Non-expansive Boolean networks

Adrien Richard

Laboratoire I3S, CNRS & Université de Nice-Sophia Antipolis

joint work with

Enrico Formenti

Workshop "Réseaux dinteractions : fondements et applications la biologie" Luminy, CIRM, January 5, 2017 A boolean network (BN) is a function

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

A boolean network (BN) is a function

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The synchronous dynamics is described by the successive iterations:

$$x^{t+1} = f(x^t).$$

A boolean network (BN) is a function

$$f: \{0,1\}^n \to \{0,1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The synchronous dynamics is described by the successive iterations:

$$x^{t+1} = f(x^t).$$

The synchronous graph of f is the digraph on $\{0,1\}^n$ with arc set

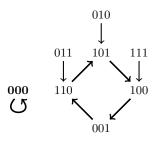
$$\{ x \to f(x) : x \in \{0,1\}^n \}.$$

- A limit cycle (or synchronous attractor) is a cycle in this graph.
- A synchronous periodic point is a point that belongs to a limit cycle.
- The fixed points of f are the limit cycles of length one.

Example

		x	$\int f(x)$
		000	000
		001	110
$f_1(x)$	$= x_2 \vee x_3$	010	101
$f_2(x)$	$=\overline{x_1}\wedge\overline{x_3}$	011	110
$f_3(x)$	$=\overline{x_3}\wedge(x_1\vee x_2)$	100	001
• - ()		101	100
		110	101

Synchronous graph



2 limits cycles5 synchronous periodic points

111

100

The asynchronous graph of f is the digraph on $\{0,1\}^n$ with arc-set $\{x \to \overline{x}^i : x \in \{0,1\}^n, \forall i \in [n], f_i(x) \neq x_i \}.$ The asynchronous graph of f is the digraph on $\{0,1\}^n$ with arc-set

$$\left\{ x \to \overline{x}^i : x \in \{0,1\}^n, \forall i \in [n], f_i(x) \neq x_i \right\}.$$

The number of arcs leaving x in the asynchronous graph is

d(x, f(x)) (instability number of x)

The **asynchronous graph** of f is the digraph on $\{0, 1\}^n$ with arc-set

$$\left\{ x \to \overline{x}^i : x \in \{0,1\}^n, \forall i \in [n], f_i(x) \neq x_i \right\}.$$

The number of arcs leaving x in the asynchronous graph is

d(x, f(x)) (instability number of x)

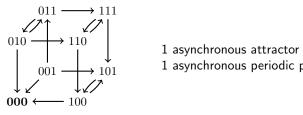
- An asynchronous attractor is a terminal strong component.
- An asynchronous periodic point is a point in an asyn attractor.
- The fixed points of f are the asynchronous attractors of size one.
- An asynchronous attractor of size at least two is cyclic.

Example

x	f(x)
000	000
001	110
010	101
011	110
100	001
101	100
110	101
111	100

Asynchronous graph

 $\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \lor x_2) \end{cases}$



1 asynchronous periodic point

The interaction graph of f is the signed digraph G(f) defined by:

- the vertex set is $\{1,\ldots,n\}$
- there is a positive arc $j \rightarrow i$ is there exists $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

- there is a negative arc $\boldsymbol{j} \to \boldsymbol{i}$ is there exists $x \in \{0,1\}^n$ such that

$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{1}$$

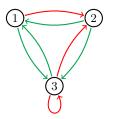
$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

Example

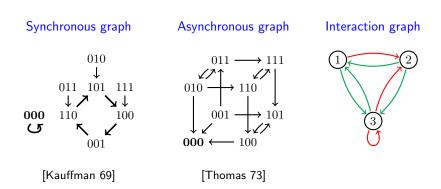
x	f(x)
000	000
001	110
010	101
011	110
100	001
101	100
110	101
111	100

Interaction graph

 $\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \lor x_2) \end{cases}$

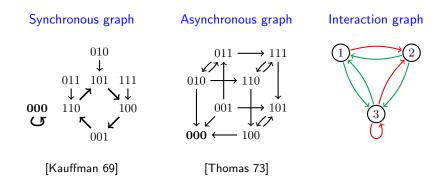


Synchronous graph Asynchronous graph Interaction graph 010 $011 \longrightarrow 111$ 011 101 111 010 - $\rightarrow 110$ $\downarrow 7$ 000 110 100001 101 3 S K **000 ← 1**00 001



Question

What can be said on the synchronous and asynchronous attractors of f according to the interaction graph G(f) only?



