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Transducers constitute a fundamental extension of automata. The class of regular word
functions has recently emerged as an important class of word-to-word functions, charac-
terized by means of (functional, or unambiguous, or deterministic) two-way transducers,
copyless streaming string transducers, and MSO-definable graph transformations. A fun-

damental result in language theory is Kleene’s Theorem, relating finite state automata
and regular expressions. Recently, a set of regular function expressions has been intro-
duced and used to prove a similar result for regular word functions, by showing its equiv-

alence with copyless streaming string transducers. In this paper, we propose a direct,
simplified and effective translation from unambiguous two-way transducers to regular
function expressions extending the Brzozowski and McCluskey algorithm. In addition,
our approach allows us to derive a subset of regular function expressions characterizing

the (strict) subclass of functional sweeping transducers.

1. Introduction

The theory of regular languages has been extended in numerous directions, includ-

ing finite and infinite trees. Another natural extension is moving from languages to

transductions. One of the strengths of the class of regular languages is their equiv-

alent presentation by means of automata, logic, algebra and regular expressions.

Regular expressions are of particular interest for specification purposes in a declar-

ative manner. We are interested in this paper in regular expressions for specifying

word-to-word functions.

While finite state automata are very robust under modifications in the model,

the situation is different for transducers. It is well known that non-determinism

and two-wayness increase the expressive power, even when one only considers

functional transductions. The class of functions realized by non-deterministic two-

way transducers, so-called regular functions, has attracted recently a strong inter-

est [1, 2, 3, 4, 14, 7, 15, 9]. It is very expressive and allows to express natural trans-
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formations that are not definable by one-way transducers (e.g. duplicate the input

word, or produce its mirror image). This class also enjoys a logical characteriza-

tion using Monadic Second-Order graph transductions interpreted on strings [11],

and can also be defined using the model of copyless streaming string transducers

(SST) [1].

A natural line of research concerns the identification of adequate regular expres-

sions to specify different classes of formal power series, as investigated in [10, 17]. It is

well known that rational relations (realized by non-deterministic one-way transduc-

ers) can be described using standard regular expressions on pairs of input and output

words, as a special case of Schützenberger theorem for weighted automata [20]. Im-

posing on these regular expressions the restriction of being unambiguous on their

input part yields a presentation of rational functions [6]. More recently, a set of reg-

ular combinators has been introduced allowing to characterize the class of regular

functions [3].

In this paper, we propose a new construction showing that any regular function

can be expressed using the regular combinators introduced in [3]. Our approach

differs from the one of [3] w.r.t. two aspects: first, we take as input unambigu-

ous two-way finite state transducers while [3] starts with copyless streaming string

transducers; second, our construction lifts the standard state-elimination algorithm

proposed by Brzozowski and McCluskey [8] while [3] follows the approach of Mc-

Naughton and Yamada [19]. In order to propose a state elimination algorithm for

unambiguous two-way finite state transducers, the difficulty lies in two aspects: go-

ing from a one-way to a two-way model, and going from automata to transducers.

In order to address these issues, we use the construction of the crossing sequence

automaton [16] and the notion of traversals of two-way automata, that allow to

describe the computation flow of a two-way automaton over some input word. In

addition, we label the edges of these flow graphs with regular function expressions.

More precisely, the state-elimination algorithm requires to be able to compute

the union, concatenation and Kleene star of transitions of the automaton. We thus

have to be able to perform these operations on flows. Unlike union and concate-

nation, the operation of Kleene iteration may yield complex behaviours that are

difficult to describe by means of regular function expressions. A key contribution of

our work is a deep investigation of these flows, and the identification of an important

characteristic: the number of crossing edges. Using this parameter, we first identify

a subclass of flows for which the representation of the Kleene iteration by means

of regular function expressions is rather simple, and then present a construction

allowing to reduce the Kleene iteration of arbitrary flows to that of the subclass.

This results in a simple proof, which we believe will be useful for further extensions.

A side-result of our work is the exhibition of a set of operators characterizing the

class of sweeping transducers (this result could also be deduced from [17]). Sweep-

ing transducers induce a third class of functions in-between rational and regular

functions.
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In parallel to our work published in [5], the authors of [12] also studied transfor-

mations from two-way transducers to the class of expressions introduced in [3], in

order to lift these results to infinite words. They also consider the monoid of flows

as starting point of their study. As explained before, the main difficulty lies in the

Kleene iteration, which becomes rather easy if the flow is idempotent. This is where

our approaches differ. The approach followed in [12] resorts to strong algebraic tools

in order to end up directly to the setting of idempotent flows, using an unambigu-

ous version of the forest factorization theorem of Simon [21]. This approach is then

extended to infinite words. Our objective is to propose an algorithmic approach to

computing an equivalent expression, based on the adaptation of the famous state-

elimination algorithm. By nature, this algorithm gathers different behaviours of the

automaton and thus requires to deal with (finite) sets of flows. Our notion of simple

set of flows allows us to solve the challenge of computing the Kleene iteration of a

finite set of flows.

It is worth mentioning that our results are presented for word transducers but

they could be easily adapted to the setting of transducers producing output in some

monoid, as in [3].

We introduce the model of transducers and the regular function expressions

in Section 2, and our labelled flow graphs in Section 3. In Sections 4 and 5, we

define the operations of union, concatenation and Kleene star on flows labelled with

regular function expressions. In Section 6, we present the algorithm, and the main

results concerning the representation of the Kleene star of flow graphs. The case of

sweeping transducers is dealt with in Section 7.

The present work is an extension of our previous work [5]. Compared with this

conference version, it constitutes a significant improvement including omitted defi-

nitions, proofs, algorithms and some additional examples.

2. Definitions

2.1. Words, Languages and Transducers

Given a finite alphabet A, we denote by A∗ the set of finite words over A, and by

ε the empty word. The length of a word u ∈ A∗ is its number of symbols, denoted

by |u|. For all i ∈ {1, . . . , |u|}, we denote by u[i] the i-th letter of u. Given n > 0,

we denote by [n] the set {0, 1, . . . , n− 1}. A language over A is a set L ⊆ A∗. Given

two languages L,L′ over A, the concatenation of L and L′, denoted LL′, is defined

as {uv | u ∈ L, v ∈ L′}. We say that L and L′ are unambiguously concatenable

whenever for every word w ∈ LL′, there exist unique words u ∈ L and v ∈ L′ such

that w = uv. Given a language L over A, we define Lk as {u1 · · ·uk | ∀i, ui ∈ L}.

The Kleene star of L, denoted by L∗, is defined as
⋃

k>0 L
k. The Kleene plus of

L, denoted by L+, is defined as LL∗. We write L>k to refer to the language LkL∗.

When ǫ 6∈ L, we say that L is unambiguously iterable if for every word w ∈ L∗, there

exist unique words u1, . . . , un ∈ L such that w = u1 · · ·un.

A monoid is a set M equipped with an associative internal law and a neutral
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element. Given an alphabet A and a monoid M , a transduction from A to M is a

relation R ⊆ A∗ ×M . A transduction R is functional if it is a partial function. A

word-to-word function is a functional transduction to a free monoid. The transducers

we will introduce will define transductions. We will say that two transducers T, T ′

are equivalent whenever they define the same transduction.

When dealing with two-way machines, we assume the alphabet A to be extended

into A by adding two special symbols ⊢,⊣, and we consider input words with left and

right markers. The automaton then reads the input word ⊢u⊣, and we set u[0] = ⊢

and u[|u|+ 1] = ⊣. We also define D = {←,→}.

Automata. A two-way finite non-deterministic state automaton (2NFA) over a

finite alphabet A is a tuple A = (Q, q0, Qf , δ) where Q is a finite set of states,

q0 ∈ Q is the initial state, Qf ⊆ Q is a set of final states, and δ ⊆ Q× A×Q × D

is the transition relation. We describe the behaviour of A on some input word ⊢u⊣.

Informally, a 2NFA has a reading head pointing between symbols (and possibly on

the left of ⊢ and on the right of ⊣). A configuration ofA is a triple (q, i, d) ∈ Q×N×D,

where 0 6 i 6 |u| + 2 is the position of the reading head on the input tape. The

direction d indicates whether the next input letter read is on the left or on the

right of the reading head. The configurations (q, i, d) and (q′, i′, d′) are consecutive

if we have (q, u[i + md], q
′, d′) ∈ δ, where m→ = 0 and m← = −1, and i′ = i + 1

if d = d′ = →, i′ = i − 1 if d = d′ = ←, and i′ = i otherwise. A run is a finite

sequence of consecutive configurations. It is accepting if the first configuration is

(q0, 0,→), and the last configuration is (q, |u| + 2,→) with q ∈ Qf . Note that this

latter configuration does not allow additional transitions. The language of A is the

set of words u ∈ A∗ such that there exists an accepting run of A on ⊢u⊣.

A two-way finite state automaton is:

• deterministic if we may write δ as a partial function from Q × A to Q ×

{←,→}.

• unambiguous if for any u ∈ A∗, there is at most one accepting run on ⊢u⊣.

• one-way it it does not have transitions of the form (q, a, q′,←).

• sweeping if the head can change direction only at the extremities ⊢ and ⊣

of the input.

