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Abstract

Genetic networks are biological systems that represent how genes or proteins
interact in a cell. They are especially studied by means of automata networks
and Boolean dynamical systems (BDSs). This article studies the representation of
BDSs, using a modal hypothesis logic, namely H. In the BDS formalism, a genetic
network can be represented either by an interaction graph (IG) or by a transition
graph (TG). Each of these representations stress distinct characteristics. The dy-
namics of a BDS is characterized by a function f and an updating mode µ that
organizes the entities updates over time. An important part of the studies done on
BDSs focused on the analysis of both the stable configurations, or fixed points, of
pf, µq, and stable/unstable cycles of pf, µq. The representation of a BDS by what-
ever default logic, ASP, or other nonmonotonic formalisms, enables to find stable
configurations. However, these representations are not suitable to capture cyclic
dynamical behaviors. We introduce representations for both IGs and asynchronous
TGs in H, which leads to new formal results. They aim at making possible to dis-
criminate between stable configurations, limit cycles and unstable cycles. While a
previous work has studied in detail IGs, the present paper focuses mainly on TGs,
for which ghost extensions, defined in H, play a key role.

Keywords: Modal logic, hypothesis logic, Boolean dynamical systems, genetic net-
works.

1 Introduction
From a logical point of view, a biological system can be viewed as a set of interacting
elements, let’s say entities, whose states change over discrete time. Genetic networks
are specific biological systems that represent how the genes (or proteins) of a cell in-
teract with each other for the survival, reproduction, or death of this cell. The study of
genetic networks is a source of relevant questions regarding knowledge representation.
First, interactions appear as a form of causality. As such, we expect to model it thanks
to logical inferences, but of which kind? The use of classical logic is inadequate in
this context because it cannot deal with inconsistencies, whereas what we learn on ge-
netic networks arises often from long and expensive experiments and we know only a
small part of the interactions while this knowledge can be revisable, uncertain, contra-
dictory and even false. Moreover, algorithmic complexity is a crucial issue regarding
the need to provide algorithms with reasonable calculation times in practice. These
questions have been studied in artificial intelligence since the late 1970s, especially by
the use of both particular nonmonotonic logics and techniques derived from constraint
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programming. Notably, default logic (DL) [20, 6] as well as answer set programming
(ASP) [16] can be used here.

Genetic networks have been studied from the end 1960s in the context of au-
tomata networks and Boolean dynamical systems (BDSs) as a set of entities mapped
to Boolean states. In this framework, it is considered that the expression of one gene
modulates the expression of another gene by activation or inhibition. The use of BDSs
leads to founding theorems on feedback circuits, simply called circuits hereafter, that
create behavioral complexity and richness [9, 17, 21, 22, 23, 24, 26, 33].

This article deals with the representation of BDSs, using a non-monotonic modal
logic called hypothesis logic (H) [28, 30] defined in 1993, after a first approach pro-
posed by [3]. In the context of BDSs, a genetic network can be represented by both an
interaction graph (IG) and a transition graph (TG). The relationship between IGs and
TGs have been studied since many years in dynamical systems theory, but remains an
important open question. Our logic-based approach is a step toward a global clarifica-
tion of this relationship. Preliminary results on circuits were given in [29].

A dynamics of a BDS is characterized by a function f associated with an updating
mode µ that organizes the entities updates over time (in this paper, we focus solely
on the asynchronous one). Most of the studies done on BDSs have focused on their
temporal asymptote, i.e., on the analysis of both their stable configurations (or fixed
points) and stable/unstable cycles. If the representation of a BDS by whatever DL,
ASP or other well known nonmonotonic formalisms enables us to find fixed points,
these representations are not suitable to capture cyclic dynamical behaviors. This is
embarrassing because these cycles may represent real fundamental phenomena in liv-
ing organisms such that the cell cycle [5, 15], the circadian cycle [1, 27], or the cardio-
respiratory pace [10]. This possible lack of extensions in DL has been fully studied in
the context of hypothesis logic. As shown in [30, 28], DL is a fragment of H. In the
latter logic, theories always have extensions among which some of them, called ghost
extensions, have no counterpart in DL. And it is these ghost extensions that enable H
to discriminate between BDSs stable configurations, stable cycles and unstable cycles.

This article is structured as follows: Section 2 (resp. Section 3) gives the main def-
initions and notations related to H (resp. BDSs); in Section 4, we present the way to
represent BDSs in the hypothesis logic framework and develop the main results of the
work showing that the asynchronous asymptotic behaviors such as stable configura-
tions and stable cycles, as well as unstable cycles, are properly captured; Section 5
gives a brief conclusion on the work led.

