mimicking the updates associated to t. A sequence s = (p1, q1), . . . , (pn, qn) is a final state of660

S if it contains a pair (p, f) with p a final state of Sf . Since, all the qi’s are distinct, there is661

only one such pair, saying at position i in the sequence. Then, S mimes the output of Sf662

from state p using the corresponding registers in Xf × {i}. J663

I Proposition 16. RSSTs are closed by RRE operations. Moreover this preserves nl-664

boundedness.665
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Proof Sketch. Closure under sum or Hadamard product of two relations f, g defined by666

(nl-bounded) RSSTs is straightforward: only need to add or concatenate the results of the667

two RSSTs.668

For the closure under unambiguous Cauchy product or chain star, we use the result of669

Proposition 29: the rational function is used to mark the positions of the decomposition670

according to the unambiguous product/Kleene star. J671

I Proposition 17. W2NFTs are closed by pre-composition with a regular function.672

Proof. We use a result of [11] stating that any regular function can be defined by a revers-673

ible two-way transducer. Here reversible means that any configuration of the underlying674

automaton has at most one successor (deterministic) and one predecessor (co-deterministic).675

Without loss of generality, we can assume that a reversible two-way transducer outputs at676

most one letter per transition. Moreover, in order to simplify the proofs we further decompose677

a regular function f into φ ◦ g where g is given by a reversible transducer which outputs678

exactly one symbol per transition, and a morphism φ which erases one particular symbol679

and is the identity over other symbols. This can easily be obtained by modifying a reversible680

transducer which outputs at most one letter per transition: each transition which should681

output ε outputs instead a special symbol ε̄. Then the morphism φ erases the extra symbols.682

We call a transducer transition-to-letter if every transition produces exactly one letter,683

and a morphism which erases one letter and does not modify the others is called a 1-erasing684

morphism. Hence we only have to show the following claim:685

B Claim 33.686

1. W2NFTs are closed by pre-composition with 1-erasing morphims,687

2. W2NFTs are closed by pre-composition with transition-to-letter reversible transducers.688

Proof of 1. Let us consider a W2NFT T with underlying automaton A over alphabet A,689

realizing a relation T . Let φ be 1-erasing morphism erasing the letter ε̄.690

We define a new transducer T ′ which realizes T ◦ φ. Intuitively, this transducer, when691

reading a letter ε̄ ignores it and continues in the direction it was moving. The set of states692

of the new transducer is Q ] Q̄, where Q̄ is a copy of Q. The transitions of T ′ over letters693

different from ε̄ are the same as the transitions of T . Given a state p ∈ Q, we add a transition694

(p, ε̄, p̄) with no outputs (note that the direction of p̄ is the same as the direction of p). We695

also add transitions (p̄, ε̄, p̄) again with no output. Finally, for any transition (p, a, q) of T ,696

we add a transition (p̄, a, q) with the same output as (p, a, q). Hence any factor of consecutive697

ε̄ symbols is ignored by the transducer, which just moves trough it to the next regular letter,698

propagating the state information.699

We define the order over Q ] Q̄ by saying that original states (in Q) are greater than any700

copy state (in Q̄) and then using the order over Q. Given a word u ∈ (A ∪ ε̄)∗, let v = φ(u).701

The runs of T ′ over u are easily obtained from the runs of T over v by adding factors of702

states of Q̄ over positions labelled by ε̄. Since all states of Q are larger than states of Q̄,703

the sets R((p, k, q), u) are always empty, k-synchronized, or k-stationary, for k ∈ Q. When704

k ∈ Q̄, the runs of R((p, k, q), u) only have states in Q̄. However, runs that are only over705

Q̄ are extremely simple: only one state can appear in the run. These runs are forward or706

backward passes (depending on whether the state is in Q̄→ or Q̄←) over words in (ε̄)∗ which707

produce nothing. Hence T ′ is a W2NFT. J708

Proof of 2. Let us consider a W2NFT T with underlying automaton A over alphabet A,709

realizing a relation T . Let f be a function realized by a transition-to-letter reversible710

transducer S.711
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We define a new transducer T ′ which realizes T ◦ f . The main idea is to define, as in712

[11], a transducer simulating T over the image by f of its input word u. Thus, to move to713

the right over f(u), the automaton simulates one computation step of S, and to move to the714

left, it simulates one step of computation of S but backwards, which is possible since S is715

reversible.716

We denote Q the set of states of T , P the set of states of S, δ the transition relation717

of T and γ the transition function of S. We also denote γ′ the inverse of the γ relation,718

which is also functional. We denote the set of states of T ′ by Q′ = P × Q. We define719

Q′→ = P→×Q→ ∪P←×Q← and Q′← = P→×Q← ∪P←×Q→. The idea is that when T has720

to move forward, we simulate S, thus the direction of the state is the same as the direction721

of the S component. Conversely, when T has to move back, we need to simulate S in reverse,722

thus inverting the direction of the S component. Given a transition (p1, a, p2) ∈ γ which723

produces b in S and a forward transition (from Q→ to Q→) (q1, b, q2), we add a transition724

((p1, q1), a, (p2, q2)). The idea is that with the information given by a and p1, T ′ can simulate725

T over the corresponding position labelled by b. Similarly, if (q1, b, q2) is a right-to-right726

transition, we add the transition ((p1, q1), a, (p2, q2)). When (q1, b, q2) is either a left-to-left727

or a backward (right-to-left) transition, we need to move the virtual reading head of T to the728

left. In that case, for any transition (p1, a, p2) ∈ γ′, we add a transition ((p1, q1), a, (p2, q2)).729

We want to show that the obtained transducer is a W2NFT. Let u ∈ A∗ and let730

v = f(u) ∈ B∗.731

Let ρ be the run of S over u, and let ρ′ be a run of T over v, with maximal state k. We732

describe the corresponding run of T ′ over ρ′′. We can define the origin function of v as the733

function which maps a position of v to the position of u that was read in S when the position734

was produced. When T ′ is virtually over a position i of v, it is actually over position o(i)735

of u. Moreover, the S state of the configuration is exactly the state where the ith output736

was produced, which is the one of the ith configuration of ρ. Thus ρ′′ is simply ρ′ where a737

configuration (q, i) is replaced by a configuration (pi, q, o(i)) where pi is the state of the ith738

configuration of ρ. What is key here is that the configurations of ρ′′ where k appears only739

depend on the configurations of ρ′ where k appears. We choose any order of P ×Q which is740

compatible with the order over Q.741

Let ρ′′, λ′′ be two runs in R(((p1, q1), (p2, k), (p3, q3)), u), with p1, p2, p3 ∈ P . We denote742

by ρ, ρ′ the corresponding runs over u, v of S, T respectively, and similarly for λ, λ′. Note that743

λ = ρ since S is deterministic. Since the highest state appearing in both ρ′, λ′ is k, we have744