Transducers. Given two finite alphabets A and B, two-way finite state transducers

(2NFT) from A to B extend 2NFA over A with a one-way left-to-right output tape

containing elements of B∗. They are defined as 2NFA except that the transition

relation δ is extended with outputs: δ ⊆ Q×A×B∗×Q×{←,→}. Without loss of

generality, we suppose in this paper that two distinct transitions in a transducer are

either on different input letter, or between distinct pair of states. When a transition

(q, a, w, q′, d) is fired, the word w is appended to the right of the output tape. The

transduction defined by a 2NFT T is the relation R(T ) defined as the set of pairs

(u, v) ∈ A∗ ×B∗ such that v is the output of an accepting run on the word ⊢u⊣.
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0 1 2 3 4

a/ǫ,→
b/ǫ,→

#/ǫ,←
⊣ /ǫ,←

a/ǫ,→
b/ǫ,→

⊢ /ǫ,→

a/a,←
b/b,←

#/ǫ,→
⊢ /ǫ,→

#/#,→

⊣ /ǫ,→

Fig. 1. A 2NFT realizing the function mirror
∗ of Example 2.

⊢ a b # b b a ⊣

0 1 2 3 4 5 6 7 8

0 1 1 1

222

3 3 3 1 1 1 1

2222

3 3 3 3 4

ǫ ǫ ǫ

ba

ǫ ǫ # ǫ ǫ ǫ

abb

ǫ ǫ ǫ ǫ

ǫ

ǫ

ǫ

ǫ

Fig. 2. A run of the 2NFT of Example 2.

We say that a 2NFT T is functional if the relation R(T ) is a partial function.

We say that a 2NFT T is deterministic (resp. unambiguous, one-way, sweeping) if

its underlying 2NFA is. Observe that if T is deterministic or unambiguous, there is

at most one accepting run for each input word, and thus T is functional.

Theorem 1. [13] Functional, deterministic and unambiguous 2NFT are expres-

sively equivalent, and strictly more expressive than functional sweeping transducers,

which in turn are strictly more expressive than functional one-way transducers.

We call rational functions (resp. sweeping functions, regular functions) the ones

that are definable by one-way transducers (resp. sweeping transducers, two-way

transducers).

Example 2. Given a word u, we denote by mirror(u) its mirror image. Given A =

{a, b,#}, we consider the function mirror
∗ mapping an input word u, whose decom-

position according to #’s is u = u1#u2# . . .#un, to the word v = v1#v2# . . .#vn,

with vi = mirror(ui) for all i. This function is realized by the deterministic 2NFT

depicted in Figure 1. An execution of this transducer on the input word u = ab#bba

is depicted in Figure 2.



July 27, 2020 11:55 WSPC/INSTRUCTION FILE main-final

6 Baudru and Reynier

2.2. Crossing sequence automaton construction

Crossing sequences. A standard tool to analyse two-way machines is the notion

of crossing sequence [16], and the associated notions of traversals of the run. A

crossing sequence is a sequence of states encountered by a run at a given position

in the input word. For instance, if we consider the run depicted in Figure 2, the

crossing sequence at position 0 (resp. position 8) is the tuple (0) (resp. (4)), while

all the other crossing sequences are equal to the triple (1, 2, 3).

More precisely, given a run (q0, i0, d0) . . . (qp, ip, dp), the crossing sequence at

position i is defined as follows. Let 0 ≤ j0 < j1 < . . . < jk−1 6 p be the sequence of

all indices such that ijℓ = i for ℓ ∈ [k]. Then the crossing sequence at position i is

defined as the tuple (qj0 , . . . , qjk−1
).

Formally, a crossing sequence is a non-empty sequence of states (q0, q1, . . . , qk−1)

with k ≥ 1 and qi ∈ Q for every i ∈ [k] such that:

(1) k is odd

(2) ∀0 6 i 6= j < k, if qi = qj then i is odd and j is even, or conversely.

It is well known that crossing sequences encountered along accepting runs of

unambiguous 2NFA satisfy Property (2). Indeed, a state cannot appear twice in a

crossing sequence at two indices of same parity, otherwise a loop is entered. As a

consequence, crossing sequences have size bounded by 2|Q|.

Flows. Unlike one-way automata, partial runs of a two-way automaton on some

factor of an input word do not all go through the input word from left to right. Flows

are graphs allowing to describe these partial runs between two crossing sequences.

Formally, a flow F of size (n,m), with n,m two positive odd integers, is a directed

graph with set of vertices ([n] × {L})
⊎

([m] × {R}). Vertices in [n] × {L} (resp.

[m] × {R}) are called left (resp. right) vertices. A vertex (x,D) is said even if x

is even, it is said odd if x is odd. An edge is a crossing edge if it is between two

vertices on different sides, it is a return edge otherwise. The edges should satisfy

the following additional constraints that intuitively imply that the flow represents

a stretch of run between two crossing sequences (see [4]):

• a return edge on the left is always between two vertices (x, L) and (x+1, L)

with x even,

• a return edge on the right is always between two vertices (x,R) and (x+1, R)

with x odd,

• every crossing edge from (x, L) to (y,R) is such that x and y are even,

• every crossing edge from (x,R) to (y, L) is such that x and y are odd,

• every vertex has exactly one adjacent edge (either incoming or outgoing),

• no crossing edges cross over.

Examples of flows are depicted in Figure 3.

Any flow F can be partitioned according to the type of edges :
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Fig. 3. Examples of flows. Considering Example 2, the first flow is associated with symbol ⊢, the
second with symbols a and b, the third with #, and the fourth with ⊣.

• FLR consists of all crossing edges of F with even vertices,

• FRL consists of all crossing edges of F with odd vertices,

• FLL consists of all return edges of F with even source,

• FRR consists of all return edges of F with odd source,

From now on, we fix an integer M and only consider flows of size (n,m) with

n,m ≤ M . We denote by F this set of flows. Clearly, F is finite. It is well-known

that the set of flows can be equipped with an operation of composition that is

associative, yielding a monoid. Intuitively, this operation can be understood as the

identification of paths in the concatenation of the two graphs. We denote by F ◦F ′

this composition.

We state here a first property of the composition of flows:

Lemma 3. Let F, F ′ be two flows with k and l crossing edges respectively. Then

F ◦ F ′ has at most min(k, l) crossing edges.

Proof. Let G = F ◦F ′. Consider an edge in GLR. It necessarily involves an edge in

FLR and an edge in F ′LR. Hence, |GLR| 6 |FLR| and |GLR| 6 |F
′
LR|. Similarly, any

edge in GRL involves an edge in FRL and an edge in F ′RL, and thus |GRL| 6 |FRL|

and |GRL| 6 |F
′
RL|. If we consider the number of crossing edges of G, i.e. the size

of GLR ∪ GRL, we obtain that this number is bounded by |FLR| + |FRL| and by

|F ′LR|+ |F
′
RL|, i.e. bounded by min(k, l), as expected.

Crossing sequence automaton. Consider an unambiguous two-way automaton

A = (Q, q0, Qf , δ). The crossing sequence automaton of A is an equivalent one-way

automaton B = (P, s0, Pf , δB) defined as follows:

• states are crossing sequences of A,

• the initial state is the initial crossing sequence, i.e. s0 = (q0)

• final states are crossing sequences of the form −→p = (q), with q ∈ Qf

• the transition relation δB is defined as follows: there is a transition from
−→p = (p0, . . . , pm−1) to −→q = (q0, . . . , qn−1) on letter a ∈ A if, and only if,

there exists a flow F ∈ F of size (|−→p |, |−→q |) such that:

– for every return edge ((x, L), (x+1, L)) in FLL, we have (px, a, px+1,←) ∈

δ,
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(0) (1, 2, 3) (4)

⊢,

{a, b}, #,

⊣,

Fig. 4. The crossing sequence automaton of the underlying 2NFA of Example 2. Flows associated
with transitions are indicated for clarity.

– for every return edge ((x,R), (x + 1, R)) in FRR, we have

(qx, a, qx+1,→) ∈ δ,

– for every crossing edge ((x, L), (y,R)) in FLR, we have (px, a, qy,→) ∈ δ,

– for every return edge ((x,R), (y, L)) in FRL, we have (qx, a, py,←) ∈ δ.

This automaton may be of exponential size. W.l.o.g., we assume that the crossing

sequence automaton is trimmed, meaning that every state appears in some accepting

run. Note that as A is unambiguous, for every transition in the trimmed part of

the crossing sequence automaton of A, there is a single flow that can be associated

with it. Otherwise, this would contradict the unambiguity of A. As a consequence,

the crossing sequence automaton of A is unambiguous too. An example is depicted

in Figure 4.

2.3. Function Expressions

We recall the function expressions introduced in [3] to specify word-to-word func-

tions from A∗ to B∗. First observe that in [3], these operators are mappings from

elements of A∗ to elements of some monoid M . We have chosen to present our

results in the setting of transducers but they could easily be extended to an arbi-

trary monoid as output. Observe also that we do not follow the terminology used

in [3], and rather adopt a terminology coming from formal power series (see for

instance [10, 17]). It is however trivial to verify that the operators we introduce

correspond to the ones of [3].

Constant functions. Given a language L ⊆ A∗ and v ∈ B∗, the constant function

L/v is such that dom(L/v) = L and for all u ∈ L, L/v(u) = v.

Sum. Given two functions f, g such that dom(f)∩dom(g) = ∅, the sum f⊕g is such

that dom(f ⊕ g) = dom(f) ⊎ dom(g) and for all u ∈ dom(f ⊕ g), (f ⊕ g)(u) = f(u)

if u ∈ dom(f); (f ⊕ g)(u) = g(u) if u ∈ dom(g).
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Hadamard Product. Given two functions f, g, the Hadamard product f⊗g is such

that dom(f⊗g) = dom(f)∩dom(g) and for all u ∈ dom(f⊗g), (f⊗g)(u) = f(u)g(u).