2 Hypothesis Logic
Syntax Hypothesis logicH [28, 30] is a bi-modal logic [4] with two modal operators
L and rHs. If f is a formula, the intuitive meaning of Lf is f is proved/stated. The
dual H of rHs is defined as Hf “  rHs f . The intuitive meaning of Hf is f is a
hypothesis, and hence rHsf means f is not a hypothesis. The language ofH, denoted
by L pHq, is defined by the following inductive rules:
• Any formula of first-order logic is in L pHq.
• Whenever f and g are in L pHq,  f , pf ^ gq, pf _ gq, pf Ñ gq, Lf , rHsf , Hf

are in L pHq too.
And no other formulas are in L pHq than those formed by applying these two rules.
Operator L has the properties of the modal system T and rHs has those of the modal
system K. As a consequence, the inference rules and axiom schemata ofH are:
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• All inference rules and axiom schemata of first-order logic.
• pNrHsq: $ f ùñ $ rHsf , the necessitation rule for rHs.
• pNLq: $ f ùñ $ Lf , the necessitation rule for L.
• pKrHsq: $ rHspf Ñ gqq Ñ prHsf Ñ rHsgq, the distribution axiom schema for
rHs.

• pKLq: $ Lpf Ñ gq Ñ pLf Ñ Lgq, the distribution axiom schema for L.
• pTLq: $ Lf Ñ f , the reflexivity axiom schema for L.
Unlike L, the axiom of reflexivity does not hold for rHs. There are so far no con-

nections between L and rHs. We force this connection by adding the following link
axiom schema:
• pLIq: $  pLf ^H fq.

This very weak axiom is one of the bases of H. It means that it is impossible to prove
f and to assume the hypothesis  f at the same time. Note the following equivalences:

 pLf ^H fq ðñ Lf Ñ  H f ðñ H f Ñ  Lf ,
where the second (resp. third) formula means that if we prove f , we cannot assume the
hypothesis  f (resp. if we assume the hypothesis  f , we cannot prove f ).

Semantics As shown in [28], H has a Kripke semantics with two accessibility rela-
tions, RrHs for rHs, RL for L. RrHs is the relation of system K and RL is the relation
of system T , hence reflexive. The relationship between the two relations, given by the
link axiom, is RL Ď RrHs. Proofs of completeness, correctness, and compactness for
H are given in [28].

2.1 Hypothesis theories and extensions
As defined above,H is a monotonic logic. In order to deal with the revisable character
of usual informations (here of biological nature), a notion of extension is added just as
in DL. However, contrary to the latter, three kinds of extensions are considered here,
namely stable extensions, ghost extensions and sub-extensions.

Definition 1. GivenH:
• A hypothesis theory is a pair T “ tHY,Fu, where F is a set of formulas of H

and HY is a set of hypotheses.
• An extension E of T is a set E “ ThpF Y HY1q, such that HY1 is a maximal

subset of HY consistent with F.
• A sub-extension E of T is a set E “ ThpF Y HY1q, such that HY1 is a non-

maximal subset of HY consistent with F.
• E is a stable extension if it is an extension that satisfies the coherence property:
@Hf,  Hf P E ùñ L f P E. Thanks to the link axiom schema, we hence
get: @f, L f P E ðñ  Hf P E.

• E is a ghost extension if it is an extension such that DHf,  Hf P E and L f R
E. Hence for a ghost extension, we only get: @f, L f P E ùñ  Hf P E.

Definition 2. Let E be an extension or a sub-extension:
1. E is complete if, for all i P V , Hi P E or H i P E.
2. A propositional variable i P V is free in E if Li R E and L i R E. It is fixed

otherwise.
3. The degree of freedom of E, denoted by degpEq, is the number of free proposi-

tional variables that compose it.
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It is shown in [30, 28] that, given a hypothesis theory T “ tHY,Fu, if F is con-
sistent then T has at least one extension. Thus, an extension is obtained by adding one
of the largest consistent sets of hypotheses to F while remaining consistent. Intuitively,
E is stable if whenever it is forbidden to assume the hypothesis f ,  f is proven. It
is a ghost extension otherwise. As shown in [28], stable extensions correspond to the
standard extensions of DL (and to stable models of ASP). Ghost extensions do not have
any correspondence in DL nor in ASP.

2.2 Example: representing genetic networks intoH
A genetic network represents interactions among genes or proteins in cell [2, 7, 8,
11, 13, 19]. From now one, let us consider that the entity at stake are proteins. In a
modeling context, a protein is classically represented by an integer i P t1, . . . , nu.
Its concentration in a cell is denoted by xi. In such networks, given a protein i, a
set of interactions (or influences) from a set of proteins toward i describes in which
conditions the concentration of i evolves. In the most general case, a concentration xi
is a real number. Here, we study the particular case where the concentrations xi are in
t0, 1u. This simplification may seem crude at first glance, but it actually makes sense
because, experimentally, it is almost impossible to get precise concentrations. Genetic
networks can be studied with the formalism of Boolean dynamical systems (BDSs),
defined in the following section. To introduce our example, it suffices to know that, for
a BDS, the concentration xi “ 1 (resp. xi “ 0) denotes the presence (resp. the absence)
of protein i in the cell. Moreover, to study a BDS from a logical point of view, we just
consider the congruence pxi “ 1q ” i (resp. pxi “ 0q ”  i), viewing i as a Boolean
variable.