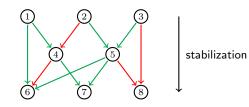
The importance of feedback cycles

Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other synchronous or asynchronous attractor.

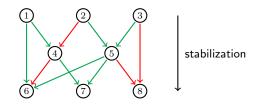
Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other synchronous or asynchronous attractor.



Theorem [Robert 1980]

If G(f) is acyclic then f has a unique fixed point and has no other synchronous or asynchronous attractor.



"Feedback cycles are the engines of the complexity"

According to René Thomas, there are two kings of cycles:

- positive cycles : even number of negative arcs.
- negative cycles : odd number of negative arcs.

Thomas' rules:

- Positive cycles are necessary for multistationarity.
- Negative cycles are necessary for sustained oscillations.

According to René Thomas, there are two kings of cycles:

- positive cycles : even number of negative arcs.
- negative cycles : odd number of negative arcs.

Thomas' rules:

- Positive cycles are necessary for multistationarity.
- Negative cycles are necessary for sustained oscillations.

Theorem [Aracena 2008]

If G(f) has no positive cycle, then f has at most one fixed point.

According to René Thomas, there are two kings of cycles:

- positive cycles : even number of negative arcs.
- negative cycles : odd number of negative arcs.

Thomas' rules:

- Positive cycles are necessary for multistationarity.
- Negative cycles are necessary for sustained oscillations.

Theorem [Aracena 2008]

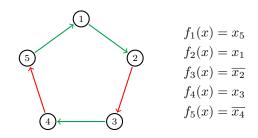
If G(f) has no positive cycle, then f has at most one fixed point.

Theorem

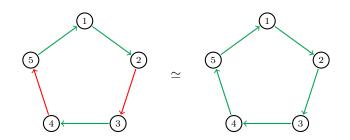
If G(f) has no negative cycle, then f has no cyclic asynchronous att.

The dynamics of isolated cycles

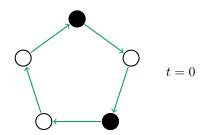
• Given a cycle C, there is a unique network f with G(f) = C.



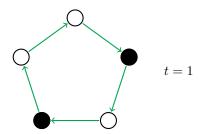
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



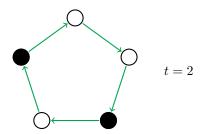
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



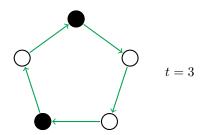
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



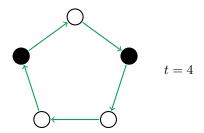
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



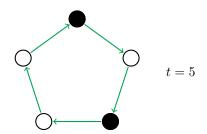
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



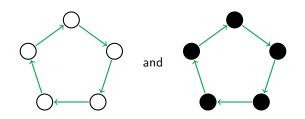
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



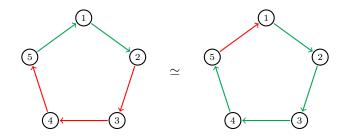
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic



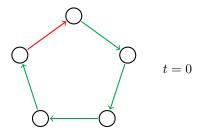
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.



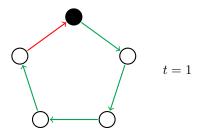
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



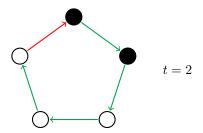
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



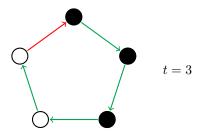
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



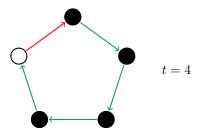
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



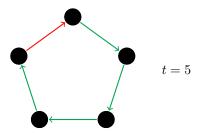
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



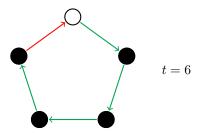
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



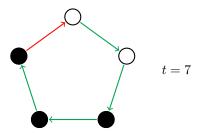
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



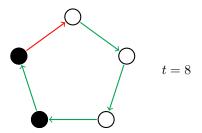
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



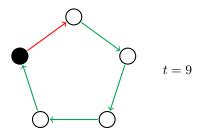
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



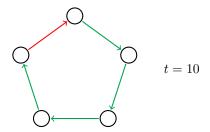
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



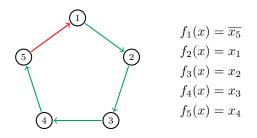
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



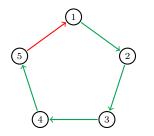
- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic



- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic and have no fixed point.