Cauchy Products. Given two functions f, g such that dom(f) and dom(g) are

unambiguously concatenable, the Cauchy product f • g and the left Cauchy product

f
←
• g are such that dom(f • g) = dom(f

←
• g) = dom(f)dom(g) and:

∀u = u1u2 with u1 ∈ dom(f), u2 ∈ dom(g),

{

(f • g)(u) = f(u1)g(u2)

(f
←
• g)(u) = g(u2)f(u1)

Kleene stars. Given a function f such that dom(f) is unambiguously iterable, the

Kleene star f∗ and the left Kleene star f
←
∗ are such that dom(f∗) = dom(f

←
∗ ) = L∗,

f∗(ε) = f
←
∗ (ε) = ε, and:

∀u = u1u2 · · ·un with ∀i, ui ∈ dom(f),

{

f∗(u) = f(u1)f(u2) . . . f(un)

f
←
∗ (u) = f(un)f(un−1) . . . f(u1)

From these operators, we also define the Kleene plus (resp. left Kleene plus) as

f+ = f • f∗ (resp. as f
←
+ = f

←
• f

←
∗ ).

Chained stars. Given a function f and a language L such that L2 ⊆ dom(f) and

L is unambiguously iterable, the chained star 〈f, L〉⊛, and the left chained star

〈f, L〉
←
⊛, are such that dom(〈f, L〉⊛) = dom(〈f, L〉

←
⊛) = L>2, and:

∀u = u1u2 · · ·un with ∀i, ui ∈ L,

{

〈f, L〉⊛(u) = f(u1u2)f(u2u3) . . . f(un−1un)

〈f, L〉
←
⊛(u) = f(un−1un) . . . f(u2u3)f(u1u2)

Remark 4. The Kleene star can be expressed using the Chained star, and the

Hadamard and Cauchy products. Indeed, if f is a Reg-expression of domain L,

then

f • f • f∗ ≡ 〈f • L/ε, L〉⊛ ⊗ (L∗/ε • f).

From this expression, f∗ can be obtained using the sum operator. Observe the use

of the construction f •L/ε which allows to prolong the domain of a partial function

f by juxtaposing words from L. We will use this construct later in this work.

We consider the following grammars:

Reg ∋ f, g ::= L/v | f ⊕ g | f ⊗ g | f • g | f
←
• g | 〈f, L〉⊛ | 〈f, L〉

←
⊛

Rat ∋ f, g ::= L/v | f ⊕ g | f • g | f∗

where L is a regular language over A and v ∈ B∗. A function expression obtained

from some grammar G is called a G-expression. Reg-expressions are called regular

function expressions.

Example 5. We give examples to illustrate these operators:
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• the identity function mapping on A can be defined as idA =
⊕

a∈A{a}/a,

• the identity function mapping on A∗ can be defined as idA∗ = (idA)
∗
,

• the mirror image on A∗ can be defined as mirrorA∗ = (idA)
←
∗
,

• the function last mapping word ua ∈ A∗ to a|ua|, for every a ∈ A, can be

defined as last =
⊕

a∈A

(

(A/a)
∗ • {a}/a

)

,

• the function mirror
∗ of Example 2 can be defined as (mirror{a,b}∗ •{#}/#)∗•

mirror{a,b}∗ .

Theorem 6. The following equivalences hold:

• Rational functions are equivalent to Rat-expressions [6].

• Regular functions are equivalent to Reg-expressions [3].

3. Function Expression Flow Automata

Intuitively, we refine the crossing sequence automaton construction by labelling

transitions with flows, in which each edge is labelled by a Reg-expression. From

now on, we fix an input alphabet A and an output alphabet B.

Definition 7. A word flow W is a flow of F whose edges are labelled by words of

B∗. The set of word flows is denoted by W.

Let W be a word flow. Following previous notations, we denote by WLR the set of

crossing edges of W from left to right. Such an edge is denoted by a triple (x, v, y)

where x is a left vertex, v ∈ B∗ and y is a right vertex. Similarly, we define WLL,

WRL and WRR.

Composition of flows can be lifted to word flows. This operation can be under-

stood as the identification of labelled paths in the concatenation of the two labelled

graphs. Formally, let W,W ′ be two word flows in W of size (n,m) and (m, k) respec-

tively. Then the composition W ◦W ′ is a word flow G ∈W of size (n, k) defined as

follows:

• if there are l ≥ 0 and a sequence of edges (xi, vi, xi+1)0≤i<2l+2 of

WLR × (W ′LL ×WRR)
l ×W ′LR (resp. W ′RL × (WRR ×W ′LL)

l ×WRL) then

(x0, v0 · · · v2l+1, x2l+2) ∈ GLR (resp. in GRL);

• if there is an edge (x, v, x′) of WLL (resp. W ′RR) then (x, v, x′) ∈ GLL (resp.

in GRR);

• if there are l ≥ 0 and a sequence of edges (xi, vi, xi+1)0≤i<2l+3 of WLR ×

W ′LL× (WRR×W ′LL)
l×WRL (resp. W ′RL×WRR× (W ′LL×WRR)

l×W ′LR)

then (x0, v0 · · · v2l+2, x2l+3) ∈ GLL (resp. in GRR);

Figure 5 illustrates such a composition.

Definition 8. A function expression flow (FEF) E over domain L is a flow of F

whose edges are labelled by Reg-expressions from A∗ to B∗ of domain L.
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u3

u2

u1

◦

v5

v4

v3v2

v1

=

v4u3v5

v3

u1v1u2v2

Fig. 5. Composition of word flows.

We denote by E the set of all FEFs, by dom(E) the domain of a FEF E and by

flow(E) its underlying flow (flow(E) ∈ F). We extend the notations of edges of flows

to FEFs. We denote by ELR the set of all labelled crossing edges of a FEF E with

even vertices, by ERL the set of all labelled crossing edges of E with odd vertices,

and so on.

A FEF E ∈ E of size (n,m) defines a functional transduction from A∗ to W: for

all u ∈ dom(E), E(u) is the word flow W of size (n,m) such that (x, f(u), y) is an

edge of W iff (x, f, y) is an edge of E.

We say that two FEFs E,E′ ∈ E are disjoint if dom(E) ∩ dom(E′) = ∅.

Definition 9. A label of size (n,m), with n,m > 0, is a non-empty set of FEFs

of size (n,m) that are pairwise disjoint.

We denote by L the set of labels and define the domain of a label as the union of

the domains of the FEFs it contains: dom(L) =
⊎

E∈L dom(E). Since the FEFs of

a label are pairwise disjoint, a label also defines a functional transduction from A∗

to W: for any u ∈ dom(L), L(u) = E(u) for the unique FEF E of L such that

u ∈ dom(E).

Definition 10. Let n,m be two positive odd integers. An (n,m)-function expression

flow automaton (FEFA for short) is a tuple A = (Q, q0, qf , δ) where Q is a finite set

of states, q0 (resp. qf ) is the initial (resp. final) state, and δ ⊆ Q×L×Q is the finite

transition relation. We require that there is no incoming (resp. outgoing) transition

to the initial state (resp. from the final state), and that there exists a mapping

size : Q→ N such that size(q0) = n, size(qf ) = m and, for every (q,L, q′) ∈ δ, L is

of size (size(q), size(q′)).

Given a word u ∈ A∗, an execution on u of an (n,m)-FEFA A = (Q, q0, qf , δ)

is a decomposition u1 · · ·uk of u and a sequence (qi,Li, qi+1)16i6k of consecutive

transitions in δ such that ui ∈ dom(Li) for all i. The execution is accepting if q1 = q0
and qk+1 = qf . We say that an (n,m)-FEFA is unambiguous if for every word u,

there is at most one accepting execution on u. When this holds, following above

notations, the word flow associated with such an execution is out(u) = L1(u1) ◦

L2(u2) ◦ . . . ◦ Lk(uk). The properties of the mapping size in the definition of FEFA
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1 3 1

{⊢}/ε

{⊢}/ε

FEF E⊢

L1

{a, b}/ε

{a}/a⊕ {b}/b

{a, b}/ε

FEF G

{#}/ε

{#}/#

{#}/ε

FEF H

L2

{⊣}/ε

{⊣}/ε

FEF E⊣

L3

Fig. 6. A (1, 1)-FEFA for the transducer of Figure 1. States are labelled with their size, dom(L1) =
{⊢}, dom(L2) = dom(G) ⊎ dom(H) = {a, b} ⊎ {#} and dom(L3) = {⊣}.

ensure that this composition is well defined and, moreover, that out(u) is of size

(n,m). From now on, we assume all our FEFA are unambiguous.

Noteworthy, the semantics of a (1, 1)-FEFA A can be identified with a functional

transduction from A∗ to B∗. Indeed, given a word u with some accepting execution

which produces the word flow out(u), out(u) is of size (1, 1), hence reduced to a

single left-to-right crossing edge, labelled by some word v ∈ B∗. We thus consider

that A maps u to v.

The following lemma follows from the crossing sequence automaton construction:

Lemma 11. Given an unambiguous 2NFT, one can build an equivalent unambigu-

ous (1, 1)-FEFA.

Proof. First observe that in the crossing sequence automaton, one could merge the

different final states, as there is no outgoing transition from final states. Starting

then from this modified construction of the crossing sequence automaton, it is easy

to obtain a translation of an unambiguous 2NFT into an unambiguous FEFA. The

set of states is the same, as well as the initial and final states. Given a transition

(−→p , a,−→q ) of the crossing sequence automaton, we build a transition in the FEFA as

follows. We consider the flow used to build the transition in the crossing sequence

automaton (as observed earlier, this flow is unique as the 2NFT is unambiguous),

and we label the edges of this flow by the function expression {a}/v whenever the

corresponding transition of the 2NFT has v as output word.