One of the interests of hypothesis logic is that this bi-modal logic enables us to
use three kinds of information: i, Li and Hi. Hence, by combining modalities with
negations, we can use ti,Hi,H i,Li,L iu. Remark that inH, we have: Li ‰  L i,
 Li ‰ L i, Hi ‰  H i and  Hi ‰ H i. This increasing of expressiveness allows
for a more precise representation of biological networks. Let us consider the genetic
network of a cell, and i a protein. Using hypothesis logic, we state that:
• i means that i is present in the cell and  i means that it is absent.
• Li means that i is produced by the cell (i is being activated) and Li means that
i is not produced (i is not being activated).
• L i means that i is destroyed by the cell (i is being inhibited) and  L i means

that i is not destroyed (i is not being inhibited).
• Hi (resp.  Hi) means that the cell gives (resp. does not give) the permission for

attempting to produce i. In other words, the cell has (resp. has not) the ability to
activate i.
• H i (resp.  H i) means that the cell gives (resp. does not give) the permission

for attempting to destroy i. In other words, the cell has (resp. has not) the ability
to inhibit i.

Regarding the use of H in this context, the role of an extension appears to gather
a maximum of consistent permissions. Note that even if Hi stands for the cell giving
permission to attempt the production of i, this production is not mandatory. It can be
carried out or not, according to the context (i.e., the set of all interactions in the cell).
Similarly H i gives the authorization to destroy i. It is important to note that Li and
L i are actually actions (production or destruction of a protein). So there is a difference
between L i which says that i is destroyed, and Li which says that i is not produced,
and hence is weaker. There is a similar distinction between H i and Hi (and between
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Li and  L i; and between Hi and  H i).
Proposition below give some general properties ofH, particularly adequate for the

modeling of the different states of proteins in a cell.

Proposition 1. Given i a protein, the following results hold inH:
(1) Li Ñ i and L i Ñ  i (i.e., if i is produced (resp. destroyed), then i is present

(resp. absent)).
(2)  pLi^H iq and  pL i^Hiq (i.e., it is impossible to produce (resp. destroy)

i and to give the permission to destroy (resp. produce) i it at the same time).
(3)  pLi^ L iq (i.e., it is impossible to produce and destroy i at the same time).

Idea of the proof. Axioms of H are all what is needed. (1) are instances of axiom
pTq; (2) are instances of the linking axiom pLIq; (3) derives directly from (1).

3 Boolean dynamical systems
A finite Boolean dynamical system (BDS) describes the evolution of the interactions
in a network of n entities numbered from 1 to n, over discrete time. Consider V “

t1, ..., nu a set of n entities. A configuration x “ px1, . . . , xnq of the network is an
assignment of a truth value xi P t0, 1u to each element i of V . The set of all config-
urations (i.e., all interpretations on the logic side), also called the configuration space,
is denoted by X “ t0, 1un. A dynamics of such a network is modeled via both a
function f , called the global transition function, and an updating mode µ that de-
fines how the elements of V are updated over time. More formally, f : X Ñ X
is such that x “ px1, . . . , xnq ÞÑ fpxq “ pf1pxq, . . . , fnpxqq, where each function
fi : X Ñ t0, 1u is a local transition function that gives the evolution of the entity i
over time. There exists an infinite number of updating modes1 among which the paral-
lel and the asynchonous ones remain the most used [12, 32]. The parallel, or perfectly
synchronous, updating mode is such that all the entities of the network are updated
at each time step. Conversely, the asynchronous updating mode is a non-deterministic
variation in which only one entity is updated at a time. In the sequel, we restrict our
study to asynchronous dynamics [21, 24].

3.1 Asynchronous transition graphs
LetX “ t0, 1un be a space of configuration and f : X Ñ X the global transition func-
tion of a BDS. The asynchronous dynamics of f is given by its asynchronous transition
graph (ATG) G pfq “ pX,T pfqq, a digraph whose vertex set is the configuration space
and arc set is the set of asynchronous transitions such that: T pfq “ tpx, yq P X2 | x ‰
y, x “ px1, . . . , xi, . . . , xnq, y “ px1, . . . , xi´1, fipxq, xi`1, . . . , xnqu. Therefore, if
px, yq P T pfq, x and y differ exactly by one element; the transition is unitary.

Note 1. By definition, we relate a unique ATG G pfq to a given function f . Moreover,
by construction of ATGs, G pfq “ G pgq whenever f and g are equivalent (i.e., fpxq “
gpxq for every x, or again f and g have the same truth tables). In other words, functions,
truth tables and ATGs are isomorphic representations.

