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A boolean network (BN) is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

The synchronous dynamics is described by the successive iterations:

xt+1 = f(xt).

The synchronous graph of f is the digraph on {0, 1}n with arc set{
x→ f(x) : x ∈ {0, 1}n

}
.

• A limit cycle (or synchronous attractor) is a cycle in this graph.

• A synchronous periodic point is a point that belongs to a limit cycle.

• The fixed points of f are the limit cycles of length one.
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Example

 f1(x) = x2 ∨ x3
f2(x) = x1 ∧ x3
f3(x) = x3 ∧ (x1 ∨ x2)

x f(x)

000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

Synchronous graph

000 110

101

100

001

011

010

111
2 limits cycles
5 synchronous periodic points
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The asynchronous graph of f is the digraph on {0, 1}n with arc-set{
x→ xi : x ∈ {0, 1}n, ∀i ∈ [n], fi(x) 6= xi

}
.

The number of arcs leaving x in the asynchronous graph is

d(x, f(x))

(instability number of x)

• An asynchronous attractor is a terminal strong component.

• An asynchronous periodic point is a point in an asyn attractor.

• The fixed points of f are the asynchronous attractors of size one.

• An asynchronous attractor of size at least two is cyclic.

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 4/32



The asynchronous graph of f is the digraph on {0, 1}n with arc-set{
x→ xi : x ∈ {0, 1}n, ∀i ∈ [n], fi(x) 6= xi

}
.

The number of arcs leaving x in the asynchronous graph is

d(x, f(x)) (instability number of x)

• An asynchronous attractor is a terminal strong component.

• An asynchronous periodic point is a point in an asyn attractor.

• The fixed points of f are the asynchronous attractors of size one.

• An asynchronous attractor of size at least two is cyclic.

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 4/32



The asynchronous graph of f is the digraph on {0, 1}n with arc-set{
x→ xi : x ∈ {0, 1}n, ∀i ∈ [n], fi(x) 6= xi

}
.

The number of arcs leaving x in the asynchronous graph is

d(x, f(x)) (instability number of x)

• An asynchronous attractor is a terminal strong component.

• An asynchronous periodic point is a point in an asyn attractor.

• The fixed points of f are the asynchronous attractors of size one.

• An asynchronous attractor of size at least two is cyclic.

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 4/32



Example

 f1(x) = x2 ∨ x3
f2(x) = x1 ∧ x3
f3(x) = x3 ∧ (x1 ∨ x2)

x f(x)

000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

Asynchronous graph

000

001

010

011

100

101

110

111

1 asynchronous attractor
1 asynchronous periodic point
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The interaction graph of f is the signed digraph G(f) defined by:

• the vertex set is {1, . . . , n}
• there is a positive arc j → i is there exists x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 0
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 1

• there is a negative arc j → i is there exists x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 1
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 0
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Example

 f1(x) = x2 ∨ x3
f2(x) = x1 ∧ x3
f3(x) = x3 ∧ (x1 ∨ x2)

x f(x)

000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

Interaction graph

1 2

3
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Question

What can be said on the synchronous and asynchronous attractors of f
according to the interaction graph G(f) only?

Synchronous graph Asynchronous graph Interaction graph

000 110

101

100

001

011

010

111

000

001

010

011

100

101

110

111 1 2

3

[Kauffman 69] [Thomas 73]

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 8/32



Question

What can be said on the synchronous and asynchronous attractors of f
according to the interaction graph G(f) only?

Synchronous graph Asynchronous graph Interaction graph

000 110

101

100

001

011

010

111

000

001

010

011

100

101

110

111 1 2

3

[Kauffman 69] [Thomas 73]

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 8/32



Question

What can be said on the synchronous and asynchronous attractors of f
according to the interaction graph G(f) only?

Synchronous graph Asynchronous graph Interaction graph

000 110

101

100

001

011

010

111

000

001

010

011

100

101

110

111 1 2

3

[Kauffman 69] [Thomas 73]

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 8/32



The importance of feedback cycles
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Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other
synchronous or asynchronous attractor.

1 2 3

4 5

6 7 8

stabilization

“Feedback cycles are the engines of the complexity”
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According to René Thomas, there are two kings of cycles:

• positive cycles : even number of negative arcs.

• negative cycles : odd number of negative arcs.