- Given a cycle C, there is a unique network f with G(f) = C.
- Networks associated with positive cycles are pairwise isomorphic and have two fixed points.
- Networks associated with negative cycles are pairwise isomorphic and have no fixed point.



$$\begin{split} f_1(x) &= \overline{x_5} = x_1 \\ f_2(x) &= x_1 = x_2 \\ f_3(x) &= x_2 = x_3 \\ f_4(x) &= x_3 = x_4 \\ f_5(x) &= x_4 = x_5 \end{split}$$

Theorem (Synchronous isolated cycle) [Demongeot-Sené-Noual 2012]

• If G(f) is a positive cycle then the nb of limit cycles of length p is

- If ${\cal G}(f)$ is a negative cycle then the nb of limit cycles of length p is

$$\begin{array}{ll} c_p^- & \qquad \qquad \text{if } p \mid 2n \text{ and } p \nmid n \\ 0 & \qquad \qquad \text{otherwise} \end{array}$$

Theorem (Synchronous isolated cycle) [Demongeot-Sené-Noual 2012]

• If G(f) is a positive cycle then the nb of limit cycles of length p is

$$\begin{cases} c_p^+ := \frac{1}{p} \sum_{d \mid p} \mu\left(\frac{p}{d}\right) 2^d & \text{ if } p \mid n \\ 0 & \text{ otherwise} \end{cases}$$

- If ${\cal G}(f)$ is a negative cycle then the nb of limit cycles of length p is

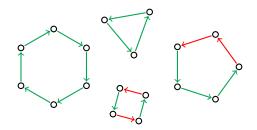
$$\begin{cases} c_p^- := \frac{1}{p} \sum_{\text{odd } d \mid \frac{p}{2}} \mu(d) 2^{\frac{p}{2d}} & \text{ if } p \mid 2n \text{ and } p \nmid n \\ 0 & \text{ otherwise} \end{cases}$$

Here, μ is the Möbius function:

 $\mu(n) := \begin{cases} 0 & \text{if } n \text{ is not square-free,} \\ 1 & \text{if } n \text{ is square-free and has an even number prime factors,} \\ -1 & \text{if } n \text{ is square-free and has an odd number prime factors.} \end{cases}$

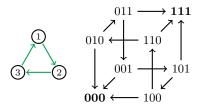
Corollary

If G(f) is a disjoint union of cycles, then the number of limit cycles of a each length is known.



Proposition (Asynchronous isolated cycles) [Remy et al 2003]

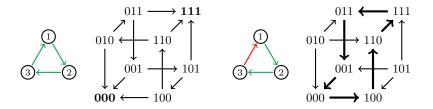
• If G(f) is a positive cycle, then f has two asynchronous attractors, which are both fixed points.



Proposition (Asynchronous isolated cycles) [Remy et al 2003]

- If G(f) is a positive cycle, then f has two asynchronous attractors, which are both fixed points.
- If G(f) is a negative cycle, then f has a unique asynchronous att, which is cyclic attractor A of size 2n such that

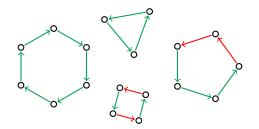
$$\forall x \in A \qquad d(x, f(x)) = 1.$$

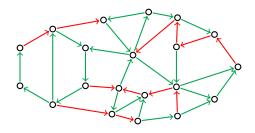


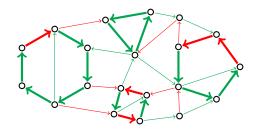
Corollary

If G(f) is a disjoint union of cycles, with k^+ positive and k^- negative,

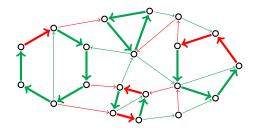
- f has exactly 2^{k^+} asynchronous attractors, pairwise isomorphic,
- the instability of every asynchronous periodic point is exactly k^- .