It remains to observe that the resulting FEFA has the expected properties. By

construction, the initial state has no incoming edge, and the final state has no

outgoing edge. The third property of δ is ensured by the crossing sequences labelling

the states of the FEFA. Last, the unambiguity of the FEFA follows from that of the

2NFT. Similarly, the initial and final flows do satisfy the expected size properties.

Figure 6 depicts the unambiguous (1, 1)-FEFA obtained from the transducer of

Figure 1 by using the crossing sequence automaton construction.
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4. Elementary operations on FEFs and labels

The standard Brzozowski and McCluskey (BMC for short) algorithm takes as input

a one-way finite-state automaton A. W.l.o.g., we assume it is normalised, i.e. it has

a single initial (resp. final) state with no incoming transitions, resp. no outgoing

transitions. All states are supposed to be accessible and co-accessible. The algorithm

outputs a regular expression equivalent to A. It proceeds as follows: it removes all

the states of the automaton one by one, except the initial and final states. Each

time a state is removed, the remaining transitions are modified in order to obtain

an equivalent automaton. The transitions are now labelled by regular expressions.

More precisely, consider the removal of some state q2. Then, for all states q1 and

q3 of A, the transitions q1
e1−→ q2

e2−→ q2
e3−→ q3 and q1

e4−→ q3 are replaced by

a unique transition q1
e
−→ q3. In order to obtain an equivalent automaton, one

defines e = e1e3 + e1e
+
2 e3 + e4. At the end of the algorithm, one ends up with a

single transition between the initial state and the final state. The regular expression

labelling this transition describes exactly the whole behaviour of the automaton.

In order to adapt this algorithm to unambiguous FEFA, one needs to define

the operations of sum, concatenation and Kleene plus (i.e. Kleene star with a posi-

tive number of iterations) on labels. It is worth observing that unambiguity of the

FEFA ensures that sum (resp. concatenation, Kleene plus) involves labels with dis-

joint domains (resp. unambiguously concatenable domains, unambiguously iterable

domains). As we will see in the subsequent sections, while sum and concatenation

are easy to deal with, Kleene plus is more involved.

4.1. Sum, concatenation and chained star of FEFs

Definition 12 (Sum of FEFs) Let E and E′ be two FEFs. The sum of E and

E′, denoted E⊕E′, is defined if E and E′ have the same underlying flow and if they

have disjoint domains. In this case, E⊕E′ is the mapping from dom(E)⊎ dom(E′)

to W mapping a word u to E(u) if u ∈ dom(E), and to E′(u) if u ∈ dom(E′).

Proposition 13. Let E and E′ be two FEFs that have the same underlying flow

and disjoint domains. One can compute a FEF G that defines the same function as

E ⊕ E′.

Proof. By assumption, E and E′ have the same underlying flow F . G also has F as

underlying flow, and its set of edges is {(x, f ⊕ f ′, y) | (x, f, y) ∈ E and (x, f ′, y) ∈

E′}.

Definition 14 (Concatenation of FEFs) Let E and E′ be two FEFs. The con-

catenation of E and E′, denoted E •E′, is defined if E and E′ have unambiguously

concatenable domains and if the composition flow(E) ◦ flow(E′) is well defined. In

this case, E • E′ is the mapping from dom(E) • dom(E′) to W such that:

∀u = vv′ with v ∈ dom(E), v′ ∈ dom(E′), E • E′(u) = E(v) ◦ E′(v′).
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Proposition 15. Let E and E′ be two FEFs that have unambiguously concatenable

domains and such that the composition flow(E) ◦ flow(E′) is well defined. One can

compute a FEF G that defines the same function as E • E′.

Proof. We define the FEF G as follows. First, its underlying flow is F = flow(E) ◦

flow(E′).

As the sizes of flows are bounded, it is not difficult to observe that the function

expressions labelling the edges of G can be obtained from the ones of E and E′

using the Hadamard and Cauchy product operators. Formally:

• if there are l ≥ 0 and a sequence of edges (xi, fi, xi+1)0≤i<2l+2 of ELR ×

(E′LL×ERR)
l×E′LR (resp. E′RL× (ERR×E′LL)

l×ERL) then (x0, f, x2l+2)

is an edge in GLR (resp. in GRL) with

f =
⊗

0≤i≤l

(f2i • f2i+1) (resp. f =
⊗

0≤i≤l

(f2i+1
←
• f2i)).

• if there is an edge (x1, f1, x2) of ELL (resp. in E′RR) then (x1, f, x2) is an

edge in GLL (resp. in GRR) with

f = f1 • (dom(E′)/ε) (resp. f = (dom(E)/ε) • f1)).

• if there are l ≥ 0 and a sequence of edges (xi, fi, xi+1)0≤i<2l+3 of ELR ×

E′LL× (ERR×E′LL)
l×ERL (resp. E′RL×ERR× (E′LL×ERR)

l×E′LR) then

(x0, f, x2l+3) is an edge in GLL (resp. in GRR) with

f =
(

⊗

0≤i≤l(f2i • f2i+1)
)

⊗ (f2l+2 • (dom(E′)/ε))

(resp. f =
(

⊗

0≤i≤l(f2i+1
←
• f2i)

)

⊗ ((dom(E)/ε) • f2l+2)).

We now define the chained star for a restricted class of FEFs.

Definition 16. A flow is sweeping if it consists only of crossing edges.

A word flow or a FEF is sweeping if its underlying flow is.

Definition 17 (Chained star of simple FEFs) Given a sweeping FEF E and

an unambiguously iterable language L such that L2 ⊆ dom(E), the chained star of

E w.r.t. L, denoted by 〈E,L〉⊛, is the mapping from L>2 to W such that for all

words u = u1u2 · · ·un ∈ L>2 with ui ∈ L for i ∈ {1, . . . , n}, we have

〈E,L〉⊛ (u) = E(u1u2) ◦ E(u2u3) ◦ . . . ◦ E(un−1un).

Proposition 18. Let E be a sweeping FEF and L be an unambiguously iterable

language L such that L2 ⊆ dom(E). One can compute a FEF G that defines the

same function as 〈E,L〉⊛.

Proof. The FEF G has the same underlying sweeping flow as E. It is obtained by

applying the chained star operator (or its left version) on each (crossing) edge of E:
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if there is an edge (x, f1, y) in ELR then (x, 〈f1, L〉
⊛, y) is an edge in 〈E,L〉⊛LR; if

there is an edge (x, f1, y) in ERL then (x, 〈f1, L〉
←
⊛, y) is an edge in 〈E,L〉⊛RL.

Chained star of sweeping FEFs will be useful in Section 5 to compute the Kleene

plus of a special kind of labels.

4.2. Sum, concatenation and Kleene plus of labels

Definition 19 (Sum of labels) Let L1,L2 be two labels of L. The sum of L1 and

L2, denoted by L1 ⊕ L2, is defined if L1 and L2 have the same size and disjoint

domains. In this case, L1 ⊕ L2 is the mapping from dom(L1) ⊎ dom(L2) to W

mapping a word u to L1(u) if u ∈ dom(L1), and to L2(u) if u ∈ dom(L2).

Proposition 20. Let L1 and L2 be two labels that have the same size and disjoint

domains. One can compute a label L that defines the same function as L1 ⊕ L2.

Proof. This label is simply obtained by taking the union of FEFs of L1 and L2.

We say that two labels L1 and L2, of size (n,m) and (k, l) respectively, are

compatible for composition if we have m = k.

Definition 21 (Concatenation of labels) Let L1,L2 be two labels of L. The

concatenation of L1 and L2, denoted by L1 •L2, is defined if L1 and L2 are compat-

ible for composition and if they have unambiguously concatenable domains. In this

case, L1 • L2 is the mapping from dom(L1) • dom(L2) to W such that:

∀u = u1u2 with u1 ∈ dom(L1), u2 ∈ dom(L2), L1 • L2(u) = L1(u1) ◦ L2(u2).

Proposition 22. Let L1 and L2 be two labels that are compatible for composition

and have disjoint domains. One can compute a label L that defines the same function

as L1 • L2.

Proof. The concatenation of labels is obtained by cartesian product as:

L = {E1 • E2 | E1 ∈ L1, E2 ∈ L2}.

This is well-defined because the domains of L1 (of size (n,m)) and L2 (of size (m, k))

are supposed to be unambiguously concatenable.

Definition 23 (Kleene plus of labels) Let L be a label. The Kleene plus of L,

denoted by L+, is defined if L has size (m,m) for some m, and if its domain is

unambiguously iterable. In this case, L+ is the mapping from dom(L)+ to W such

that:

∀u = u1u2 · · ·un with ∀i, ui ∈ dom(L), L+(u) = L(u1) ◦ L(u2) ◦ . . . ◦ L(un).

Computing a label realizing the function L+ is actually a technical challenge.

In Section 5, we solve this problem for a particular class of labels. In Section 6, we

show how the general case can be reduced to this subclass.
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5. Computing Kleene plus of simple labels

In this section, we present a construction called KleenePlus that outputs the

Kleene plus of a given label. This construction is defined for simple labels only.

Definition 24. A label L ∈ L is simple if for all E,E′ ∈ L, flow(E•E′) = flow(E).