ρ′, λ′ ∈ R((q1, k, q3), v). If these runs are k-synchronized, then posk(ρ′) = posk(λ′). We can745

obtain pos(p2,k)(ρ′′) by replacing configurations (k, i) by ((p2, k), o(i)) when p2 is the state746

of the ith configuration of ρ. Since ρ = λ, we thus have that pos(p2,k)(ρ′′) = pos(p2,k)(λ′′)747

meaning that ρ′′, λ′′ are (p2, k)-synchronized. Similarly, assuming posk(ρ′), posk(λ′) ⊆ j+, we748

get pos(p2,k)(ρ′′), pos(p2,k)(λ′′) ⊆ o(j)+
(the non-emptiness is by assumption), hence {ρ′′, λ′′}749

is (p2, k)-stationary. J750

J751

I Proposition 18. For all n, the transduction feval,n which evaluates a regular expression752

can be recognized by a W2NFT Teval,n.753

Proof. Figure 4 depicts three transducers En, Rn and Sn. They are designed inductively754

and modularly. In these pictures, circles represent states (the arrow in the states describes755

the reading direction) and rectangles with rounded corners represent a new instance of a756

transducer. An arrow to (resp. from) a rectangle is actually an edge to the initial state (resp.757

from the final state) of the instance it represents. Base cases are not represented here as they758
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are trivial: E0, R0 and S0 are simply restricted to their initial state alone, with the self-loop759

and without component.760

The transducer En of Figure 4a (with final state en) recognizes the evaluation transduction761

feval,n from Example 5: it outputs the language denoted by a regular expression with nesting762

level n. One can show that this transducer is weakly ambiguous. J763

−→en

E(1)
n−1 S(1)

n−1

S(2)
n−1 E(2)

n−1

E(3)
n−1Rn−1

S(3)
n−1

a ∈ B|a
1|ε

[|ε
〈|ε

〈|ε

[|ε

+|ε

]|ε

〉|ε 〉|ε

〈|ε

〉|ε +|ε

]|ε

(a) Transducer En evaluates any regular expression with nesting level n, i.e. it outputs the
language denoted by the expression.

←−rn R(1)
n−1 R(2)

n−1R(3)
n−1

B ∪ {1}|ε

], |ε〉|ε +|ε

[|ε
〈|ε

(b) Transducer Rn returns to the beginning
of any regular expression with nesting level n,
without producing anything.

−→sn S(1)
n−1 S(2)

n−1S(3)
n−1

B ∪ {1}|ε

[, |ε〈|ε +|ε

]|ε
〉|ε

(c) Transducer Sn skips any regular expres-
sion with nesting level n, without producing
anything.

Figure 4 Weakly ambiguous 2NFT En for the evaluation function feval,n of Example 5.

B Recap of the approach for deterministic two-way transducers764

The approach of [14] applies Theorem 20 to the transition monoid MT . Let us consider765

some ε-free ϕ-good expression F . Given a sub-expression E of F , an RFE fE,p,q is built for766

each pair (p, q) of mE = ϕ(L(E)) ∈ MT . For all u ∈ L(E), JfE,p,qK(u) equals the output767

of the unique run r of T from p to q on u. We give an overview of the main ingredients768

of the construction by considering the most tricky case where E = E+
1 and p, q ∈ Q→. It769

results from the study of the shape of LR proper runs r from p to q on words u ∈ L(E). (see770

Figure 5):771

1. Since E is unambiguous, u uniquely decomposes into u1 . . . un with each ui in L(E1).772

2. Since T is deterministic and since mE is idempotent, r decomposes into a sequence773

t1, r1, . . . , tn−1, rn−1, tn where each ri is a run on uiui+1@|ui|, |ui| and each ti is a proper774

LR run on ui.775

3. The ri’s (and then the ti’s) have the same starting and ending states.776

4. Each ri decomposes into the same sequence s1, . . . , sl of proper RR or LL runs;777

5. The numbers l of sub-runs, as well as the starting state qj and the ending state qj+1 of778

each sj depend on E, p and q only. So they are the same for any proper run from p to q779

on any word in L(E).780
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Figure 5 Decomposition of an LR-run on a word of φ−1(m) with m an idempotent element of
the transition monoid of a 2DFT.

Guided by the shape of the runs, we can build fE,p,q: by induction hypothesis, we get781

the RFEs fE1,p,q1 , fE1,ql,q, fE1,ql,q1 , and all the fE1,qj ,qj+1 ’s. Then, we can use l Cauchy782

products to combine them into an RFE f of domain L(E1)2 that captures the outputs of all783

the possible pieces of runs between two consecutive states q1. The 2-chained star of f yields784

an RFE for the runs from the first q1 to the last q1 (which is equal to q by determinism).785

Finally, the latter is combined with fE1,p,q1 to get fE,p,q.786

In this paper, we start from a weakly ambiguous 2NFT T . Because it is non-deterministic,787

the study of the shape of its runs is more difficult. In particular, the previous items 3-5 fail:788

not only do the runs ri :: ti+1 no longer have the same starting and ending states, but they789

also decompose in different ways, with a different number of components, possibly unbounded.790

In addition, runs from p to q on words in L decompose differently.791

C Proofs of Subsection 4.1792

The goal of this section is to study the shape of the runs r of a W2NFT T . This study793

is done by decomposing r into proper sub-runs and determining their type and their rank794

depending on the type and the rank of r. Interesting results are obtained when r is a run on795

a word that corresponds to an idempotent element of the underlying transition monoid of T .796

We will exploit these properties in the next section in order to get RREs from 2WFTs.797

C.1 Concatenation of runs798

The formal definition of concatenation of overlapping runs of a 2NFA is recalled below,799

inspired by the approach of [18].800

Let u be a word. For all 0 6 i, j 6 |u|, we denote ui,j as the factor of u between positions801

i and j. Note that ui,i = ε and ui,j = uj,i for all i, j. Let 6p stand for the prefix order over802

A∗ and 6s stand for the suffix order over words. We define two operators on words, ∨p and803

∨s:804

u ∨p v equals u if v 6p u, or v if u 6p v, or undefined otherwise;805

u ∨s v equals u if v 6s u, or v if u 6s v, or undefined otherwise.806

Let r1 = c1 . . . cn be a run on u@i, j from p1 to q1 and r2 = c′1 . . . c
′
m be a run on v@k, l807

from p2 to q2. They are concatenable if q1 = p2 and w1 = u0,j∨sv0,k and w2 = uj,|u1|∨pvk,|u2|808

are defined. When it is possible, the concatenation of r1 and r2, noted r1 :: r2, is the run809

c′′1 . . . c
′′
n+m−1 from p1 to q2 on w1w2@c, d where c = i+ |w1|− j and d = l+ |w1|− k, defined810

by:811

for all 1 6 i 6 n, c′′i = (q, h+ |w1| − j) if ci = (q, h);812

for all 1 6 i 6 m, c′′i+n−1 = (q, h+ |w1| − k) if c′i = (q, h).813
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We extend the concatenation operator to sets of runs: R1 :: R2 consists of all runs r1 :: r2814

such that r1 and r2 are two concatenable runs of R1 and R2 respectively. It is distributive815

over union. Note also that, given an order over the states, the concatenation of two runs r1816

and r2 of ranks k1 and k2, when it exists, is a run of rank max(k1, k2).817

C.2 Transition monoid for weakly ambiguous automata818

I Example 34. Let’s consider the weakly ambiguous 2NFT of Figure 2. The element819

mba = µ(ba) of its transition monoid contains the following triples: (1, 3, 2), (2, 3, 2), (6, 7, 7)820

and (7, 3, 2) of type LR; (1, 3, 5), (2, 3, 5), (6, 5, 5) and (7, 3, 5) of type LL; and (5, 6, 6) of type821