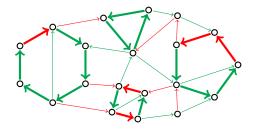


Given *two fixed points*, is-it possible to identify some *positive cycles* in G(f) that could "explain" the presence of these two fixed points?



Given *two fixed points*, is-it possible to identify some *positive cycles* in G(f) that could "explain" the presence of these two fixed points?

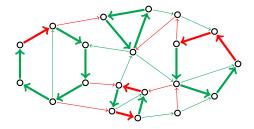
 \hookrightarrow Notions of "functional cycles". Very few formal results...



Given *two fixed points*, is-it possible to identify some *positive cycles* in G(f) that could "explain" the presence of these two fixed points?

 \hookrightarrow Notions of "functional cycles". Very few formal results...

Intuition: "key cycles are those that, in some way, behave as if isolated".



Non-expansive networks

$$\forall x, y \in \{0, 1\}^n \qquad d(f(x), f(y)) \le d(x, y)$$

Remark f is non-expansive if and only if

 $\forall x,y \in \{0,1\}^n \qquad d(x,y) = 1 \quad \Rightarrow \quad d(f(x),f(y)) \leq 1$

$$\forall x, y \in \{0, 1\}^n \qquad d(f(x), f(y)) \le d(x, y)$$

Remark f is non-expansive if and only if

 $\forall x,y \in \{0,1\}^n \qquad d(x,y) = 1 \quad \Rightarrow \quad d(f(x),f(y)) \leq 1$

 \hookrightarrow Introduced by Shih and Ho in 1999 to establish a boolean version of the Markus-Yamabe conjecture in differential equations.

$$\forall x,y \in \{0,1\}^n \qquad d(f(x),f(y)) \leq d(x,y)$$

f is an $\ensuremath{\mathsf{isometry}}$ if

 $\forall x, y \in \{0, 1\}^n$ d(f(x), f(y)) = d(x, y)

$$\forall x, y \in \{0, 1\}^n \qquad d(f(x), f(y)) \le d(x, y)$$

f is an **isometry** if

 $\forall x, y \in \{0, 1\}^n$ d(f(x), f(y)) = d(x, y)

Remark f is non-expansive if and only if

 $\forall x,y \in \{0,1\}^n \qquad d(x,y) = 1 \quad \Rightarrow \quad d(f(x),f(y)) = 1$

$$\forall x, y \in \{0, 1\}^n \qquad d(f(x), f(y)) \le d(x, y)$$

f is an **isometry** if

 $\forall x, y \in \{0, 1\}^n$ d(f(x), f(y)) = d(x, y)

Proposition

 $f \text{ is an isometry} \quad \Longleftrightarrow \quad f \text{ is bijective and non-expansive}$

 $\iff G(f)$ is a disjoint union of cycles

$$\forall x, y \in \{0, 1\}^n \qquad d(f(x), f(y)) \le d(x, y)$$

f is an **isometry** if

 $\forall x, y \in \{0, 1\}^n$ d(f(x), f(y)) = d(x, y)

Proposition

f is an isometry \iff f is bijective and non-expansive \iff G(f) is a disjoint union of cycles

f is a quasi-isometry if

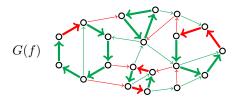
G(f) is a disjoint union of cycles plus some isolated vertices

- G(h) is a spanning subgraph of G(f),
- every limit cycle of f is a limit cycle of h.

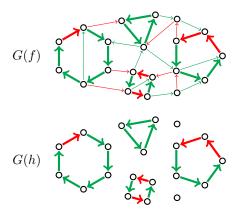
- G(h) is a spanning subgraph of G(f),
- every limit cycle of f is a limit cycle of h.



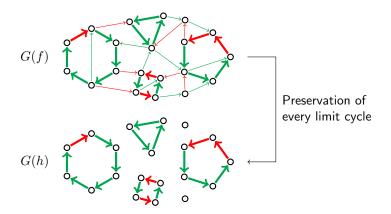
- G(h) is a spanning subgraph of G(f),
- every limit cycle of f is a limit cycle of h.