Let L be a simple label of size (m,m) with an unambiguously iterable domain

L = dom(L). Given some E ∈ L, we claim we can build a FEF Ẽ with domain

dom(E)L+, size (m,m) and underlying flow F = flow(E), that ”simulates” all se-

quences of FEFs of L beginning by E. More precisely, we will prove in Proposition 30

that Ẽ has the same semantics as the function φE defined from dom(E)L+ to W

by

φE(u) = E(u0) ◦ E1(u1) ◦ · · · ◦ En(un) (1)

where u0u1 · · ·un is the unique decomposition of u and (E1, . . . , En) is the unique

sequence of FEFs of L such that u0 ∈ dom(E) and ui ∈ dom(Ei) for all i. Unicity

holds because L is unambiguously iterable and, moreover, all FEFs of L have disjoint

domains (by definition of labels).

The construction of Ẽ is detailed in Section 5.2.

We denote by KleenePlus(L) the label L⊕ {Ẽ | E ∈ L}. Note that the sum is

well-defined because dom(Ẽ) = dom(E)L+ and L is unambiguously iterable. As a

consequence of this definition and of Proposition 30, we obtain:

Proposition 25. Let L be a simple label. The label KleenePlus(L) defines the

same function as L+.

5.1. Some basic properties of simple labels

The construction of Ẽ relies on some important properties of simple labels.

First, Lemma 26 states that all FEFs in a simple label are alike. In this lemma,

flow(L) refers to the set of flows that appear in a label L: flow(L) = {flow(E) | E ∈

L}.

Lemma 26. Let L be a simple label of size (m,m) with an unambiguously iterable

domain.

(1) For every E1, . . . , En ∈ L, flow(E1 • · · · • En) ∈ flow(L).

(2) The flows of flow(L) have the same number of crossing edges.

(3) The flows of flow(L) have the same right return edges.

Proof. The first item immediately follows the definition of simple labels.

Let E,E′ be two FEFs of L of underlying flows F and F ′ respectively.

Item 2: Suppose that F and F ′ have k and l crossing edges respectively. Since

L is simple, F ◦ F ′ = F and F ′ ◦ F = F ′. Then by Lemma 3, we obtain k 6 l and

l 6 k, hence k = l.
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E(u)

=

Ê(u)

◦

Ē(u)

Fig. 7. Decomposition of a FEF. For readability, the Reg-expressions in the FEFs are omitted.

Dashed edges are labelled by dom(E)/ε. The other edges are labelled as in E.

Item 3: Since F ◦ F ′ = F , the right return edges of F ′ are all present in F .

Similarly, since F ′ ◦ F = F ′, the right return edges of F are all present in F ′.

Then we present decomposition properties of the FEFs of a simple label. They

will be used as a trick when constructing Ẽ. Let E be a FEF. We can define from E

two new FEFs Ē and Ê of domain dom(E) (see Figure 7). The FEF Ē is obtained

from E by deleting all return edges on the left (and the corresponding vertices).

The FEF Ê is obtained by deleting from E all return edges on the right (and the

corresponding vertices) and, moreover, by replacing every Reg-expression labelling

a crossing edge of E with dom(E)/ε. We have the next key remarks.

Lemma 27. Let E be a FEF and u ∈ dom(E). We have E(u) = Ê(u) ◦ Ē(u).

Proof. By construction, the word flow Ê(u) ◦ Ē(u) has the same flow as E. Its

left (resp. right) return edges are those of Ê(u) (resp. Ē(u)), which are the same as

those of E(u). If the i-th LR (resp. RL) crossing edge of E is labelled by the regular

function expression f then the i-th LR (resp. RL) crossing edge of Ê(u) ◦ Ē(u) is

labelled by dom(E)/ε(u) · f(u) = f(u) (resp. f(u) · dom(E)/ε(u) = f(u)).

Lemma 28. Let L be a simple label of size (m,m). There is a sweeping flow F

such that flow(Ē1 • Ê2) = F for all E1, E2 ∈ L.

Proof. By Lemma 26-2, all FEFs of L has the same number c of crossing edges. By

construction, for all E′ ∈ L, Ē′ is a FEF of size (c,m) with no left return edge, and

Ê′ is a FEF of size (m, c) with no right return edge. Consequently, for all E1, E2 ∈ L,

Ē1 • Ê2 is the FEF of size (c, c) with no return edge.

5.2. Construction of Ẽ

Let L be a simple label and E be a FEF of L. The construction of Ẽ is based on the

next idea : any word flow φE(u) can be decomposed using Lemmas 27 and 28 into
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E(u0)

◦

E1(u1)

◦

E2(u2)

=

Ê(u0)

◦

Ē • Ê1(u0u1)

◦

Ē1 • Ê2(u1u2)

◦

Ē2(u2)

Fig. 8. Illustration of the decomposition used to build Ẽ from a label {E,E1, E2}. For readability,
the Reg-expressions in the FEFs are omitted.

a sequence of word flows which are images of sweeping FEFs of domain L2 (except

for the first and the last one). Figure 8 illustrates this idea.

We detail the construction of Ẽ for a FEF E ∈ L. As a consequence of Lemma 28,

we can build the FEF ♦ =
⊕

E1,E2∈L
(Ē1 • Ê2) of underlying flow F and domain

L2. Since F is sweeping, we can also build ♣ = 〈♦, L〉⊛ of domain L≥2. Observe

that ♣ does not depend on E, so it is computed once.

By Lemmas 26-2 and 26-3, for all FEFs E1, E2 ∈ L, Ē1 and Ē2 have the same

underlying flow. They also have disjoint domains because E1 and E2 have disjoint

domains (by definition of labels). Thus we can build the FEF
⊕

E′∈L Ē
′ of domain L.

We extend it to a FEF ♠ with domain L≥2, by replacing each of its Reg-expressions

f with dom(E)/ε • (L∗/ε) • f . Again, note that ♠ does not depend on E.

Finally, the FEF Ê is also extended to a FEF ♥E with domain dom(E)L+ by

replacing each of its Reg-expressions f with f • (L+/ε).

Lemma 29. For all u ∈ dom(E)L+, we have ♥E(u) ◦ ♣(u) ◦ ♠(u) = φE(u).

Proof. Let u ∈ dom(E)L+. We recall that L is unambiguously iterable and that

all FEFs of L have disjoint domains (by definition of labels). Then, there exist a
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unique decomposition u0u1 · · ·un of u and a unique sequence (E1, . . . , En) of FEFs

of L such that u0 ∈ dom(E) and ui ∈ dom(ui) for all i ∈ {1, . . . , n}. It follows that

♥E(u0 · · ·un) = Ê(u0), ♠(u0 · · ·un) =
⊕

E′∈L Ē
′(un) = Ēn(un) and

♣(u0 · · ·un) = 〈♦, L〉
⊛
(u0 · · ·un)

= ♦(u0u1) ◦ ♦(u1u2) ◦ · · · ◦ ♦(un−1un)

= (Ē • Ê1)(u0u1) ◦ (Ē1 • Ê2)(u1u2) ◦ · · · ◦ (Ēn−1•Ên)(un−1un)

= Ē(u0) ◦ Ê1(u1) ◦ Ē1(u1) ◦ Ê2(u2) ◦ · · · ◦ Ēn−1(un−1) ◦ Ên(un) .

Then the result follows Lemma 27.

We recall that ♥E , ♣ and ♠ have the same number of crossing edges as flow(E).

In addition, flow(♥E) (resp. flow(♠)) has the same left return edges (resp. right

return edges) as flow(E). We combine them to construct Ẽ as follows:

• the flow of Ẽ is the same as flow(E),

• the left return edges of Ẽ are those of ♥E ,

• the right return edges of Ẽ are those of ♠,

• the k-th LR-crossing edge of Ẽ is labelled by the Reg-expression f♣ ⊗ f♠
where f♣ and f♠ are the labels of the k-th LR-crossing edges of ♣ and ♠,

respectively,

• the k-th RL-crossing edge of Ẽ is labelled by the Reg-expression g♠ ⊗ g♣
where g♣ and g♠ are the labels of the k-th RL-crossing edges of ♣ and ♠,

respectively.

Proposition 30. The domain of Ẽ is dom(E)L+. Furthermore, for all u ∈

dom(Ẽ), we have Ẽ(u) = φE(u).

Proof. The domain of Ẽ is dom(E)L+ since it is the domain of all its Reg-

expressions (we recall that the domain of f ⊗ g is dom(f) ∩ dom(g)).

Let u ∈ dom(Ẽ). By Lemma 29, it suffices to show that the word flows Ẽ(u)

and ♥E(u) ◦ ♣(u) ◦ ♠(u) are identical to prove that Ẽ(u) = φE(u). The left and

right return edges of Ẽ(u) are trivially the same as those of ♥E(u) ◦ ♣(u) ◦ ♠(u).

Suppose that f♣ and f♠ are the labels of the k-th LR-crossing edges of ♣ and

♠, respectively. Then the k-th LR-crossing edge of Ẽ(u) is labelled with the word

(f♣ ⊗ f♠)(u) = f♣(u)f♠(u). Since ♥E has no right return edge and ♠ has no left

return edge, the word labelling the k-th LR-crossing edge of ♥E(u) ◦ ♣(u) ◦ ♠(u)

is simply the concatenation of the words labelling the k-th LR-crossing edges of

♥E(u), ♣(u) and ♠(u). This word is also equal to f♣(u)f♠(u) because all crossing

edges of ♥E are labelled with dom(E)/ε • L+/ε. Similar arguments show that the

k-th RL-crossing edges of Ẽ(u) and ♥E(u) ◦ ♣(u) ◦ ♠(u) carry the same word.