RR. For the element mbaba = µ(baba), the LR triples are all the (x, 3, y) with x ∈ {1, 2, 6, 7}822

and y ∈ {2, 7}. Its LR or RR triples are the same as for µ(ba). One can check that mbaba is823

idempotent (mba is not), and that µ−1(mbaba) = (ba+)>2. We will see later in the section824

that it is not a coincidence if all the LR triples of mbaba have the same rank.825

C.3 Proof of Lemma 22826

I Lemma 35. If r is a proper return run on u ∈ L∗, then its L-decomposition is r.827

Proof. This is equivalent to prove that the proper LL-run (resp. RR-run) r is actually a run828

on u1 (resp. un). We prove it for proper LL-runs using an induction on their rank k ∈ Q.829

The proof for proper RR-runs is similar. Without loss of generality, we can suppose that830

n > 3 since every LL-run on u is also a run on uv for all v ∈ L+. The base case and the831

inductive one are proved by contradiction.832

Suppose that the LL-run r is not on u0. Let p and p′ be the starting and ending states of833

r and k be its rank. Since µ(L) is idempotent, there also exist:834

a proper LL-run r0 from p to p′ with rank k on u0 (and then on u0u1u2),835

a proper LL-run r1 from p to p′ with rank k on u0u1u2 that is not a run on u0u1. This836

means there is in r1 a configuration (p′′, i) with i > |u0u1|.837

Base case: k = 1. Then by definition of the rank, only state k appears in r1 and r0838

(except for the first one that is p). So r1 and r0 cannot be k-synchronized nor k-stationary,839

which contradicts the fact that T is weakly ambiguous.840

Inductive case. Since T is weakly ambiguous, r0 and r1 are either k-stationary or k-841

synchronized. In both cases, this means that state k appears at positions less that |u0|. It842

follows that all the LL-sub-runs of r1 that start and end at position |u0| have ranks less than843

k. The latter ones can be seen as proper LL-runs on u1 . . . un. Then the induction hypothesis844

implies these runs are actually on u1, and consequently, that r1 is a run on u0u1. Hence, a845

contradiction. J846

Proof of Lemma 22. By contradiction, suppose that the L-decomposition ∆L(r) = (t0, . . . , tl)847

of r contains a LR-run and a RL-run. Let i and j (i < j) the least indexes such that ti is LR848

and tj is RL (or the reverse). Then (ti, ti+1, . . . , tj) is the L-decomposition of a LL or RR849

proper run, which contradicts Lemma 35. J850

C.4 Proof of Proposition 23851

The next property is a direct consequence of the idempotence of m.852

I Lemma 36. Let p and q two states of Gm. If there is a path from p to q in Gm using853

transversal edges, then there also exists a path from p to q using exactly one transversal edge.854
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Proof. Let ρ = (p0, k0, q0) . . . (pl, kl, ql) be a path between p and q using c > 2 transversal855

edges. Let (pi, ki, qi) and (pj , kj , qj) be the first and the last ones. Let u ∈ L. Then856

for each i 6 i′ 6 j, there exists a proper run ti′ from pi′ to qi′ of rank ki′ on u, and857

consequently r = ti :: · · · :: tj is an L-quasi-proper run from pi to qj on some power of u.858

Using Lemma 22 and Remark 21, we deduce that r is actually a proper transversal run on859

uc. Then (pi, k, qj) ∈ m for some rank k. Replacing (pi, ki, qi) . . . (pj , kj , qj) with (pi, k, qj)860

in ρ gives the desired path. J861

Proof of Proposition 23.1. Let C be a scc of Gm. Let (p, k, q) be a transversal element of862

C. Since C is a scc, we can find a path ρ =
∏n
i=0(pi, ki, qi) that starts and ends with the863

edge (p, k, q) and that goes through all edges of C (with possible edge repetitions).864

Let u ∈ L (we recall that µ(L) = m). By definition, for each i, (pi, ki, qi) ∈ m implies that865

we can find a proper run ri from pi to qi of rank ki on u. It follows that r0 :: · · · :: rn is a quasi-866

proper run on some power of u from p0 to qn with rank kC = max{ki | 0 6 i 6 n}, namely867

the rank of C. The L-decomposition of r is ∆L(r) = (r0, . . . , rn). As a first consequence, all868

traversal elements of C are of the same type (by Lemma 22). In addition, all transversal869

edges being of the same type, r is actually a proper transversal run on uc where c is the870

number of transversal sub-runs of ∆L(r). By idempotence, it follows that (p, kC , q) is a871

transversal edge in Gm, and thus in C.872

By construction, (p, kC , q) appears in ρ, saying at position j. Then, replacing r0 with rj873

in ∆L(r) leads to another proper transversal run r′ from p to q with rank kC . So, r and r′874

synchronize on kC which is only possible if k = kC . J875

Proof of Proposition 23.2. We prove it by contradiction.876

Thanks to Lemma 36, we can find a state p of C1 and a path ρp = (p, kp, p′)ρ′p from p877

to p such that (p, kp, p′) is a transversal edge and ρ′p contains return edges only. Similarly,878

we can find a state q of C2 and a path ρq = ρ′q(q′, kq, q) from q to q such that (q′, kq, q) is a879

transversal edge and ρ′q contains return edges only.880

Suppose there exists a path from the C1 to C2. Then there is also a path ρpq from p to881

q in Gm. By Lemma 36, we can suppose that ρpq consists of exactly one transversal edge882

(p, kpq, q).883

Now consider the paths ρ1 = ρpρpqρqρqρq and ρ2 = ρpρpρpρpqρq. These two paths contain884

precisely five transversal edges, all the same type (by Lemma 22). Let u ∈ L. Following885

Remark 21, we can find two proper transversal runs r1 = rp :: rpq :: rq :: rq :: rq and886

r2 = rp :: rp :: rp :: rpq :: rq both on u5 from p to q where rpq is a proper transversal run on887

u from p to q with some rank kpq, rp is a run from p to p with some rank kp and rq is a run888

from q to q with some rank kq.889

Since the rank of r1 and r2 is k = max{kp, kq, kpq}, these two runs synchronize on890

k. So it is for the proper sub-runs r′1 = rpq :: rq :: rq and r′2 = rp :: rp :: rpq. Since891

k = max{kp, kq, kpq}, the state k necessary appears in the prefix rpq :: rq of r′1 or the prefix892

rp of r′2. So the k-synchronisation of r′1 and r′2 entails that k = kp. But in this case, there893

exists |u2| < j 6 |u3| such that (k, j) is a configuration of the prefix rp :: rp on u5@|u|, |u3|894

of r′2. By synchronization, (k, j) is also a configuration of the suffix rq :: rq on u5@|u2|, |u4|895

of r′1. Then there exists a run on u5@|u2|, |u3| from q to p. This means by Remark 21 that a896

path from q to p exists in Gm and then q ∼m p. J897

C.5 Proof of Proposition 27898

Proof of Proposition 27. Let n > 2|Q|+ 3 and u ∈ Ln. Let r be a proper transversal run899

on u and ∆L(r) = (t1, t2, . . . , tl) be its L-decomposition where each ti is a run from some900
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pi to some qi with some rank ki. This decomposition contains at least n 6 l transversal901

sub-runs. Moreover, they have all the same type (Lemma 22).902

Let i be the integer such that ti is the |Q|+ 1-th transversal edge in ∆L(r), and j be the903

integer such that tj is the n− (|Q|+ 1)-th transversal edge in ∆L(r). Then r1 = t1 :: · · · :: ti904

and r3 = tj :: · · · :: tl are as expected. We let r2 = ti+1 :: · · · :: tj−1.905