- G(h) is a spanning subgraph of G(f),
- every limit cycle of f is a limit cycle of h.



- G(h) is a spanning subgraph of G(f),
- every limit cycle of f is a limit cycle of h.



Lemma 1 If f is non-expansive and has two fixed points a and b, and no other fixed point in [a, b], then f([a, b]) = [a, b].

Lemma 1 If f is non-expansive and has two fixed points a and b, and no other fixed point in [a, b], then f([a, b]) = [a, b].

Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.

Lemma 1 If f is non-expansive and has two fixed points a and b, and no other fixed point in [a, b], then f([a, b]) = [a, b].

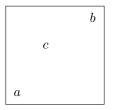
Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.

Proof Suppose that $a, b \in \Omega$ are not connected in $Q_n[\Omega]$, with d(a, b) minimal. Then $d(a, b) \ge 2$ and $\Omega \cap [a, b] = \{a, b\}$.

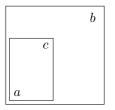
Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.



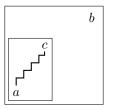
Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.



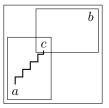
Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.



Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.



Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.

Proof Suppose that $a, b \in \Omega$ are not connected in $Q_n[\Omega]$, with d(a, b) minimal. Then $d(a, b) \ge 2$ and $\Omega \cap [a, b] = \{a, b\}$.

Let p be such that $f^p(x) = x$ for all $x \in \Omega$. Then, all the synchronous periodic point of f^p are fixed points, Ω is the set of fixed points of f^p .

Let Ω be the set of synchronous periodic points.

Lemma 2 $Q_n[\Omega]$ is connected.

Proof Suppose that $a, b \in \Omega$ are not connected in $Q_n[\Omega]$, with d(a, b) minimal. Then $d(a, b) \ge 2$ and $\Omega \cap [a, b] = \{a, b\}$.

Let p be such that $f^p(x) = x$ for all $x \in \Omega$. Then, all the synchronous periodic point of f^p are fixed points, Ω is the set of fixed points of f^p .

Since $\Omega \cap [a, b] = \{a, b\}$, by the first lemma, $f^p([a, b]) = [a, b]$, thus all the points $c \in [a, b] \setminus \{a, b\}$ are periodic with period ≥ 2 , a contradiction.

The definition of \boldsymbol{h}

We suppose that there is no $i \in [n]$ and $c \in \{0, 1\}$ such that $x_i = c$ for all $x \in \Omega$. This removes the case where G(h) has some isolated vertices.

• Let $i \in [n]$ and $\alpha, \beta \in \Omega$ with $\alpha_i < \beta_i$ (which exists by hypothesis). Since $Q_n[\Omega]$ is connected, it has a path from α to β , and this path has an edge ab such that $a_i < b_i$.

Let p be the period of a and q those of b.

 $d(a,b) \ge d(f(a),f(b)) \ge \cdots \ge d(f^{pq}(a),f^{pq}(b)) = d(a,b).$

So f(a) and f(b) differs in one component j. Thus G(f) has an arc from i to j of sign $f_j(b) - f_j(a)$, and we denote this signed arc A_i .

• The arcs A_1, \ldots, A_n then form an union of disjoint cycles in G(f), which define the isometry h.

Corollary 1 If f is non-expansive, then f has at most 2^{ν^+} fixed points.

Proof

Let h be the quasi-isometry associated with f.

Let k^+ be the number of positive cycles in G(h). Then

 $\operatorname{fix}(f) \le \operatorname{fix}(h) \le 2^{k^+} \le 2^{\nu^+}.$

Corollary 1 If f is non-expansive, then f has at most 2^{ν^+} fixed points.

Conjecture 1 There exists $\phi : \mathbb{N} \to \mathbb{N}$ such that, for every network f,

 $\operatorname{fix}(f) \le \phi(\nu^+).$

Corollary 1 If f is non-expansive, then f has at most 2^{ν^+} fixed points.