1Infinite, because deterministic updating modes are basically defined as infinite sequences of subsets of
nodes of the network.
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Figure 1: (left) ATG of function f , and (right) ATG of function g, presented in Exam-
ple 1.

An orbit in G pfq is a sequence of configurations px0, x1, x2, . . . q such that either
pxt, xt`1q P T pfq or xt`1 “ xt if xt “ fpxtq (i.e., xt has no successors). A cycle
of length r is a sequence of configurations px1, . . . , xr, x1q with r ě 2 whose con-
figurations x1, . . . , xr are all different. From this, we derive what is classically called
an asynchronous attractor in dynamical systems. An attractor is terminal strongly con-
nected component (SCC) of G pfq, i.e., a SCC with no outward transitions. Among
attractors, we distinguish stable configurations from stable cycles. A stable configura-
tion is a trivial attractor, i.e., a configuration x such that @i P V, xi “ fipxq, which
implies that x “ fpxq. A stable cycle is a cyclic attractor such that, in G pfq, @t ă r,
xt`1 is the unique successor of xt and x1 is the unique successor of xr. If an attrac-
tor is neither trivial nor cyclic, it is called a stable oscillation. When it is possible to
get out from a SCC, this SCC is called an unstable cycle or an unstable oscillation
depending on whether it is cyclic or not. An orbit that reaches a stable configuration
stays there endlessly. Similarly, when it reaches a stable cycle, it adopts endlessly a
stable oscillating behavior. Notice that in Figures, recurring configurations, i.e., config-
urations belonging to an attractor, are pictured in gray, and cycles are represented by
bold transitions.

Example 1. Boolean circuits of size 3 Consider V “ t1, 2, 3u, x = t0, 1u3 and two
functions f and g such that fpx1, x2, x3q “ p x2, x3, x1q and gpx1, x2, x3q “
p x3, x1, x2q. From the definitions of f and g, it is easy to derive their related ATGs,
G pfq and G pgq, pictured in Figure 1. A transition corresponds to one arrow in the
picture. There are up to 3 transitions leaving each configuration. Here, G pfq has two
symmetric stable configurations, p 1, 2, 3q and p1, 2, 3q while all the other config-
urations belong to an unstable cycle; G pgq has a stable cycle, of length 6. This cycle
is stable because there is only one transition leaving from each configuration, which is
not the case for the unstable cycle of G pfq. We will see in Section 4 that the two stable
configurations of G pfq correspond to two stable extensions of H, and that the stable
cycle of G pgq corresponds to a set of 6 ghost extension of degree 1. The functions f
and g can also be represented by elementary circuits, pictured in Figure 3. These ones
are special cases of interaction graphs, defined below.

Example 2. Consider function hpx1, x2q “ p x1 _ x2, x1 _ x2q whose ATG is pic-
tured on the left in Figure 2. This ATG has a stable state p1, 2q and an unstable cycle
tp 1, 2q, p 1, 2qu. There is an infinity of possible orbits because one can go follow
the unstable cycle indefinitely, before attending p1, 2q and then stabilizing in p1, 2q.

Example 3. Consider function kpx1, x2q “ px2, x1 ^  x1 ^ x2q, whose ATG is
pictured on the right in Figure 2. This ATG has a stable state t 1, 2u and no cycles.
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Figure 2: (left) ATG of function h presented in Example 2, and (right) ATG of function
k presented in Example 3.

3.2 Interaction graphs and circuits
A transition graph is a very precise tool for studying the behavior of a function, but its
size is exponential depending on the number of entities. Regarding practical applica-
tions, the information is often represented by more compact and more readable graphs
of a different type. It is indeed the case with biological data which come from exper-
iments that generally simply yield correlations among gene expressions. For BDSs, it
is common to use interaction graphs.

An interaction graph (IG) is a signed digraph G “ pV, Iq, where V “ t1, . . . , nu
is the vertex set corresponding to the so called entities, and I Ď V ˆ S ˆ V , with
S “ t´,`u is the arc set corresponding to the so called interactions. An arc pi,`, jq
(resp. pi,´, jq) is said to be positive (resp. negative). From a dynamical point of view,
the presence of an arc pi, s, jq in an IG means that the value of i affects the value of j,
positively or negatively according to s: we say that i regulates j.

A circuit C “ tpi1, sp1,2q, i2q, . . . , pik, spk,1q, i1qu of size k is elementary if all the
is that compose it are distinct. A circuit is positive (resp. negative) if it contains an even
(resp. an odd) number of negative arcs.

Consider the toy example where j has only one incoming arc from i. In this case,
the effect of the regulation is obvious: if the arc is positive (resp. negative), j will
take the value (resp. the opposite value) of i after one update. Remark that elementary
circuits are regulated this way.