By Remark 21 there is a path ρ = (p1, k1, q1) . . . (pl, kl, ql) in Gm. Furthermore, there are906

|Q| transversal edges before (pi, ki, qi), and |Q| transversal edges after (pj , kj , qj) in ρ. Then907

two ∼m-equivalent states necessary appear in the prefix ρ1 = (p1, k1, q1) . . . (pi, ki, qi) of ρ as908

well as in the suffix ρ2 = (pj , kj , qj) . . . (pl, kl, ql) of ρ. By Proposition 23.2 these four states,909

as well as all intermediate states, are ∼m-equivalent. In particular, pi ∼m qi ∼m pj ∼m qj .910

Since ti is transversal run from pi, tj is a transversal run to qj and pi ∼m qj , Corollary 25911

ensures that ti and tj have a rank greater than the sub-run r2. It follows that r1 and r3 have912

a rank greater than, or equal to, the one of r2. J913

D Proofs of Subsection 4.2914

We detail some points of the construction of Section 4.2 not developed in the main section.915

D.1 Dealing with the endmarkers916

We recall we get:917

JT K(η(`ua)) = J
⊕

m∈µ(`La)

outEm,efK(`ua) for all u ∈ LT .918

The RRE f ′T =
⊕

m∈µ(`La) outEm,ef has domain `La, whereas we need a RRE with919

domain LT . The reader will easily able to check that the way we will construct each expression920

outEm,ef ensures that the following two properties are satisfied: (1) all its sub-expressions921

f are on a domain included in A+ or {`}A∗ or A∗{a} or {`}A∗{a}; (2) the Hadamard922

products always operate on two RREs with the same domain. We can take advantage of923

these properties to define inductively from each sub-expression f a new RRE ζ(f) of domain924

η(dom(f)) such that Jζ(f)K(η(v)) = JfK(v): if dom(f) ⊆ A∗, then ζ(f) = f , otherwise,925

if f equals dom(f)/v, then ζ(f) = η(dom(f))/v;926

if f = f1 � f2 then ζ(f) = ζ(f1)� ζ(f2) for all � ∈ {⊕, •,⊗};927

if f = f⊗1 , then ζ(f) = ζ(f1)⊗.928

Note that if f = f~,L,k1 , then dom(f) ⊆ A+. Moreover, because of their definition do-929

mains, if dom(f1) and dom(f2) are unambiguously concatenable, so it is for η(dom(f1)) and930

η(dom(f2)). The proof that η(f) is as expected is immediate, using a simple induction and931

properties (1) and (2).932

As a direct consequence, the RRE fT = ζ(f ′T ) has domain LT and is equivalent to T .933

D.2 Proof of Lemma 28934

We first recall this lemma:935

I Lemma 28. For any ε-free µ-good regular expression F and e = (p, k, q) ∈ µ(L(F )), we can936

compute an RRE outF,e with domain L(F ) such that JoutF,eK(u) = {output(r) | r ∈ R(e, u)}.937

Let r be a run and k be a state that appears in r. We denote the prefix sub-run of r to938

the first occurrence of k as prk(r), and the suffix sub-run of r from the first occurrence of k939

as suk(r).940

We will prove the following property:941
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I Lemma 37. For any ε-free µ-good regular expression F and e = (p, k, q) ∈ µ(L(F )), we942

can compute two RREs prF,e and suF,e with domain L(F ) such that:943

JprF,eK(u) = {output(prk(r)) | r ∈ R(e, u)},944

JsuF,eK(u) = {output(suk(r)) | r ∈ R(e, u)}.945

We first explain why this result allows to prove Lemma 28. This immediately follows946

from the next Lemma.947

I Lemma 38. If T is weakly ambiguous then JoutF,eK = JprF,e ⊗ suF,eK.948

Proof. By definition, their domains are equal. We only prove that JprF,eK⊗JsuF,eK ⊆ JoutF,eK,949

the other one being trivial. Let u ∈ L(F ) and α ∈ JprF,e ⊗ suF,eK(u). By definition950

of Hadamard product, there are α1 and α2 such that α = α1α2, α1 ∈ JprF,eK(u) and951

α2 ∈ JsuF,eK(u). So, by definition of the function prF,e and suF,e, there exist two runs952

r1, r2 ∈ R(e, u) such that α1 = output(prk(r1)) and α2 = output(suk(r2)). Since T is weakly953

ambiguous, r1 and r2 are k-stationary or k-synchronized. In both cases, this implies that954

r = prk(r1) :: suk(r2) is a run in R(e, u). Clearly, output(r) = α1α2. J955

We turn now to the proof of Lemma 37. Let F be an ε-free µ-good regular expression,956

µ(L(F )) = {mF } and ê = (p̂, k̂, q̂) ∈ mF . We will now express the transductions prF,ê and957

suF,ê as regular relation expressions using a structural induction on F .958

Base case and union case959

Suppose that F = a ∈ V . Let m = µ(a) and ê = (p̂, k̂, q̂) ∈ m. Then, by construction of960

M , there is a transition t = (p̂, a, q̂) ∈ δ such that k̂ equals q̂. We set prF,ê = a/out(t) and961

suF,ê = a/ε.962

Suppose that F = F1 + F2 and let L = L(F ), L1 = L(F1) and L2 = L(F2). Since the963

expression F is good, we deduce that µ(L) = µ(L1) = µ(L2) = {m}. Let ê = (p̂, k̂, q̂) ∈ m.964

We set prF,ê = prF1,ê ⊕ prF2,ê and suF,ê = suF1,ê ⊕ suF2,ê.965

Concatenation case966

Suppose that F = F1 · F2 and let L = L(F ), L1 = L(F1) and L2 = L(F2). Since the967

expression F is good, µ(L), µ(L1) and µ(L2) are singletons, respectively noted {mF }, {mF1}968

and {mF2}. Let’s ê = (p̂, k̂, q̂) ∈ mF . We compute the regular relation expressions prF,ê and969

suF,ê by analyzing the different ways the runs in R(ê, L) decompose w.r.t. L1 and L2.970

Let u be in L and r be a proper run on u from p̂ to q̂ with rank k̂ (namely r ∈ R(ê, u)).971