Conjecture 1 There exists $\phi : \mathbb{N} \to \mathbb{N}$ such that, for every network f,

 $\operatorname{fix}(f) \le \phi(\nu^+).$

Conjecture 2 There exists a constant c such that, for every network f,

$$\operatorname{fix}(f) \le 2^{c\nu^+ \log(\nu^+)}.$$

Corollary 1 If f is non-expansive, then f has at most 2^{ν^+} fixed points.

Corollary 2 For every p there exists a smallest constant c_p such that, for every non-expensive f, the nb of limit cycles of f of length p is at most

 $\left\{ \begin{array}{ll} (c_p)^{\nu^+} & \text{if } p \text{ is odd} \\ (c_p)^{\nu} & \text{if } p \text{ is even} \end{array} \right.$

Corollary 1 If f is non-expansive, then f has at most 2^{ν^+} fixed points.

Corollary 2 For every p there exists a smallest constant c_p such that, for every non-expensive f, the nb of limit cycles of f of length p is at most

 $\left\{ \begin{array}{ll} (c_p)^{\nu^+} & \text{if } p \text{ is odd} \\ (c_p)^{\nu} & \text{if } p \text{ is even} \end{array} \right.$

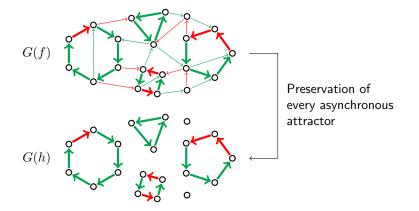
Furthermore, $c_p \leq \sum_{d|p} c_p^+$ works, and $c_1 = 2$, $c_2 = 3$ and $c_3 = 5$.

Theorem 2 [Formenti-Richard]

If f is non-expansive, then every asynchronous periodic point is a synchronous periodic point.

Theorem 2 [Formenti-Richard]

If f is non-expansive, then every asynchronous periodic point is a synchronous periodic point.



Corollary 3 If f is non-expensive, then

- f has at most 2^{ν^+} asynchronous attractors, pairwise isomorphic,
- the instability of every asynchronous periodic point is at most $\nu^-.$

Corollary 3 If f is non-expensive, then

- f has at most 2^{ν^+} asynchronous attractors, pairwise isomorphic,
- the instability of every asynchronous periodic point is at most ν^- .

Proof Let h be the quasi-isometry associated with f.

Corollary 3 If f is non-expensive, then

- f has at most 2^{ν^+} asynchronous attractors, pairwise isomorphic,
- the instability of every asynchronous periodic point is at most ν^- .

Proof Let h be the quasi-isometry associated with f.

• Let k^+ be the number of positive cycles in G(h). Then h has 2^{k^+} asynchronous attractors, pairwise isomorphic, thus f has at most $2^{k^+} \leq 2^{\nu^+}$ asyn att, pairwise isomorphic.

Corollary 3 If f is non-expensive, then

- f has at most 2^{ν^+} asynchronous attractors, pairwise isomorphic,
- the instability of every asynchronous periodic point is at most ν^- .

Proof Let h be the quasi-isometry associated with f.

- Let k^+ be the number of positive cycles in G(h). Then h has 2^{k^+} asynchronous attractors, pairwise isomorphic, thus f has at most $2^{k^+} \leq 2^{\nu^+}$ asyn att, pairwise isomorphic.
- Let k^- be the number of negative cycles in G(h). For every asynchronous periodic point x of f,

$$d(x, f(x)) = d(x, h(x)) = k^{-} \le \nu^{-}.$$

Discussion

Are there many non-expansive boolean networks?

• The number of *n*-component BNs is

 $(2^n)^{2^n}$

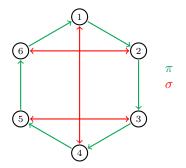
• The number of isometries with n components is

$$iso(n) = 2^n n!$$

• Denoting ne(n) the number of non-expansive *n*-component BNs,

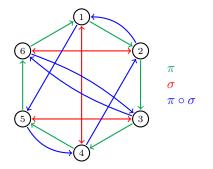
$$iso(n/2) \cdot iso(n) \le ne(n) \le 2^n (n+1)^{2^n}.$$

$$\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$$



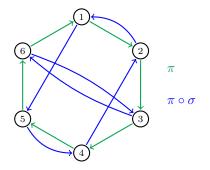
$$\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$$