Note 2. Consider an IG that contains an arc pi, s, iq, i.e., a loop on i. If s “ ` (resp.
s “ ´), this arc makes i tend to maintain (resp. negate) its state. It depends of course
on whether i admits other in-neighbors than itself or not, and on the positive or negative
influence of these eventual neighbors. In the case that i admits no other in-neighbors,
it is trivial that i endlessly maintains (resp. negate) its state if s “ ` (resp. if s “ ´).

As mentioned above, an IG G “ pV, Iq represents the existence of the interac-
tions involved between the entities of V . Specifying the nature of these interactions,
and the conditions under which they occur effectively, leads to relate G to a BDS of
function f . Then, G is the IG of f and is then denoted by Gpfq “ pV, Ipfqq. This is
done by assigning a local transition function fi to every i P V so that @j P V, Dx P
t0, 1un, fipxq ‰ fipx

jq ðñ pj, s, iq P Ipfq, where given x “ px1, . . . , xnq,
x j “ px1, . . . , xj´1, xj , xj`1, . . . , xnq. This specification induces the minimality of
Gpfq because each arc represents an effective interaction. It is also essential to note
that if an IG corresponds to a single BDS/TG the converse is false. Contrary to TGs, an
IG only provides static information about which entity acts which other and about the
way it does.

Example 4. Figure 3 pictures the IGs associated with the ATGs of the BDSs defined
from f and g in Example 1. Consider the positive circuit associated with f by following
the directions of its arcs:
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Figure 3: (left) the IG (a positive circuit) associated with ATG G pfq, and (right) the IG
(a negative circuit) associated with ATG G pgq introduced in Example 1.

• Starting from x1 “ 1, or simply 1 using H, we get the following infinite se-
quence: p1, 3, 2, 1, 3, 2, . . . q.

• Starting from x1 “ 0, or simply ­ 1 using H, we get the following infinite se-
quence: p 1, 3, 2, 1, 3, 2, . . . q.

The first (resp. second) dynamical behavior highlights the stable configurations 1, 2, 3
(resp.  1, 2, 3) of f . For the negative circuit associated with g:
• Starting from x1 “ 1, or simply 1 using H, we get the following infinite se-

quence: p 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.
• Starting from x1 “ 0, or simply  1 using H, we get the following infinite se-

quence: p1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.
In both cases, the observed dynamical behavior highlights the stable cycle of g.

3.3 General fundamental results and their biological direct appli-
cations

By considering that BDSs are good candidates for qualitatively modeling genetic net-
works (since established by the seminal papers [12, 32]), the presence of several attrac-
tors in their dynamical behaviors allows to model the cellular specialization. Indeed, if
a genetic network controls a phenomenon of specialization, the cell will specialize (i.e.,
will acquire a particular phenotype or a specific physiological function) according to
the attractor towards which its underlying BDS evolves. A classical example of direct
biological applications is the immunity control in bacteriophage λ, for which both lytic
and lysogenic cycles of λ have been modeled in [31]. Another more tricky applica-
tions of BDSs in molecular systems biology concerns the floral morphogenesis of the
plant Arabidopsis thaliana [18, 19]. Its dynamical behavior admits notably four stable
configurations that correspond to the genetic expression patterns of the floral tissues,
sepals, petal, stamens and carpels. This model has also allowed to formally explain the
role of the hormone gibberellin on the floral development [8]. These works and the
numerous other ones using BDSs or more general discrete dynamical systems (DDSs)
emphasized the essential role of studies aiming at understanding the formal relations
between IGs and TGs and their respective properties. They also clearly underlined the
essential role of circuits, nowadays known as the behavioral complexity engines in
dynamical systems. This comes in particular from Robert who established that, if the
IG Gpfq of a DDS f is acyclic, then f converges towards a unique stable configura-
tion [25, 26]. Moreover, in [33], basing himself on asynchronous DDS, Thomas con-
jectured that Gpfq of an asynchronous DDS f must contain a positive (resp. negative)
circuit, for the latter to admit several stable configurations (resp. a non-trivial attractor
such as a stable cycle or a stable oscillation). These two conjectures were proved to be
true under the hypothesis of the asynchronous updating mode [21, 22, 23, 24].

Furthermore, in [21], the authors showed that an asynchronous positive (resp. neg-
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ative) circuit of size n admits two attractors (resp. one attractor), namely two stable
configurations x and its dual x (resp. a stable cycle of length 2n). In [29], we obtained
these results via the translation of the BDS intoH.

4 Representing BDS intoH
In [29], we studied in detail a translation of both positive and negative circuits into H,
which seems to be a first step to us because of their essential role in the regulation of
the cell. In the sequel, we extend this translation to any asynchronous BDS. Indeed,
our previous approach left formulas of the type pHi^Hjq Ñ Lk out of reach, whereas
such formulas are essential for representing the notion of binding in genetic networks.