Since F is good, L1 and L2 are unambiguously concatenable. So, u uniquely decomposes972

into vw with v in L1 and w in L2. Let ∆L1,L2(r) = (t1, . . . , tn) be the decomposition of r973

w.r.t. L1 and L2. Then, the ti’s are proper sub-runs from some pi to some qi on some ki974

alternatively on v or w and such that t1 :: · · · :: tn = r. More precisely, t1 is on v if p̂ ∈ Q→975

while tn is on v if q̂ ∈ Q←. Otherwise, they are on w.976

We aim to build a RRE prF,ê such that JprF,êK(u) = {output(prk̂(r)) | r ∈ R(ê, u)} for977

all u ∈ L. So, only the prefix prk̂(r) of r to the first occurrence of state k̂ is of interest. Since978

r has rank k̂, we have necessary that979

prk̂(r) = t1 :: · · · :: tl−1 :: prk̂(tl) (1)980

where l is the first index such that tl has rank k̂.981

We abstract this decomposition by the word (x1, e1) . . . (xl, el), over the alphabetMF1,F2 =982

{1, 3} ×mF1 ∪ {2, 4} ×mF2 , such that ei = (pi, ki, qi), x1 = 1 if p̂ ∈ Q→ (otherwise x1 = 2)983
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and all the xi’s are alternatively equal to 1 or 2. The first component xi tells us if ei comes984

from mF1 or mF2 and makes the abstraction independent of the type of run (RL, LR, RR or985

LL). This word contains precisely one element of rank k, the last one. We tag this element986

by replacing it with (3, el) or (4, el) depending on xl = 1 or 2. The resulting word is denoted987

σ<k̂(r). We also set L<k̂F,ê = {σ<k̂(r) | r ∈ R(ê, u), u ∈ L(F )}. This set is not empty and does988

not contain the empty word. It is easy to prove from Equation 1 that the next equation989

holds. For all v ∈ L1 and w ∈ L2:990

prk̂(R(ê, vw)) =
⋃

(x1,e1)...(xl,el)∈L<k̂
F,ê

(
n−1∏
i=1

R(ei, ui)
)
prk̂(R(el, ul)) (2)991

where ui equals v if xi ∈ {1, 3}, or w otherwise. Thus, L<k̂F,ê abstracts the runs in prk̂(R(ê, L)).992

I Lemma 39. L<k̂F,ê is a regular language over MF1,F2 .993

Proof. We can easily define a language LF,ê that abstracts precisely all the possible de-994

composition of runs over L1L2 from p to q of rank k̂: the language LF,ê contains all words995

(x1, (p1, k1, q1)) . . . (xn, (pn, kn, qn)) in M∗F1,F2
such that996

we have ki 6 k̂ for all 1 6 i 6 n, and kj = k̂ for some j; x1 = 1 iff p̂ ∈ Q→, and for all997

2 6 i 6 n, xi = 1 if xi−1 = 2, otherwise xi = 2;998

p1 = p̂, qn = q̂ and for all 0 < i < n, qi = pi+1.999

This language is clearly regular. Now tag each word of LF,ê by replacing the first occurrence1000

of a letter (xj , (pj , kj , qj)) with kj = k̂ with (3, (pj , kj , qj)) or (4, (pj , kj , qj)) depending on1001

xj = 1 or 2, and called L′F,ê the resulting language. It is also clearly regular. Since L<k̂F,ê1002

consists of the prefixes of LF,ê such that the only element of rank k̂ is the last one, it is also1003

regular. J1004

Consider for each e1 ∈ mF1 and e2 ∈ mF2 the RREs built using the induction hypothesis:1005

ôutF1,e1 = outF1,e1 • L2/ε ôutF2,e2 = L1/ε • outF2,e2

p̂rF1,e1 = prF1,e1 • L2/ε p̂rF2,e2 = L1/ε • prF2,e2 .
1006

Each of them has domain L = L(F ). From any regular expression E over MF1,F2 that does1007

not use 0 as atom, we can inductively build a RRE ν(E) with domain L as follows:1008

ν(ε) = L/ε;1009

if E = (xi, e) and xi ∈ {1, 2} then ν(E) = ôutFxi
,e;1010

if E = (xi, e) and xi ∈ {3, 4}, then ν(E) = p̂rFxi−2,e;1011

if E = E1 + E2 then ν(E) = ν(E1)⊕ ν(E2);1012

if E = E1 · E2 then ν(E) = ν(E1)⊗ ν(E2);1013

if E = E∗1 then ν(E) = ν(E1)⊗.1014

I Lemma 40. Let E be a regular expression over MF1,F2 that does not use 0 as atom. For1015

all u ∈ L, we have1016

Jν(E)K(u) =
⋃

α∈L(E)

Jν(α)K(u).1017

Proof. We proceed by induction on the structure of E. We give the proof for the star case1018

only, that is when E = E∗1 . The other cases are quite simple. Let LE1 = L(E1).1019
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Jν(E∗1 )K(u) = Jν(E1)⊗K(u) (def. of ν) (3)1020

= (Jν(E1)K(u))∗ (def. of Had. star) (4)1021

=
∞⋃
i=0

(Jν(E1)K(u))i (def. Kleene star) (5)1022

=
∞⋃
i=0

 ⋃
α∈L(E1)

Jν(α)K(u)

i

(by induction) (6)1023

= {ε} ∪
∞⋃
i=1

⋃
(α1,...,αi)∈Li

E1

i∏
j=1

Jν(αj)K(u) (7)1024

= {ε} ∪
∞⋃
i=1

⋃
(α1,...,αi)∈Li

E1

J
i⊗

j=1
ν(αj)K(u) (def. of Had. prod.) (8)1025

= {ε} ∪
∞⋃
i=1

⋃
(α1,...,αi)∈Li

E1

Jν(α1 . . . αi)K(u) (def. of ν) (9)1026

= Jν(ε)K(u) ∪
∞⋃
i=1

⋃
α∈Li

E1

Jν(α)K(u) (10)1027

=
⋃

α∈L∗
E1

Jν(α)K(u) (11)1028

1029

J1030

We pick up a regular expression EF,ê (without 0) denoting the non-empty language L<kF,ê,1031

and set prF,ê = ν(EF,ê).1032

I Lemma 41. For all u ∈ L(F ), we have JprF,êK(u) = output(prk(R(ê, u))).1033

Proof. Since F = F1 ·F2 is a good expression, u uniquely decomposes into vw with v ∈ L(F1)1034

and w ∈ L(F2). Equation 2 immediately implies that output(prk(R(ê, vw))) is equal to1035

⋃
(x1,e1)...(xn,en)∈L<k

F,ê

(
n−1∏
i=1

output(R(ei, ui))
)
output(prk(R(en, un))1036

where ui equals v (resp. w) if xi equals 1 (resp. 2).1037

By induction, this is equal to1038

⋃
(x1,e1)...(xn,en)∈L<k

F,ê

(
n−1∏
i=1

JoutFxi
,ei

K(ui)
)

JprFxn ,en
K(un) (12)1039
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So we have the following equalities:1040