5.3. Application to an example

Example 31. We consider the FEF G of Figure 6. Since flow(G • G) = G, the

label {G} is simple. The Kleene plus of {G} is the label {G} ⊕ {G̃}. Since G and
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G̃ have the same underlying flow, this label is equivalent to the label {G⊕ G̃}. The

two crossing edges in (G⊕ G̃)LR are labelled with the Reg-expression

{a, b}/ε⊕
(

〈{a, b}/ε • {a, b}/ε, {a, b}〉⊛ ⊗ ({a, b}/ε • {a, b}∗/ε • {a, b}/ε)
)

which is equivalent to {a, b}+/ε. The crossing edge in (G⊕ G̃)RL is labelled with

({a}/a⊕ {b}/b)

⊕








({a, b}/ε • {a, b}∗/ε • ({a}/a⊕ {b}/b))

⊗
〈

({a}/a⊕ {b}/b)
←
• {a, b}/ε, {a, b}

〉

←
⊛









which is equivalent to mirrorA+ with A = {a, b}.

6. A Brzozowski and McCluskey-like Algorithm for FEFA

In this section, we design a Brzozowski and McCluskey-like algorithm that takes as

input an unambiguous FEFA A and returns a label L semantically equivalent to

A. This algorithm, called BMC-FEFA, can easily be used to turn any unambiguous

2NFT T into an equivalent regular function expression f in the following way:

(1) From T , build an equivalent pruned unambiguous (1, 1)-FEFA A

(Lemma 11).

(2) Apply BMC-FEFA to A. We get as output an equivalent label L (Theo-

rem 34).

(3) Since A is a (1, 1)-FEFA, all FEFs in L have size (1, 1) and have disjoint

domains. So the FEF Fout = ⊕F∈LF is well defined and has size (1, 1). It

is trivially equivalent to L (using the definition of the sum ⊕).

(4) The (1,1)-FEF Fout consists of one crossing edge only. It carries the ex-

pected regular function expression f equivalent to T .

6.1. A first incomplete algorithm

We first present an adaptation of Brzozowski and McCluskey-like algorithm to FEFA

when self-loops always carry simple labels. It takes as input a normalised pruned

unambiguous (n,m)-FEFA A. In addition, it takes also as input a state-elimination

strategy to guide the algorithm. The algorithm ouputs a label equivalent to A. By

definition, this algorithm I-BMC-FEFA (see Algorithm 1) only needs to compute

the Kleene plus operator for simple labels by using the construction KleenePlus of

Section 5. The soundness of this theorem immediately follows from Proposition 25.

The overall algorithm is simply a loop over states of the FEFA, and hence necessarily

terminates. We can thus state the following theorem:

Theorem 32. Algorithm I-BMC-FEFA always terminates. If it does not end with

abort, then the label it returns is equivalent to the FEFA taken as input.
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Algorithm 1 Incomplete BMC Algorithm for FEFA

Input: a normalised (n,m)-FEFA A with initial state ι and final state β, and a

state-elimination strategy ν.

Output: a label that defines the same function as A

1: function I-BMC-FEFA(A, ν)

2: for state q in Q \ {ι, β} picked w.r.t. ν do

3: Let write transitions q
L2−−→ q

4: if L2 is not simple then

5: abort

6: else

7: L+
2 = KleenePlus(L2)

8: end if

9: for states q1, q2 in Q \ {q} do

10: Let write transitions q1
L1−−→ q, q

L3−−→ q2, q1
L4−−→ q2

11: Add transition q1
L
−→ q2 with L = L1L2 + L1L

+
2 L3 + L4.

12: end for

13: Remove state q and all incident transitions

14: end for

15: Let write transition ι
L
−→ β

16: return L

17: end function

6.2. The complete BMC-FEFA algorithm

To complete the I-BMC-FEFA algorithm, we need to compute the Kleene plus for

non simple labels L. The intuitive idea is to use the previously presented I-BMC-

FEFA algorithm on a suitable FEFA ALUnf that describes the same semantics as

L≥2. By suitable, we mean that there exists a state-elimination strategy νL of

ALUnf such that the I-BMC-FEFA algorithm ends without abort. The complete

BMC algorithm for FEFA is described in Algorithm 2. It is similar to the I-BMC-

FEFA algorithm except that the instruction abort is replaced with the instructions

required to compute the Kleene plus of a non simple label.

We present now how to build the FEFA ALUnf and how to choose the state-

elimination strategy νL when L is an arbitrary label of size (m,m) with un-

ambiguously iterable domain L = dom(L). We first consider an unambiguous

(m,m)−FEFA AL that consists only of three transitions ι
L
−→ α

L
−→ α

L
−→ β

with initial state ι and final state β. We will exhibit a finite unfolding (m,m)-

FEFA ALUnf = (QUnf, ι, β,−→Unf) of AL equivalent to AL, together with a state-

elimination strategy ν such that the I-BMC-FEFA algorithm ends without abort.

Let 2N + 1 be the greatest number of crossing edges among the FEFs of L. By

Lemma 3, every FEF finitely generated by concatenation of FEFs in L has at most

2N +1 crossing edges. For each i ∈ [N +1], we let Si be the set of underlying flows
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Algorithm 2 Complete BMC Algorithm for FEFA

Input: a normalised (n,m)-FEFA A with initial state ι and final state β.

Output: a label that defines the same function as A

1: function BMC-FEFA(A)

2: for state q in Q \ {ι, β} do

3: Let write transitions q
L2−−→ q

4: if L2 is not simple then

5: build AL2

Unf and νL2

6: L+
2 = L2 ⊕ I-BMC-FEFA(AL2

Unf, ν
L2)

7: else

8: L+
2 = KleenePlus(L2)

9: end if

10: for states q1, q2 in Q \ {q} do

11: Let write transitions q1
L1−−→ q, q

L3−−→ q2, q1
L4−−→ q2

12: Add transition q1
L
−→ q2 with L = L1L2 + L1L

+
2 L3 + L4.

13: end for

14: Remove state q and all incident transitions

15: end for

16: Let write transition ι
L
−→ β

17: return L

18: end function

with 2i+ 1 crossing edges finitely generated by L with concatenation of FEFs. We

endow the set F of flows with an additional identity element ⊤ with respect to the

flow composition, and define the set of states as QUnf = {β} ∪
∏

i∈0,...,N (Si ∪ {⊤}).

The initial state is set to ι = (⊤)0≤i≤N . For j ≤ N , we define Qj as the set of

all states (s0, . . . , sj ,⊤, . . . ,⊤) ∈ QUnf with sj 6= ⊤. Given a state q ∈
⋃

j Qj , we

denote by level(q) the unique j such that q ∈ Qj , and we say that j is the level

of state q. Intuitively, a state q = (si)0≤i≤N of level k keeps partial information

about its accessibility: for all j ∈ [k], all executions in ALUnf from a state of level j

to state q using inner states of level strictly greater than j produce word flows of

flow F = sj+1 ◦ · · · ◦ sN . The transition function updates this information. It uses

an alphabet that consists of subsets of L: For all q = (s0, . . . , sN ) ∈ QUnf − {β},

j ∈ [N+1] and F ∈
⋃

i∈[N+1] Si, we define Lq,j,F as the set of FEFs E ∈ L such that

F = sj ◦sj+1◦· · ·◦sN ◦flow(E) ∈ Sj and for all i > j, si◦si+1◦· · ·◦sN ◦flow(E) /∈ Si.

Formally the transition function −→Unf is defined as follows:

• q
L
−→Unf β for all q ∈ QUnf − {ι, β};

• let q = (s0, . . . , sN ) ∈ QUnf−{β}, j ≤ N and F ∈
⋃

i∈[N+1] Si. If Lq,j,F 6= ∅,

then q
Lq,j,F

−→ Unf (s
′
i)0≤i≤N , with s′j = F , s′i = si if i < j, and s′i = ⊤ if i > j.

Note that all labels of ALUnf have size (m,m) because L does. So, we consistently
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set size(q) = m for all q ∈ QUnf.

An example of such an unfolding is depicted in Figure 9.

ι (FH ,⊤)

(⊤, FG)

(FH , FG)

β

{H}

{G}

{H}

{G}

L2

{H}
{G}

L2

{G}

{H}

L2

Fig. 9. The unfolding of the label L2 = {G,H} of Figure 6. FH and FG stand for flow(H) and
flow(G) respectively. All self-loops carry simple labels.

Lemma 33. ALUnf is unambiguous and defines the same function as L≥2.

Proof. We start with two facts.

Fact 1: For every sequence (E0, . . . , En) of FEFs of L (n ≥ 2), we can associate

exactly one accepting execution (qi
Li−→ qi+1)0≤i≤n of ALUnf such that Ei ∈ Li for

all i ∈ [n + 1]. This is because for each fixed state q ∈ QUnf − {β}, the non-empty

subsets Lq,j,F ’s of L form a partition of L.

Fact 2: There exist for each word u ∈ L≥2 a unique sequence (E0, . . . , En) of

FEFs of L and a unique decomposition of u into u = u0 · · ·un such that ui ∈

dom(Ei) for all i ∈ [n + 1]. This is because L is unambiguously iterable and all

FEFs of L have disjoint domains.