Thomas’ rules:

• Positive cycles are necessary for multistationarity.

• Negative cycles are necessary for sustained oscillations.

Theorem [Aracena 2008]

If G(f) has no positive cycle, then f has at most one fixed point.

Theorem

If G(f) has no negative cycle, then f has no cyclic asynchronous att.
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The dynamics of isolated cycles

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 12/32



Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic

and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.
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1

2

34

5

f1(x) = x5

f2(x) = x1

f3(x) = x2

f4(x) = x3

f5(x) = x4
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic

and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.

t = 0
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
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• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.

t = 3
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Some basic facts about isolated cycles:
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t = 4
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.

t = 00
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.
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and have no fixed point.

t = 10

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 13/32



Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.

t = 30
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• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic

and have no fixed point.

t = 90

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 13/32
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic
and have no fixed point.
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Some basic facts about isolated cycles:

• Given a cycle C, there is a unique network f with G(f) = C.

• Networks associated with positive cycles are pairwise isomorphic
and have two fixed points.

• Networks associated with negative cycles are pairwise isomorphic
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f1(x) = x5 = x1

f2(x) = x1 = x2

f3(x) = x2 = x3

f4(x) = x3 = x4
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Theorem (Synchronous isolated cycle) [Demongeot-Sené-Noual 2012]

• If G(f) is a positive cycle then the nb of limit cycles of length p is{
c+p

:= 1
p

∑
d|p µ

(
p
d

)
2d

if p | n

0 otherwise

• If G(f) is a negative cycle then the nb of limit cycles of length p is{
c−p

:= 1
p

∑
odd d| p2

µ(d)2
p
2d

if p | 2n and p - n

0 otherwise

Here, µ is the Möbius function:

µ(n) :=

 0 if n is not square-free,
1 if n is square-free and has an even number prime factors,
−1 if n is square-free and has an odd number prime factors.
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Corollary

If G(f) is a disjoint union of cycles, then the number of limit cycles of a
each length is known.

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 15/32



Proposition (Asynchronous isolated cycles) [Remy et al 2003]

• If G(f) is a positive cycle, then f has two asynchronous attractors,
which are both fixed points.

• If G(f) is a negative cycle, then f has a unique asynchronous att,
which is cyclic attractor A of size 2n such that

∀x ∈ A d(x, f(x)) = 1.
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Corollary

If G(f) is a disjoint union of cycles, with k+ positive and k− negative,

• f has exactly 2k
+

asynchronous attractors, pairwise isomorphic,

• the instability of every asynchronous periodic point is exactly k−.
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Given some synchronous/asynchronous attractors, is-it possible to
identify some positive / negative cycles in G(f) that could “explain” the
presence of these attractors?

Given two fixed points, is-it possible to identify some positive cycles in
G(f) that could “explain” the presence of these two fixed points?

↪→ Notions of “functional cycles”. Very few formal results...

Intuition: “key cycles are those that, in some way, behave as if isolated”.
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Non-expansive networks
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f is non-expansive if

∀x, y ∈ {0, 1}n d(f(x), f(y)) ≤ d(x, y)

Remark f is non-expansive if and only if

∀x, y ∈ {0, 1}n d(x, y) = 1 ⇒ d(f(x), f(y)) ≤ 1

↪→ Introduced by Shih and Ho in 1999 to establish a boolean version of
↪→ the Markus-Yamabe conjecture in differential equations.

Proposition

f is an isometry ⇐⇒ f is bijective and non-expansive

⇐⇒ G(f) is a disjoint union of cycles
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⇐⇒ G(f) is a disjoint union of cycles
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f is non-expansive if

∀x, y ∈ {0, 1}n d(f(x), f(y)) ≤ d(x, y)

f is an isometry if

∀x, y ∈ {0, 1}n d(f(x), f(y)) = d(x, y)

Proposition

f is an isometry ⇐⇒ f is bijective and non-expansive

⇐⇒ G(f) is a disjoint union of cycles

f is a quasi-isometry if

G(f) is a disjoint union of cycles plus some isolated vertices
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Theorem 1 [Formenti-Richard]

If f is non-expansive, there exists a unique quasi-isometry h such that:

• G(h) is a spanning subgraph of G(f),

• every limit cycle of f is a limit cycle of h.