(12) =
⋃

(x1,e1)...(xn,en)∈L<k
F,ê

t
n−1⊗
i=1

ôutFxi
,ei
⊗ p̂rFxn ,en

|

(vw) (13)1041

=
⋃

(x1,e1)...(xn,en)∈L<k
F,ê

Jν((x1, e1) . . . (xn, en))K (vw) def. of ν (14)1042

=
⋃

α∈L<k
F,ê

Jν(α)K (vw) (15)1043

= Jν(EF,ê)K (vw) by Lemma 40 (16)1044

= JprF,êK (vw) def. of prF,ê (17)1045
1046

J1047

The construction of suF,ê is very similar. In this case, we are interested in the suffix1048

suk(r) of r from the first occurrence of state k. Then, if r decomposes into t1 :: · · · :: tn then1049

Equation 1 becomes1050

suk(r) = suk(tl) :: tl+1 :: · · · :: tn (18)1051

where l is the first index such that tl has rank k. The function σ<k and the language L<kF,ê1052

are adapted accordingly. In particular, it is now the first element of each word in L<kF,ê that1053

is tagged with 3 or 4. Finally, the function ν changes slightly: if E = (xi, e) and xi ∈ {3, 4},1054

then ν(E) = ŝuFxi−2,e.1055

Kleene iteration case1056

Suppose that F = F+
1 , and let L = L(F1). Then L(F ) = L+. Since F is µ-good, {mF }1057

is equal to {mF1}. Moreover, mF is idempotent and L is unambiguously iterable. We1058

distinguish two cases depending on the type of ê.1059

Suppose that ê is LL, namely p̂ ∈ Q→ and q̂ ∈ Q← (the RR case is similar). In this case,1060

we can show from Lemma 22 that R(ê, L+) = R(ê, L). So we use the induction hypothesis1061

and set: prF,ê = prF1,ê • L∗/ε and suF,ê = suF1,ê • L∗/ε.1062

Suppose now that ê is LR, namely p̂, q̂ ∈ Q→ (the RL case is similar). We only describe1063

the main ideas to build prF,ê, those for suF,ê being similar. First, following the approach1064

developed for the concatenation, we can build the RREs prF i
1 ,ê

for any i 6 2|Q|+ 2 where |Q|1065

is the number of states of the transducer. We show below how to build the RRE pr
F

>2|Q|+3
1 ,ê

.1066

The RRE prF,ê is then computed as the sum of all of them.1067

A long proper LR run r in R(ê, L>2|Q|+3) can be decomposed into r1 :: r2 :: r3 as described1068

in Proposition 27. In this decomposition, states p and q belong to a same (non-trivial) SCC1069

C of GmF
and are in Q→ (as p̂). Lemma 22 entails that r1, r3 and all the transversal runs of1070

∆(r2) have the same type as r. So they are all proper LR runs. Furthermore, by Corollary 25,1071

r2 and all transversal runs of ∆(r2) have the same rank kC , and the return ones have rank1072

less than (or equal to) kC .1073

We present the main ideas of the proof in the simpler case where r2 is always a proper1074

LR run. The general case only adds some uninteresting technical details that makes a little1075

more complicate the decomposition of Equation (19) below. With this assumption, we can1076

partition the set R(ê, L>2|Q|+3) according to the intermediate states p and q that appear in1077
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the decomposition and the ranks k1 and k2 of r1 and r2 as follows:1078

R(ê, L>2|Q|+3) =
⊎

p,q in a scc C of Gm

k̂=max(k1,k2)

R((p̂, k1, p), L|Q|) :: R((p, kC , q), L>3) :: R((q, k2, q̂), L|Q|) (19)1079

We let e = (p, kC , q). The last technical difficulty of the proof is to define an RRE out′F,e1080

with domain L>3 and which maps any word v ∈ L>3 to output(R(e, v)). Once this is done,1081

the expected RRE pr
F

>2|Q|+3
1 ,ê

can be obtained using adequate combinations of the RREs1082

out′F,e, prF |Q|1 ,(p̂,k1,p)
and su

F
|Q|
1 ,(q,k2,q̂)

, depending on whether k̂ equals k1 or k2 (recall that1083

kC 6 k1, k3 by Proposition 27).1084

We detail now the construction of out′F,e. Let w ∈ L3 that uniquely decomposes into1085

w1w2w3 with wi ∈ L. Let p′, q′ ∈ C ∩Q→. Any run r ∈ R((p′, kC , q′), w) can be decomposed1086

into three sub-runs: the prefix p̂rkC
(r) of r that ends to the first occurrence of kC between1087

positions |w1|+ 1 and |w1w2|; the suffix ŝukC
(r) of r that starts from the first occurrence1088

of kC between positions |w1w2| + 1 and |w1w2w3|; and the remaining infix înkC
(r) of1089

r. Proposition 26 implies that the sets p̂rkC
(R(p′, kC , q′), w), ŝukC

(R(p′, kC , q′), w) and1090

înkC
(R((p′, kC , q′), w)) do not depend on p′ and q′. More generally, for all v ∈ L>3 with1091

v = v1 . . . vl its unique decomposition (L is unambiguously iterable), we have1092

R(e, v) = p̂rkC
(R(e, v1v2v3)) ::

∏
26i6l−1

înkC
(R(e, vi−1vivi+1)) :: ŝukC

(R(e, vl−2vl−1vl))1093

Again, we can adapt the approach used for the concatenation to build RREs p̂rF1,e, ŝuF1,e1094

and înF1,e that map any word w ∈ L3 to output(p̂rkC
(R(e, w))), output(ŝukC

(R(e, w))) and1095

output(înkC
(R(e, w))), respectively. We get:1096

output(R(e, v)) = Jp̂rF1,eK(v1v2v3)
∏

26i6l−1
JînF1,eK(vi−1vivi+1)JŝuF1,eK(vl−2vl−1vl)1097

= Jp̂rF1,eK(v1v2v3)J〈înF1,e〉~,L,3K(v1 . . . vl)JŝuF1,eK(vl−2vl−1vl)1098

= J(p̂rF1,e • L
∗/ε)⊗ 〈înF1,e〉~,L,3 ⊗ (L∗/ε • ŝuF1,e)K(v)1099

1100

The latter RRE is the expected out′F,e.1101

E Proof of Proposition 131102

In this section we prove the decidability of the property of weak ambiguity. To do so, since1103

this is a property of the runs, we will first define crossing sequences automata, that capture1104

families of runs in a nice way, and exhibit some interesting properties, which we will use later1105

on for the decidability.1106

E.1 Crossing sequences1107

I Definition 42. Let A = (Q→, Q←, i, f, δA) be a two-way automaton. The crossing sequence1108

of a run ρ at position i is the sequence of states obtained by the projection πi from (Q× N)∗1109

to (Q × {i})∗ applied to the run: we keep only the states that were in a configuration at1110

position i.1111

The crossing sequence of the run ρ of the automaton A at position i over the word u is1112

noted CS
(u)
A (ρ, i), or CS(ρ, i) when the rest is clear from context.1113
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l r

(pq, ε)
(p, p′)

(q, q′)

(ε, qp)

Figure 6 Automaton recognizing a-joinable crossing sequences.