2. Let *H* be the union of the graph of π and $\pi \circ \sigma$; then *H* is 2-regular.



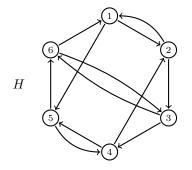
$$\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$$

2. Let *H* be the union of the graph of π and $\pi \circ \sigma$; then *H* is 2-regular.



$$\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$$

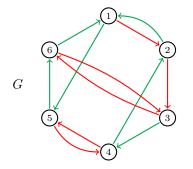
2. Let *H* be the union of the graph of π and $\pi \circ \sigma$; then *H* is 2-regular.



 $\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$

2. Let *H* be the union of the graph of π and $\pi \circ \sigma$; then *H* is 2-regular.

3. Put different signs on the two arcs that leave each vertex, to obtain G.

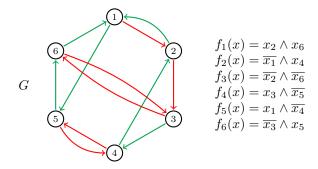


 $\pi(i) \neq i, \quad \sigma(i) \neq i, \quad \sigma^2(i) = i, \quad \pi(i) \neq \sigma(i).$

2. Let *H* be the union of the graph of π and $\pi \circ \sigma$; then *H* is 2-regular.

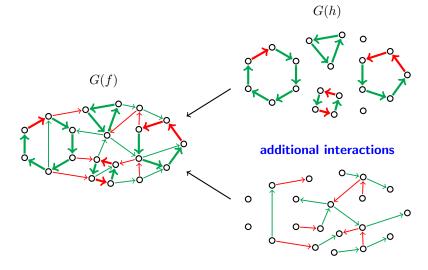
3. Put different signs on the two arcs that leave each vertex, to obtain G.

Proposition There are at least $2^{\frac{n}{2}}$ non-expansive BNs on G.



Perspectives

Is-it possible to quantify the missing limit cycles according to the additional interactions?



Given the interaction graph G of a gene network, this method uses some reasonable biological hypotheses to construct a very specific set of functions $\mathcal{F}(G)$ considered as potential models for the gene network.

Given the interaction graph G of a gene network, this method uses some reasonable biological hypotheses to construct a very specific set of functions $\mathcal{F}(G)$ considered as potential models for the gene network.

Each function $f \in \mathcal{F}(G)$ is a function

$$f: X \to X, \qquad X = \prod_{i=1}^{n} X_i, \qquad X_i = \{0, 1, \dots, d_G^+(i)\},$$

with \boldsymbol{G} as interaction graph

Given the interaction graph G of a gene network, this method uses some reasonable biological hypotheses to construct a very specific set of functions $\mathcal{F}(G)$ considered as potential models for the gene network.

Each function $f \in \mathcal{F}(G)$ is a function

$$f: X \to X, \qquad X = \prod_{i=1}^{n} X_i, \qquad X_i = \{0, 1, \dots, d_G^+(i)\},$$

with G as interaction graph, and with some properties implying

$$\forall x, y \in X, \quad d_{\mathrm{Man}}(x, y) = 1 \quad \Rightarrow \quad d_{\mathrm{Ham}}(x, y) \le 1.$$

$$\left(\quad d_{\mathrm{Man}}(x,y) := \sum_{i=1}^{n} |x_i - y_i| \qquad d_{\mathrm{Ham}}(x,y) := \sum_{i=1}^{n} \min(1, |x_i - y_i|) \quad \right)$$

Given the interaction graph G of a gene network, this method uses some reasonable biological hypotheses to construct a very specific set of functions $\mathcal{F}(G)$ considered as potential models for the gene network.

Each function $f \in \mathcal{F}(G)$ is a function

$$f: X \to X, \qquad X = \prod_{i=1}^{n} X_i, \qquad X_i = \{0, 1, \dots, d_G^+(i)\},$$

with G as interaction graph, and with some properties implying

$$\forall x, y \in X, \quad d_{\operatorname{Man}}(x, y) = 1 \quad \Rightarrow \quad d_{\operatorname{Ham}}(x, y) \le 1.$$

Is it possible to establish similar results for these class of functions?