G(f)

Preservation of
every limit cycle

G(h)
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a, b]) = [a, b].

Let Ω be the set of synchronous periodic points.

Lemma 2 Qn[Ω] is connected.
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no other fixed point in [a, b], then f([a, b]) = [a, b].

Let Ω be the set of synchronous periodic points.

Lemma 2 Qn[Ω] is connected.

Proof Suppose that a, b ∈ Ω are not connected in Qn[Ω], with d(a, b)
minimal. Then d(a, b) ≥ 2 and Ω ∩ [a, b] = {a, b}.
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a, b]) = [a, b].

Let Ω be the set of synchronous periodic points.

Lemma 2 Qn[Ω] is connected.

Proof Suppose that a, b ∈ Ω are not connected in Qn[Ω], with d(a, b)
minimal. Then d(a, b) ≥ 2 and Ω ∩ [a, b] = {a, b}.

Let p be such that fp(x) = x for all x ∈ Ω. Then, all the synchronous
periodic point of fp are fixed points, Ω is the set of fixed points of fp.
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Lemma 1 If f is non-expansive and has two fixed points a and b, and
no other fixed point in [a, b], then f([a, b]) = [a, b].

Let Ω be the set of synchronous periodic points.

Lemma 2 Qn[Ω] is connected.

Proof Suppose that a, b ∈ Ω are not connected in Qn[Ω], with d(a, b)
minimal. Then d(a, b) ≥ 2 and Ω ∩ [a, b] = {a, b}.

Let p be such that fp(x) = x for all x ∈ Ω. Then, all the synchronous
periodic point of fp are fixed points, Ω is the set of fixed points of fp.

Since Ω ∩ [a, b] = {a, b}, by the first lemma, fp([a, b]) = [a, b], thus all
the points c ∈ [a, b] \ {a, b} are periodic with period ≥ 2, a contradiction.
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The definition of h

We suppose that there is no i ∈ [n] and c ∈ {0, 1} such that xi = c for
all x ∈ Ω. This removes the case where G(h) has some isolated vertices.

• Let i ∈ [n] and α, β ∈ Ω with αi < βi (which exists by hypothesis).
Since Qn[Ω] is connected, it has a path from α to β, and this path
has an edge ab such that ai < bi.

Let p be the period of a and q those of b.

d(a, b) ≥ d(f(a), f(b)) ≥ · · · ≥ d(fpq(a), fpq(b)) = d(a, b).

So f(a) and f(b) differs in one component j. Thus G(f) has an arc
from i to j of sign fj(b)− fj(a), and we denote this signed arc Ai.

• The arcs A1, . . . , An then form an union of disjoint cycles in G(f),
which define the isometry h.
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Let ν be the max size of a set of disjoint cycles in G(f).
Let ν+ be the max size of a set of disjoint posititive cycles in G(f).
Let ν− be the max size of a set of disjoint negative cycles in G(f).
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Let ν be the max size of a set of disjoint cycles in G(f).
Let ν+ be the max size of a set of disjoint posititive cycles in G(f).
Let ν− be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2ν
+

fixed points.

Proof

Let h be the quasi-isometry associated with f .

Let k+ be the number of positive cycles in G(h). Then

fix(f) ≤ fix(h) ≤ 2k
+

≤ 2ν
+

.
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Corollary 1 If f is non-expansive, then f has at most 2ν
+

fixed points.

Conjecture 1 There exists φ : N→ N such that, for every network f ,

fix(f) ≤ φ(ν+).

Adrien RICHARD Limit cycles in non-expansive Boolean networks Workshop CIRM, 2017-01-05 24/32



Let ν be the max size of a set of disjoint cycles in G(f).
Let ν+ be the max size of a set of disjoint posititive cycles in G(f).
Let ν− be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2ν
+

fixed points.

Conjecture 1 There exists φ : N→ N such that, for every network f ,

fix(f) ≤ φ(ν+).

Conjecture 2 There exists a constant c such that, for every network f ,

fix(f) ≤ 2cν
+ log(ν+).
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Let ν be the max size of a set of disjoint cycles in G(f).
Let ν+ be the max size of a set of disjoint posititive cycles in G(f).
Let ν− be the max size of a set of disjoint negative cycles in G(f).

Corollary 1 If f is non-expansive, then f has at most 2ν
+

fixed points.