We will want to know when two given crossing sequences can be consecutive, i.e. when1114

there exists a run to wich both belong, one at position i ant the other at position i+ 1. This1115

is a local property, in the sense that it does not depend on the whole word (cf. e.g. [21]).1116

Formally:1117

I Definition 43. a pair (c, c′) of crossing sequences is said to be a-joinable, with a ∈ A`a, if1118

with c = c1 . . . cn and c′ = c′1 . . . c
′
m, the pair of words (c, c′) over the alphabet (Q→ +Q←)+

1119

is accepted by the automaton Ta = (Q, I, F, δ), drawn in Fig.6, with:1120

Q = I = F = {l, r} two states, both initial and final,1121

δ is the following set of transitions, for all p, p′ ∈ Q→ and q, q′ ∈ Q←:1122

from l to r, labeled by (p, p′), if (p, a, p′) ∈ δA,1123

from r to l, labeled by (q, q′), if (q, a, q′) ∈ δA,1124

from l to l, labeled by (pq, ε), if (p, a, q) ∈ δA,1125

from r to r, labeled by (ε, qp), if (q, a, p) ∈ δA,1126

These objects are often defined for deterministic automata, because then there is a finite1127

number of crossing sequences of accepting runs: no state could appear twice on the same1128

crossing sequence. This allows to construct an automaton based on such objects, that1129

recognize accepting runs of the original deterministic automaton.1130

However it is still possible to build a finite automaton based on these objects in the1131

non-deterministic case, if we consider crossing sequences where we allow states to repeat at1132

most once (cf. e.g. [10]). In a sense, a crossing sequence with a repetition is a witness of an1133

infinite number of actual crossing sequences with unbounded size, because the run between1134

the two occurences of the repeating state can be repeated as often as wanted. Note that if1135

we construct an automaton with such crossing sequences, allowing at most two occurences of1136

the states, we will not recognize all runs of the automaton, but only the ones that take at1137

most once any loop they encounter, loop meaning here a run that goes from a configuration1138

back to itself. However this information is enough for our usage, because from such runs one1139

could rebuild all missing runs.1140

I Definition 44. Let A be a two-way automaton. A crossing sequence with one repetition,1141

noted CS1(ρ, i), is a crossing sequence in which no states appears more than twice. Note that1142

there is only a finite number of possible such crossing sequences. We note RCS this finite set.1143

We want to build an automaton from these objects that will allow us to capture proper1144

runs of the initial automaton. But since we will be interested by runs of rank k, and LL or1145

RR runs may have any word as prefix or suffix, this construction is not exactly the classical1146

one.1147

Let A be a two-way automaton, and k, p, q states of A. We want an automaton whose1148

accepting runs are in bijection with runs of R(p, k, q), the union of R((p, k, q), u) for all1149

u ∈ A∗ 3, that do not go more than twice through a given state at the same position in a1150

3 We will consider afterwards the product of this automaton with itself, ensuring that we only consider
one word at the same time.
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given word.1151

How we do so will depend on the nature, forward or backward, of p and q, but the main1152

idea is always the same, having crossing sequences in states, and a transition whenever the1153

crossing sequences are joinable.1154

We then trim this automaton to only keep runs that go through a state -a crossing1155

sequence of A- that contains a k. This can be done by making a copy of the automaton with1156

a flag remembering wether or ot we have already encountered a state containing k. This step1157

is ommited for clarity.1158

If p and q are both forward:1159

I Definition 45. The LR-automaton of crossing sequences with repetitions of A, p, q is the1160

one-way automaton (QLR, ILR, FLR, δLR) with:1161

QLR = RCS ∩ (Q→ ×Q←)∗ ×Q→,1162

ILR = {p},41163

FLR = {q},51164

δLR(c, a) is the set of all crossing sequences c′ such that (c, c′) is a-joinable.1165

If p and q are both backward:1166

I Definition 46. The RL-automaton of crossing sequences with repetitions of A, p, q is the1167

one-way automaton (QRL, IRL, FRL, δRL) with:1168

QRL = RCS ∩ (Q← ×Q→)∗ ×Q←,1169

IRL = {q},1170

FRL = {p},1171

δRL(c, a) is the set of all crossing sequences c′ such that (c, c′) is a-joinable.1172

When the proper runs are of the form LL or RR, remark that any word on which such a1173

run is valid can be extended to another valid support, adding any suffix for LL-runs, and1174

any prefixes for RR-runs. Hence we will need to add a special state to handle this property.1175

If p is forward and q backward:1176

I Definition 47. The LL-automaton of crossing sequences with repetitions of A, p, q is the1177

one-way automaton (QLL, ILL, FLL, δLL) with:1178

QLL = RCS ∩ (Q→ ×Q←)+ ∪ {/},1179

ILL = {(p, q)},1180

FLL = /,1181

δLL(c, a) is the set of all crossing sequences c′ such that (c, c′) is a-joinable. We also add1182

(/) to this set if (c, ε) is a-joinable; and for all a, / ∈ δLL(/, a).1183

If p is backward and q forward:1184

I Definition 48. The RR-automaton of crossing sequences with repetitions of A, p, q is the1185

one-way automaton (QRR, IRR, FRR, δRR) with:1186

QRR = RCS ∩ (Q← ×Q→)+ ∪ {.},1187

IRR = .,1188

FRR = {(p, q)},1189

δRR(c, a) is the set of all crossing sequences c′ such that (c, c′) is a-joinable. We also add1190

c to the set δRR(., a) if (ε, c) is a-joinable; and for all a, . ∈ δLL(., a).1191

4 We do not allow proper runs to go again through the starting position.
5 Likewise for the ending position of the run.
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Algorithm 1 Aut Synch(A)

for k in states of A in decreasing order (for <) do

for p, q in states of A do

if not Runs(A, <, k, p, q) then

return False

end if

end for

end for

return True

I Proposition 49. Accepting runs of the automaton of crossing sequences with repetitions of1192

A, p, q are in bijection with proper runs in R((p, k, q), u)(<3), runs of R(p, k, q) that do not1193

go more than twice through a given state at the same position in a given word.1194

Proof. This comes from the fact that by construction, runs of A and sequences of crossing1195

sequences (of unbouded length) are in bijection.1196

J1197

E.2 The Decidability Algorithm1198

We want to show that the following problem is decidable:1199

Weakly Ambiguous?1200

Input: A two-way automaton A.1201

Output: The boolean value of the proposition ”A is weakly ambiguous.”1202

One possible way of solving this is to enumerate all possible orders, until we find one1203

that checks the property needed for weak-ambiguity. This means that we need to exhibit an1204

algorithm to solve the following problem:1205

Aut Synch?1206

Input: A two-way automaton A, < a total order on states of A.1207

Output: The boolean True iff for all states k, p, q, and all words u, R((p, k, q), u) is either1208

k-synchronous or k-stationary.1209

Assuming we have an algorithm Runs(A, <, k, p, q) that can say whether R((p, k, q), u)1210

is either k-synchronous or k-stationary for all words u, the algorithm 1 solves Aut Synch?.1211