We prove thatALUnf is unambiguous and define the same function as L≥2. Clearly,

the domain of ALUnf is included in dom(L≥2) because every label in ALUnf is a subset

of L. Let u ∈ dom(L≥2). By fact 2, there exist a unique sequence (E0, . . . , En)

of FEFs of L and a unique decomposition of u into u = u0 · · ·un such that ui ∈

dom(Ei) for all i ∈ [n+1]. It follows from Fact 1 that there is exactly one accepting

execution σ = (qi
Li−→ qi+1)0≤i≤n of ALUnf such that Ei ∈ Li for all i ∈ [n + 1].

Altogether, this means that σ is an accepting execution on u, and the only one :

ALUnf(u) is defined and ALUnf is unambiguous. Besides, since all the FEFs in a label

have disjoint domains, we have :

L≥2(u) = L(u0) ◦ · · · ◦ L(un) = E0(u0) ◦ · · · ◦ En(un) and

ALUnf(u) = L1(u0) ◦ · · · ◦ Ln(un) = E0(u0) ◦ · · · ◦ En(un).
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So ALUnf and L
≥2 define the same function.

Finally, we use a preprocessing for removing the inaccessible and co-inaccessible

states of ALUnf, and we choose for the state-elimination strategy νL anyone that

successively eliminates states in Qj , for j ranging from N to 0.

Theorem 34. Algorithm BMC-FEFA always terminates and returns a label equiv-

alent to the FEFA taken as input.

Proof. The soundness of the algorithm follows from Lemma 33 and Theorem 32.

Its completeness is proved in Subsection 6.3.

6.3. Completeness of the BMC-FEFA algorithm

To prove the completeness of the BMC-FEFA algorithm, it suffices to prove that

the I-BMC-FEFA algorithm never aborts while processing. This is actually the case

because, as we will show in the sequel, removing states of ALUnf by decreasing level is

a strategy that ensures that all self-loops considered when processing I-BMC-FEFA

have a simple label.

We write q0
Lσ
 qn to denote that there exists an execution (qi

Li−→ qi+1)0≤i<n of

AL
Unf with Lσ = L0 • · · · • Ln−1. Let j > 0. If moreover the inner states have level

greater than j, namely if level(qi) > j for every i ∈ {1, . . . , n − 1}, then we write

q0
Lσ
 >j qn. Similarly, we write q0

Lσ
 >j qn if level(qi) > j for every i ∈ {1, . . . , n−1}.

At last, we define the length of an execution as its number of transitions. Lemma 35

specifies the type of information that a state carries. The first property corresponds

to the intuition given when defining the unfolding automaton ALUnf.

Lemma 35. Let q = (si)0≤i≤N in Qj and q′ = (s′i)0≤i≤N in Qk such that q
Lσ
 >j q

′.

The following properties hold:

(1) If k > j then

(a) for all i ≤ j, s′i = si
(b) for all E ∈ Lσ, flow(E) = s′j+1 ◦ · · · ◦ s

′
N

(2) If k = j then for all E ∈ Lσ, sj ◦ flow(E) = s′j and flow(E) has 2j + 1

crossing edges.

Proof. Item 1: We prove statement by induction on the length l of the execution

from q. Consider the base case where l = 1. Then the execution q
Lσ
 >j q′ is a

transition q
Lq,k,F

−→ Unf q
′ for some flow F . The property (a) follows from the definition
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of −→Unf. Property (b) holds because for all E ∈ Lq,k,F , we have that

flow(E) = sk ◦ · · · ◦ sN ◦ flow(E) (si = ⊤ for all i > j because q ∈ Qj)

= F (definition of Lq,k,F )

= sj+1 ◦ · · · ◦ sk−1 ◦ F (si = ⊤ for all i > j because q ∈ Qj)

= s′j+1 ◦ · · · ◦ s
′
k (definition of −→Unf)

= s′j+1 ◦ · · · ◦ s
′
N (s′i = ⊤ for all i > k because q′ ∈ Qk)

Suppose that q
Lσ
 >j q

′ is an execution of length l+1. Then it can be decomposed

into q
L′

 >j q′′
Lq′′,k,F

−→ Unf q′ where q
L′

 >j q′′ is an execution of length l with

q′′ = (s′′0 , . . . , s
′′
N ) ∈ Qr for some r > j (because of the definition of  >j).

We start with property (a). By induction, for all i ≤ j, s′′i = si. By definition

of −→Unf, we have s′′i = s′i for all i < k. The property follows from the hypothesis

k > j.

We turn to property (b). Consider E′ ∈ L′ and E ∈ Lq′′,k,F . We have:

flow(E′ • E) = flow(E′) ◦ flow(E)

= s′′j+1 ◦ · · · ◦ s
′′
N ◦ flow(E) (induction property)

= s′′j+1 ◦ · · · ◦ s
′′
k−1 ◦ s

′′
k ◦ · · · ◦ s

′′
N ◦ flow(E)

= s′′j+1 ◦ · · · ◦ s
′′
k−1 ◦ F (definition of Lq′′,k,F )

= s′j+1 ◦ · · · ◦ s
′
k−1 ◦ s

′
k (definition of −→Unf)

= s′j+1 ◦ · · · ◦ s
′
k−1 ◦ s

′
k ◦ · · · ◦ s

′
N (s′i = ⊤ for all i > k)

= s′j+1 ◦ · · · ◦ s
′
N

Item 2: There are two cases. If the execution is of length 1, i.e. if q
Lσ
 >j q

′ is equal

to q
Lσ−→Unf q

′, then the properties follow from the definition of −→Unf.

Otherwise q
Lσ
 >j q′ can be decomposed into q

L′

 >j q′′
Lq′′,k,F

−→ Unf q
′ with q′′ =

(s′′0 , . . . , s
′′
N ) ∈ Qr for some r > j.

Consider E′ ∈ L′ and E ∈ Lq′′,k,F . We have:

sj ◦ flow(E
′ • E) = sj ◦ flow(E

′) ◦ flow(E)

= s′′j ◦ flow(E
′) ◦ flow(E) (Lemma 35-(1).(a) on q

L′

 >j q
′′)

= s′′j ◦ s
′′
j+1 ◦ · · · ◦ s

′′
N ◦ flow(E) (Lemma 35-(1).(b) on q

L′

 >j q
′′)

= F (definition of Lq′′,k,F )

= s′j (definition of −→Unf, q
′ ∈ Qj)

It remains to prove that flow(E′ •E) has exactly 2j+1 crossing edges. As shown

above, we have s′j = s′′j ◦ flow(E
′ • E). By definition, s′j ∈ Sj has 2j + 1 crossing

edges. Lemma 3 entails that flow(E′ • E) has at least 2j + 1 crossing edges.

Conversely, we proceed by contradiction and assume that there exists m > j

such that flow(E′ • E) has 2m + 1 crossing edges. We have already established

earlier in the proof that flow(E′ • E) = s′′j+1 ◦ · · · ◦ s
′′
N ◦ flow(E). The assumption,

together with Lemma 3, entails that s′′l = ⊤ for all j < l < m, and then

flow(E′ • E) = s′′m ◦ · · · ◦ s
′′
N ◦ flow(E) ∈ Sm.
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Thus, there exists a greatest integer g > j such that s′′g ◦ · · · ◦ s
′′
N ◦ flow(E) ∈ Sg.

Using this fact, we can deduce from the definition of Lq′′,k,F that k = g and F =

s′′g ◦ · · · ◦ s
′′
N ◦ flow(E) ∈ Sg. Since we have supposed that q′′

Lq′′,k,F

−→ Unf q
′, we get

also that s′g = F and s′l = ⊤ for all l > g. In other words, we get that q′ ∈ Qg 6= Qj ,

which contradicts the hypothesis. This concludes the proof.

Now we can prove a slightly more general version of Lemma 35-(2) where the

inner states of an execution have level greater than or equal to j.

Lemma 36. If q
Lσ
 >j q

′ with q = (si)0≤i≤N and q′ = (s′i)0≤i≤N in Qj, then

(1) for all E ∈ Lσ, sj ◦ flow(E) = s′j
(2) flow(E) has 2j + 1 crossing edges.

Proof.

By induction on the length l of q
Lσ
 >j q

′. If l = 1, then q
Lσ
 >j q

′ consists of one

transition and no inner state. So we have also q
Lσ
 >j q′, and the result holds from

Lemma 35-(2).

Let l > 1. We suppose that at least one intermediate state q′′ belongs to Qj ,

otherwise the result holds by Lemma 35-(2). Then q
Lσ
 >j q′ can be split into

q
L′

 >j q
′′ L
′′

 >j q
′ where q′′

L′′

 >j q
′ is possibly one transition of −→Unf. By induction

hypothesis applied on q
L′

 >j q′′ and by Lemma 35-(2) applied on q′′
L′′

 >j q′, we

have, for all E′ ∈ L′ and E′′ ∈ L′′:

• sj ◦ flow(E
′) = s′′j and flow(E′) has 2j + 1 crossing edges;

• s′′j ◦ flow(E
′′) = s′j and flow(E′′) has 2j + 1 crossing edges.

Altogether, s′j = sj◦flow(E
′)◦flow(E′′) = sj◦flow(E

′•E′′), which has 2j+1 crossing

edges (because s′j belongs to Sj). By Lemma 3, this means that flow(E′ • E′′) has

exactly 2j + 1 crossing edges.

Consider now two loops q
Lσ
 >j q and q

Lβ

 >j q around state q = (si)0≤i≤N ∈ Qj .

Since ALUnf is unambiguous, the domains of Lσ and Lβ are disjoint, and their sum

is possible. Lemma 37 shows that Lσ ⊕ Lβ is a simple label.