4.1 Syntax representation of BDS
Remind that an asynchronous BDS is characterized by a global transition function
f : X Ñ X such that x “ px1, . . . , xnq ÞÑ fpxq “ pf1pxq, . . . , fnpxqq, where each
function fi : X Ñ t0, 1u is a local transition function. Also, remind that we consider
that each xi is a propositional variable i, that the assignment xi is a Boolean value i or
 i, and therefore that each fi is a Boolean formula.

Definition 3. The translation of a local transition function fi into H is given by a set
TRpfiq containing two formulas: TRpfiq “ tHfipxq Ñ Li and H fipxq Ñ L iu.
The translation of a global transition function f : X Ñ X of a BDS in H is the union
of translations TRpfiq for all i P t1, . . . nu such that TRpfq =

Ťn
i“1 TRpfipxqq.

From the correspondence given in Note 1, this translation is equivalently the trans-
lation obtained for G pfq and the truth tables of f .

Example 5. Consider V “ t1, 2, 3u, X “ t0, 1u3, and the global transition function f
defined as fpx1, x2, x3q “ p x2, x3, x1q of Example 1. Function f1 is translated into
H by TRpf1q “ tH2 Ñ L 1,H 2 Ñ L1u. Likewise f2 is translated by TRpf2q “
tH3 Ñ L 2,H 3 Ñ L2u, and f3 by TRpf3q “ tH1 Ñ L3,H 1 Ñ  L3u. There-
fore we obtain the following global translation: TRpfq “ tH2 Ñ L 1,H 2 Ñ
L1,H3 Ñ L 2,H 3 Ñ L2,H1 Ñ L3,H 1 Ñ  L3u that admits two stable exten-
sions2:
E1 “ ThpTRpfq Y tH1,H 2,H3quq and E2 “ ThpTRpfq Y tH 1,H2,H 3quq.

When developing these extensions, we see that they are equivalent to their simplified
forms:
• E1 “ tH 1,H2,H 3,L1,L 2,L3, H1, H 2, H3, L 1, L2, L 3u;
• E2 “ tH1,H 2,H3,L 1,L2,L 3, H 1, H2, H 3, L1, L 2, L3u.

In order to ease the reading and abusing notations, from now on in the text and in
the figures, the extensions will contain only the Li and L i that are true. So, here,
E1 “ tL1,L 2,L3u and E2 “ tL 1,L2,L 3u. We can check that E1 and E2 are
stable extensions (because for all i,  Hi P E1 (resp. E2) ùñ L i P E1 (resp. E2)
and that E2 is the mirror of E1.

Example 6. Consider the global transition function gpx1, x2, x3q “ p x3, x1, x2q of
Example 1. The translation in H leads to the following set of formulas: FpGpgqq “

2This is shown by attempting to add to FpGpfqq each subset of HYpGpfqq and keeping only those
among them that are the maximals ones consistent with FpGpfqq. This can be done very quickly using a
SAT solver.
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tH1 Ñ L2,H2 Ñ L3,H3 Ñ L 1,H 1 Ñ L 2,H 2 Ñ L 3,H 3 Ñ L1u.
This allows us to obtain the following 6 equivalent ghost extensions: E1 “ tL2,L3u,
E2 “ tL 1,L3u, E3 “ tL 1,L 2u, E4 “ tL 2,L 3u, E5 “ tL1,L 3u, E6 “
tL1,L2u. The following statements hold:
• E1, ..., E6 are extensions because they are maximal consistent. They are ghost

extensions because in each of them there is a  Hi (resp.  H iq without L i
(resp.  Hi).

• These extensions are of degree 1.
• In [29], we proved that there exists a permutation on the is that allows us to pass

from E1 to E2, ..., E5 to E6. This permutation represents the stable cycle of g.
Moreover, there are also two sub-extensions, E7 “ t1, 2, 3u and E8 “ t 1, 2, 3u
that contain neither Li nor L i. Hence all the is are free and their degree is 3.

Example 7. . Consider function k such that kpx1, x2q “ px2, x1 ^ x1 ^ x2q, whose
ATG is pictured in Figure 2. Function k1 is translated into H by the couple TRpk1q “
tH2Ñ L 1,H 2Ñ L1u. Function k2 is translated by TRpk2q “ tHp1^ 1^ 2Ñ
L2q,H p1 ^  1 ^ 2q Ñ L 2u. Since  p1 ^  1 ^ 2q “  1 _ 1 _  2, we finally
obtain the following global translation into H for k: TRpkq “ tH2 Ñ L 1,H 2 Ñ
L1,Hp1^ 1^2q Ñ L2q,Hp 1_1_ 2q Ñ L 2qu, which admits thee extensions:
• A stable extension E1 “ ThpTRpkq Y tH 1,H 2uq “ tL 1,L 2u;
• Two ghost extensions of degree 1: E2 “ ThpTRpkq Y tH1,H 1uq “ tL 2u,

and E3 “ ThpTRpkq Y tH2uq “ tL1u.