Corollary 2 For every p there exists a smallest constant cp such that, for
every non-expensive f , the nb of limit cycles of f of length p is at most{

(cp)
ν+

if p is odd

(cp)
ν if p is even

Furthermore, cp ≤
∑
d|p c

+
p works, and c1 = 2, c2 = 3 and c3 = 5.
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Theorem 2 [Formenti-Richard]

If f is non-expansive, then every asynchronous periodic point is a
synchronous periodic point.

G(f)

Preservation of
every asynchronous
attractor

G(h)
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Let ν be the max size of a set of disjoint cycles in G(f).
Let ν+ be the max size of a set of disjoint positive cycles in G(f).
Let ν− be the max size of a set of disjoint negative cycles in G(f).

Corollary 3 If f is non-expensive, then

• f has at most 2ν
+

asynchronous attractors, pairwise isomorphic,

• the instability of every asynchronous periodic point is at most ν−.

Proof Let h be the quasi-isometry associated with f .

• Let k+ be the number of positive cycles in G(h).

Then h has 2k
+

asynchronous attractors, pairwise isomorphic,
thus f has at most 2k

+ ≤ 2ν
+

asyn att, pairwise isomorphic.

• Let k− be the number of negative cycles in G(h).
For every asynchronous periodic point x of f ,

d(x, f(x)) = d(x, h(x)) = k− ≤ ν−.
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Discussion
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Are there many non-expansive boolean networks?

• The number of n-component BNs is

(2n)
2n

• The number of isometries with n components is

iso(n) = 2nn!

• Denoting ne(n) the number of non-expansive n-component BNs,

iso(n/2) · iso(n) ≤ ne(n) ≤ 2n(n+ 1)2
n

.
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1. Take n even, and two permutations π and σ of [n] such that, ∀i ∈ [n],

π(i) 6= i, σ(i) 6= i, σ2(i) = i, π(i) 6= σ(i).

2. Let H be the union of the graph of π and π ◦ σ; then H is 2-regular.
3. Put different signs on the two arcs that leave each vertex, to obtain G.

Proposition There are at least 2
n
2 non-expansive BNs on G.

1

2

3

4

5

6

π
σ

π ◦ σ
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1. Take n even, and two permutations π and σ of [n] such that, ∀i ∈ [n],

π(i) 6= i, σ(i) 6= i, σ2(i) = i, π(i) 6= σ(i).

2. Let H be the union of the graph of π and π ◦ σ; then H is 2-regular.
3. Put different signs on the two arcs that leave each vertex, to obtain G.

Proposition There are at least 2
n
2 non-expansive BNs on G.

1

2

3

4

5

6

G

f1(x) = x2 ∧ x6
f2(x) = x1 ∧ x4
f3(x) = x2 ∧ x6
f4(x) = x3 ∧ x5
f5(x) = x1 ∧ x4
f6(x) = x3 ∧ x5
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Perspectives
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Is-it possible to quantify the missing limit cycles
according to the additional interactions?

G(f)

G(h)

additional interactions
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Thomas’ logical methods

Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.

Each function f ∈ F(G) is a function

f : X → X, X =

n∏
i=1

Xi, Xi = {0, 1, . . . , d+G(i)},

with G as interaction graph
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Thomas’ logical methods

Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.

Each function f ∈ F(G) is a function

f : X → X, X =

n∏
i=1

Xi, Xi = {0, 1, . . . , d+G(i)},

with G as interaction graph, and with some properties implying

∀x, y ∈ X, dMan(x, y) = 1 ⇒ dHam(x, y) ≤ 1.

(
dMan(x, y) :=

n∑
i=1

|xi−yi| dHam(x, y) :=

n∑
i=1

min(1, |xi−yi|)
)
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Thomas’ logical methods

Given the interaction graph G of a gene network, this method uses some
reasonable biological hypotheses to construct a very specific set of
functions F(G) considered as potential models for the gene network.

Each function f ∈ F(G) is a function

f : X → X, X =

n∏
i=1

Xi, Xi = {0, 1, . . . , d+G(i)},

with G as interaction graph, and with some properties implying

∀x, y ∈ X, dMan(x, y) = 1 ⇒ dHam(x, y) ≤ 1.

Is it possible to establish similar results for these class of functions?
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