Lemma 37. Let j ≥ 0 and q ∈ Qj. If {L1, . . . ,Lk} is a set of labels such that

q
Li
 >j q for all i ∈ {1, . . . , k}, then ⊕i∈{1,...,k}Li is a simple label.

Proof. We have to prove that for all E,E′ ∈
⋃

i∈{1,...,k} Li, we have flow(E •E
′) =

flow(E). Lemma 36 implies the following properties:

(1) sj ◦ flow(E) = sj and sj ◦ flow(E
′) = sj ;

(2) sj ◦ flow(E • E
′) = sj (direct consequence of item 1);

(3) flow(E) and flow(E′) have exactly 2j + 1 crossing edges.
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From the second and third items, together with Lemma 3, we deduce that flow(E •

E′) has exactly 2j + 1 crossing edges (we recall that q ∈ Qj , which means that sj
is distinct from ⊤ and has 2j + 1 crossing edges). In particular, this implies that

none of the crossing edges of flow(E) and flow(E′) are ”used” into a return edge in

flow(E • E′). As a consequence, flow(E) and flow(E • E′) have exactly the same

left return edges. Last, we can deduce from the first item that flow(E) and flow(E′)

have the same right return edges (the ones of sj). This entails the expected equality.

Proposition 38. Let L be a label. The I-BMC-FEFA algorithm applied to ALUnf

and νL always ends without abort.

Proof. The state-elimination strategy νL successively eliminates states in Qj , for

j ranging from N to 0. As we observed earlier in Lemma 26, when Lx is a simple

label, the flows associated with L+
x are exactly those of Lx. Consider the removal

of a self-loop around some state q ∈ Qj at some point of the process. The flows

appearing in its label are obtained as paths around q in ALUnf that only go through

states in
⋃

k>j Qk. This observation, together with Lemma 37, ensures that we

always remove self-loops with simple labels. Hence the I-BMC-FEFA algorithm

ends without abort.

6.4. A complete example

We consider the transducer of Figure 1 realizing the function mirror
∗ of Example 2.

As already mentioned, the crossing sequence automaton construction produces the

(1, 1)-FEFA of Figure 6 that defines the same function. We start from this FEFA

and apply a first instance of the BMC algorithm to it. According to this algorithm,

we need to compute the Kleene plus of L2 = {G,H}.

However L2 is not simple. So we consider its unfolding AUnf of Figure 9. It

defines the same function as L≥22 . The states (⊤, FG) and (FH , FG) have level 1,

whereas (FH ,⊤) has level 0. We now apply instances of the simple BMC algorithm

to AUnf to remove states (⊤, FG), (FH , FG) and (FH ,⊤) in this order. In what

follows, A denotes the set {a, b}. For readability, we write cancelL instead of L/ε.

Elimination of (⊤, FG). We recall that the label {G} is simple and that its

Kleene plus has already been computed in Example 31. Then the state (⊤, FG) can

be removed using the Kleene plus over simple labels. According to BMC algorithm,

this yields two new transitions.

The first one, from ι to β, carries the label

({G} • L2)⊕ ({G} • {G}+ • L2).

Making the sum of the FEFs with same underlying flow leads to the equivalent label

{G1, H1} where: G1 has flow FG, domain A≥2, two LR-edges labelled by cancelA≥2

and one RL-edge labelled by mirrorA≥2 ; H1 has flow FH , domain A+{#}, one LL-
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edge labelled by mirrorA+ • cancel{#}, one LR-edge labelled by cancelA+ • id{#}, and

one RR-edge labelled by cancelA+{#}.

The second transition, from ι to (FH ,⊤), carries a label

{H} ⊕ ({G} • {H})⊕ ({G} • {G}+ • {H})

(note that the label {H} at the beginning comes from the already present transi-

tion from ι to (FH ,⊤) in AUnf). All FEFs of this expression have flow FH . Making

the sum of these FEFs, we get an equivalent label {H2} of flow FH . H2 has do-

main A∗{#}, one LL-edge labelled by mirrorA∗ • cancel{#}, one LR-edge labelled by

cancelA∗ • id{#}, and one RR-edge labelled by cancelA∗{#}.

Elimination of (FH , FG). Again, this yields two transitions. The first one is a

self loop around (FH ,⊤) that also carries the label {H2}. The second one, from

(FH ,⊤) to β, carries a label L2 ⊕ {G1, H1}, equivalent to {G2, H2} where the FEF

G2 has flow FG, domain A+, two LR-edges labelled by cancelA+ and one RL-edge

labelled by mirrorA+ .

Elimination of (FH ,⊤). As expected, the self-loop around (FH ,⊤) carries a

simple label (namely, {H2} of underlying flow FH). The Kleene star {H2}
+ consists

of the FEFs H2 and H̃2. The FEF H̃2 has flow FH , domain (A∗{#})≥2, one LL-edge

labelled by mirrorA∗ • cancel{#}(A∗{#})+ , one RR-edge labelled by cancel(A∗{#})≥2 ,

and one LR-edge labelled by

f̃ =
〈

cancelA∗ • id{#} •mirrorA∗ • cancel{#}, A
∗{#}

〉⊛
.

Then the elimination of (FH ,⊤) induces one transition from ι to β labelled by

{G1, H1} ⊕ ({H2} • {G2, H2})⊕ ({H2} • {H2}
+ • {G2, H2}).

This new label corresponds to L≥22 . It contains 8 FEFs:

G1 of domain A≥2,

H1 of domain A+{#},

H2 •G2 of domain A∗{#}A+,

H2 •H2 of domain (A∗{#})2,

H2 •H2 •G2 of domain (A∗{#})2A+,

H2 •H2 •H2 of domain (A∗{#})3,

H2 • H̃2 •G2 of domain (A∗{#})≥3A+,

H2 • H̃2 •H2 of domain (A∗{#})≥4.

So L≥22 has domain {a, b,#}≥2 as expected.

Finally, come back to the (1, 1)-FEFA of Figure 6 and the first instance of BMC

algorithm. We get one transition, from the inital state to the final one, labelled by

L = (L1 • L3) ⊕ (L1 • L2 • L3) ⊕ (L1 • L
≥2
2 • L3). This label consists of 11 FEFs

of size (1, 1). Each FEF is labelled by only one REG-expression. The sum of these

expressions is the output result. It defines the function mirror
∗. For instance, after

some simplifications, the REG-expression labelling the FEF E⊢•H2•H̃2•H2•E⊣ ∈
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L looks like

cancel{⊢} •mirrorA∗•
(

(

id{#} •mirrorA∗ • cancel{#}(A∗{#})+
)

⊗
(

cancel{#} • f̃
))

•mirrorA∗ • id{#} • cancel{⊣}

which is equivalent to mirror
∗ on domain {⊢}(A∗{#})≥4{⊣}.

7. The case of sweeping transducers

We now consider the case of sweeping transducers, namely transducers whose head

can change direction only at the extremities ⊢ and ⊣ of the input. We introduce the

two following grammars for function expressions:

←

Rat ∋ f, g ::= L/v | f ⊕ g | f
←
• g | f

←
∗

Had(Rat,
←

Rat) ∋ h ::= f | h⊗ f where f ∈ Rat ∪
←

Rat

SW ∋ s ::= h | s⊕ h where h ∈ Had(Rat,
←

Rat)

where L is a regular language over A and v ∈ B∗.

Theorem 39. Sweeping functions are equivalent to SW -expressions.

Proof. We first show that any SW definable function is sweeping-definable (i.e.

can be realised by a sweeping transducer). An expression built using the grammar

SW is a finite sum of finite Hadamard products of rational and reverse-rational

functions (i.e. generated using the grammar
←

Rat).

Rational and reverse-rational functions are clearly sweeping-definable, so are

finite Hadamard products of them, using the sweeping property (we will do as many

traversals of the input word as needed by the size of the finite Hadamard product).

Last, the external finite sum is on disjoint domains, so remains sweeping-definable.

Conversely, let us show that any sweeping-definable function can be expressed

by a regular function expression in the grammar SW . The proof is based on a Brzo-

zowski & McCluskey algorithm. We observe that the (trimmed) crossing sequence

automaton of a sweeping transducer has a very particular form. Indeed, there is a

guess, on the first transition, of the number of passes k realized by the simulated

accepting run. The initial flow has a single edge in FLR, and ⌊k/2⌋ edges in FRR.

Then, all the flows encountered along the run correspond to sweeping FEFs: they

have ⌈k/2⌉ edges in FLR and ⌊k/2⌋ edges in FRL. The flow of the last transition is

as follows: a single edge in FLR, and ⌊k/2⌋ edges in FLL.

If we consider this crossing sequence automaton as a finite state automaton on a

new alphabet (composed of FEFs with a single letter domain), we can apply to it the

“classical” Brzozowski & McCluskey algorithm. The result is a regular expression

on the new alphabet. We can actually evaluate the Kleene star in this setting, as all

the FEFs it is applied to are sweeping FEFs, and in this case one can simply apply

the Kleene star to each edge of the FEF. Following the above observation on the
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shape of the flows of the automaton, one ends up with a regular function expression

belonging to the grammar SW .

8. Conclusion

In this paper, we have extended the standard state elimination algorithm due to

Brzozowski and McCluskey to unambiguous two-way finite-state transducers. This

yields a simple, direct and effective translation from these transducers to regular

function expressions. We have also identified a subclass of expressions characterizing

sweeping functions.

This work opens the way to numerous applications and extensions: deciding one-

wayness [14, 4], studying infinite words [2, 12] and identifying star-free expressions

for first-order definable transformations [18, 15, 9] for instance.
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