Note 3. Function k may appear naive, because x1 ^  x1 ^ x2 “ K, which gives an
equivalent translation TRphq “ tH2 Ñ L 1,H 2 Ñ L1,HK Ñ L2,HJ Ñ L 2u.
However, one of the aims of this study is also to show that we can deal with functions of
any kind, without the need of a pre-processing. The formalism ofH and the algorithms,
that can in particular use a SAT solver, implicitly make the expected simplifications.

4.2 Semantic representation of ATGs intoH
This section studies the formal relationship between ATGs and their representation
intoH. It uses Kripke semantics [14] such as defined for normal modal logics (i.e., the
logics that contain at least axiom pKq). We shortly remind here the bases needed for
our developments. A Kripke structure is a digraph K “ pW,Rq where the universe W
is a set tw1, . . . , wnu of worlds and the accessibility relation R ĎW ˆW is a binary
relation among worlds. When wj Rwk, wk is accessible from wj . A Kripke model is
obtained by assigning in every world a truth value to every proposition i. This makes
possible to assign a truth value to all the formulas of the propositional calculus (PC). A
world is then mapped to a logical interpretation and hence implicitly to a configuration
of a BDS. Formulas other than those of PC are assigned to worlds with the following
condition: for all f , Lf is true in a world wk if and only if f is true in all accessible
worlds from wk. The different axioms that hold in different modal logics depend on the
properties of the accessibility relations R. As well known, for the system K, R is any
relation, while axiom pTLq holds if and only ifR is reflexive. In the following, we give
a morphism between ATGs and Kripke models for the modal system T , which allows
us to exhibit a morphism from hypothesis theories to ATGs.

Let V “ t1, . . . , nu be a set of entities, X “ t0, 1un be a configuration space, f :
X Ñ X be a function with its associated ATG G pfq “ pX,T pfqq. Remind that T pfq
is a set of edges corresponding to transitions. We now look at an increased version of
G pfq, namely G ‹pfq “ pX,TY ýq where ý denotes the reflexivity such that px, xq
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 1,L 2,L 3

L 1, L 2, 3

L 1,L2,L 3

L 1, 2,L3

L1, 2,L 3

L1,L 2,L3

L1,L2, 3

1,L2,L3

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

Figure 4: (left) Kripke model of function f given in Example 1, and (right) its associ-
ated ATG.

is a transition of G ‹pfq for all x P t0, 1un, as a Kripke structure whose universe is
X and whose accessibility relation is T pfqY ý. If we consider that any configuration
x P X is a world, we get a Kripke model with T pfqY ý as accessibility relation.
Therefore, we get an isomorphism between Kripke models and increased ATGs, from
which it is trivial to obtain the related ATGs. In order to obtain a morphism between
hypothesis theories and ATGs, we define the concept of a projection of an extension or
of a sub-extension.

Definition 4. Consider a sub-extension, or an extension, E of H. The projection of E
on the system T is the set of formulas of E that do not contain the operator H.

Now, if T “ tHY,Fu is an hypothesis theory, and P is the set of the projections of
the extensions or of the sub-extensions of T , we obtain a morphism from T to P , and
therefore a morphism from hypothesis theories to Kripke models.

Note 4. Note that one does not get an isomorphism. Indeed the projections of two dif-
ferent extensions can be equal, and therefore be related to the same Kripke model. Note
also that, since every edge connects two configurations that differ by one entity in an
ATG, two different accessible worlds of the Kripke model differ by one propositional
variable.

Example 8. On the left of Figure 4 is depicted the Kripke model associated with the
projection of the ATG of function f given in Example 1. The eight nodes are the
worlds, and the arcs express the accessibility relation. The two nodes in gray of the
Kripke model, tL1,L 2,L3u and tL 1,L2,L 3u represent the two stable extensions
from the translation of f . Their degree of freedom is 0. The other six nodes are sub-
extensions since they are non-maximal. Their degree is 2. These six nodes form the
unstable cycle of f , represented by bold transitions. We remark that the set of edges
of the Kripke model contains the set of edges of the ATG. The missing edges are the
loops related to the axiom of reflexivity. We also remark that in order to get the Kripke
model from the ATG, it is enough to inject the modality L at the right places into the
cube, according to the corresponding Kripke frame.

Example 9. On the left (resp. on the right) of Figure 5 is depicted the Krypke model
(resp. the ATG) of function g given in Example 1. The six nodes

t1,L2,L3u, tL 1, 2,L3u, tL 1,L 2, 3u,
t 1, L 2,L 3u, tL1, 2,L 3u, tL1,L2, 3u

represent the ghost extensions of the translation of g. Their degree of freedom is 1.
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The other two nodes t1, 2, 3u and t 1, 2, 3u are sub-extensions because they are
non-maximal; their degree of freedom is 3. The six extensions of the Kripke model
correspond to the six configurations of the stable cycle of function g.