But before describing such an algorithm Runs, we are going to need a few lemmas.1212

I Lemma 50. Let A be an automaton, < an order on its states, u a word, and k, p, q states1213

of A.1214

R((p, k, q), u) is neither k-stationary nor k-synchronous if and only if one of the following1215

two properties is true:1216

there exists two runs ρ1, ρ2 ∈ R((p, k, q), u) and a position i such that k appears at position1217

i in ρ1 and does not appear at position i in ρ2.1218

there exists a run ρ ∈ R((p, k, q), u) and two positions i, j such that k appears in ρ twice1219

at positions i and at least once in position j.1220

Proof. Assume R((p, k, q), u) is neither k-stationary nor k-synchronous.1221

This means that {Posk(ρ) | ρ ∈ R((p, k, q), u)} is not a singleton, i.e. there are two runs1222

ρ1, ρ2 ∈ R((p, k, q), u) such that Posk(ρ1) 6= Posk(ρ2).1223

Now, with P1 the set of positions in Posk(ρ1), and P2 the same for ρ2, consider the two1224

following cases:1225
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P1 6= P2. This means that there exists a position i such that k appears at position i in1226

exactly one of the two runs, meaning that the first property holds.1227

P1 = P2. Therefore, the occurrences of k in ρ1 and ρ2 must be in different order. By1228

non-stationarity, we can assume that there exists two positions i, j where k appears.1229

Therefore, we have ρ1 = σ1(k, i)σ2(k, j)σ3, and ρ2 = τ1(k, j)τ2(k, i)τ3. Consider now the1230

run τ1(k, j)τ2(k, i)σ2(k, j)σ3. This run belong to R((p, k, q), u) and checks the second1231

property.1232

This proves the implication.1233

For the other direction, consider P = {Posk(ρ) | ρ ∈ R((p, k, q), u)}. If the first property1234

holds, P is not a singleton, and we therefore don’t have k-synchronization. Furthermore1235

Posk(ρ2) will not be a subset of i+, and neither will P for any position j because i belongs1236

to P from ρ1. In the second case, the occurrence of k twice at the same position is proof1237

that there exists an infinity of runs that can be build from this one by looping on the part1238

between these two occurrences. The set {Posk(ρ) | ρ ∈ R((p, k, q), u)} is therefore not a1239

singleton, and since there is another occurrence of k in at least one other position, it is not1240

a subset of i+ either. Therefore, in both cases, R((p, k, q), u) is neither k-stationary nor1241

k-synchronous. J1242

I Lemma 51. Let A be an automaton, < an order on its states, u a word, and k, p, q states1243

of A.1244

With R((p, k, q), u)(<3) the set of runs of R((p, k, q), u) whose crossing sequences do1245

not contain the same state more than two times, R((p, k, q), u) is neither k-stationary nor1246

k-synchronous if and only if one of the following two properties is true:1247

there exists two runs ρ1, ρ2 ∈ R((p, k, q), u)(<3) and a position i such that k appears at1248

position i in ρ1 and does not appear at position i in ρ2.1249

there exists a run ρ ∈ R((p, k, q), u)(<3) and two positions i, j such that k appears in ρ1250

twice at positions i and at least once in position j.1251

This is the lemma above, but with the restriction that the runs in the second part1252

of the equivalence can be chosen among R((p, k, q), u)(<3). To prove this, consider first1253

that if there is a run of R((p, k, q), u) where the state k appears several times at the1254

same position, infinitely many runs of R((p, k, q), u) can be constructed from it. Indeed, if1255

ρ = σ0(k, i)σ1(k, i)σ2(k, i) . . . σn(k, i)σ′ belong to R((p, k, q), u), then so do all runs in the1256

language σ0(k, i) ((σ1 + σ2 + . . .+ σn)(k, i))∗ σ′. In particular, σ0(k, i)σ′ is in R((p, k, q), u).1257

Meaning that for all runs in R((p, k, q), u) there exist a run in R((p, k, q), u) where no state1258

is visited twice. In a sense, we can get rid of the loops.1259

This operation applied to ρ1 and ρ2 of the first property of the equivalence gives the1260

result. For the second property, we do basically the same thing, except that we keep one1261

occurrence of the loop, to ensure that we do not get rid of the portion of the run containing1262

k at position j.1263

Therefore, from that lemma, we can write Algorithm 2.1264

E.3 Correctness of the algorithm Runs1265

Remark first that since by Property 49, an accepting run of C describes a proper run of1266

R((p, k, q), u)(<3), an accepting run of D describes two proper runs of R((p, k, q), u)(<3) on1267

the same word, and states of D are two crossing sequences at the same position. This will1268

allows us to prove that the algorithm checks the properties of Lemma 51. For convenience,1269

let us note:1270
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Algorithm 2 Runs(A, <, k, p, q)

C ← Repeated crossing sequences automaton(A, k, p, q)
D ← Trim(C × C)
for all distinct pairs of states (c1, c2), (c3, c4) of D belonging to an accepting run of D do

if k appears in c1 XOR k appears in c2 then

return False

end if

if k appears in each c1, c2, c3, c4 AND k appears twice in one of (c1, c2, c3, c4) then

return False

end if

end for

return True

P1: there exists two runs ρ1, ρ2 ∈ R((p, k, q), u)(<3) and a position i such that k appears1271

at position i in ρ1 and does not appear at position i in ρ2.1272

P2: there exists a run ρ ∈ R((p, k, q), u)(<3) and two positions i, j such that k appears in1273

ρ twice at positions i and at least once in position j.1274

A1: There exists a state (c1, c2) of D such that k appears in c1 XOR k appears in c2.1275

A2: k appears in each c1, c2, c3, c4 AND k appears twice in one of (c1, c2, c3, c4).1276

We prove the following:1277

(i) P1 ⇒ A1;1278

(ii) A1 ⇒ P1;1279

(iii) P2 ⇒ A1 ∨A2;1280

(iv) A2 ⇒ P2.1281

i: P1 ⇒ A1. P1 means that there exists a run of D and a state (c1, c2) on this run, where1282

the state k appears exactly in one of the two crossing sequences c1, c2.1283

ii: A1 ⇒ P1. Existence of a state means existence of a run of D, and therefore of two1284

runs of C, for which there is a position where k appears only in one of these runs.1285

iii: P2 ⇒ A1 ∨A2.1286

P2 means that there exists two crossing sequences c1, c3, at two different positions, where1287

c1 contains k twice, and c3 at least once.1288

Now, in pairs of states of D, to capture c1 and c3 on the same run, it means that there1289

exists c2, c4, such that the pair is one of (c1, c2), (c3, c4), (c3, c4), (c1, c2), (c2, c1), (c4, c3), or1290

(c4, c3), (c2, c1).1291

Assume both c2 and c4 contain k. We immediately have A2. But if one of them does not1292

contain k, it means that the state of D from which it comes is comprised of two crossing1293

sequences, one that contains k, and the other who does not: this is A1.1294

iv: A2 ⇒ P2. Assume wlog that k appears twice in c1. There is a run of R((p, k, q), u)(<3)
1295

that contains both c1 and c3. Which is the run for P2.1296
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