Example 10. As in the two former examples, Figure 6 depicts both the Kripke model
and the ATG of function k given in Example 3. Three nodes represent the three exten-
sions of the translation of k: node tL 1,L 2u represents the stable one, t1,L 2u and
tL1, 2u the two ghost ones of degree 1. There is also one sub-extension of degree 2,
t1, 2u.

4.3 Results
Proposition 2. Let T be an hypothesis theory, E be an extension or a sub-extension
of T , w be its projection and k be the degree of freedom of E. In the Kripke model
associated to T , there are exactly k distinct worlds, different from w, reachable from
w.

Proof. Since the degree of E is k, there are ti1, .., iku propositional variables, free in
E. For every i P ti1, . . . , iku, we have both  Li P E and  L i P E. Two cases are
possible, either i P E or  i P E. If i P E, since  Li P E, there exists a world w1

accessible from w, and distinct from w, that contains  i. Regarding the second case,
if  i P E, since  L i P E, there exists a world w2 accessible from w, and distinct
from w, that contains i. Therefore, for each i P ti1, . . . , iku, there is a world accessible
from w, and distinct from w, that contains the opposite of i. Because w is related to an
asynchronous ATG, from Note 4, all these accessible worlds are distinct. Hence there
are k distinct worlds reachable from w.

Theorem 1. Let G pfq be an ATG of function f , and TRpfq be its associated hypoth-
esis theory. The following holds:

1. If x “ tx1, . . . , xnu is a stable configuration of G pfq, then there exists an exten-
sion E of degree 0, issued from TRpfq, that contains tLx1, . . . ,Lxnu.

2. Let E be an extension of degree 0, issued from TRpfq, and w the projection of
E. If x is the configuration related to w, then x is stable.

Proof. Each statement is proved separately:
1. If x is a stable configuration of G pfq, no edges can leave from x. By construction

of the Kripke model, the same holds for the Kripke world w related to x. Hence
the only word accessible from w is w, that is, for any i P w (resp.  i P w), Li P

 1,L 2,L 3

L 1, L 2, 3

 1, 2, 3

L 1, 2,L3

L1, 2,L 3

1, 2, 3

L1,L2, 3

1,L2,L3

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

Figure 5: (left) Kripke model of function g given in Example 1, and (right) its associ-
ated ATG.
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L 1,L 2

 1, 2

1,L 2

L1, 2

 1, 2

 1, 2

1, 2

1, 2

Figure 6: (left) Kripke model of function k given in Example 7, and (right) its associ-
ated ATG.

w (resp. L i P w). Therefore, every i is fixed and the degree of the extension E,
issued from TRpfq, is 0.

2. Let the projection of E be represented by the world w. Since E is of degree 0,
from Proposition 2, the only reachable world from w is w. By construction of
the Kripke model, the same holds for x. Therefore x is a stable configuration of
G pfq.

Theorem 2. Let G pfq be the ATG of function f and TRpfq be its associated hypothesis
theory. Every stable cycle C of G pfq corresponds to a cycle of extensions of degree 1
in TRpfq.

Proof. The proof is similar to that of Theorem 1. Let C “ tx1, . . . , xku be a stable
cycle of G pfq, and W “ tw1, . . . , w`u the set of extensions associated with C. By
construction of the Kripke model, W is also a cycle of same length as C. Since C
is stable, each of its configurations xi admits only one outward arc. And the same
property holds for for wi, i.e., the degree of wi is 1. Therefore, all extensions of W are
of degree 1.

Analog theorems were proved in the context of [29]. They correspond to the results
given in [21]. With the same arguments as those used for the proofs of the previous
theorems, we can show that if a BDS contains an unstable cycle C, it is represented by
a set of extensions such that at least one of those is of degree greater than 1. Indeed,
if the cycle is unstable, it contains a configuration x of degree greater than 1 and,
by construction, the Kripke model associated with the BDS contains the extension E
corresponding to x.

5 Conclusion
In [29], we studied in detail a translation of both positive and negative asynchronous
circuits into (H). In this paper, we extend this translation to any asynchronous BDS,
by showing that hypothesis logic capture some of their essential behavioural, such as
stable configurations and stable cycles that are specific attractors and unstable cycles.
Of course, these results pave the way to further studies about how hypothesis logic
could enable to represent all the dynamical richness of BDSs, by taking for instance
into account their stable and unstable oscillations and other known properties related
to the orbits.

The lack of space prevents a serious discussion about algorithms in the context of
this work. However our approach provides us with hints for simple algorithms that can
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distinguish stable/unstable states, and as such, provides ways for enumerating all the
solutions in a practical way. Eventually, note that an extension is obtained by adding
a consistent maximal set of hypotheses. Since it is possible to test whether consis-
tency is preserved when adding each hypothesis, the computation of extensions is non-
deterministic but constructive, contrary to DL and ASP.
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