Identification of logical models for signaling pathways: towards a systems biology loop

Anne Siegel IRISA/CNRS, Rennes, France

CIRM, Janvier 2017

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Dynamical systems

Historical motivation

Modeling the evolution of a set of components $\mathbb A$ of a system over time over a domain $\mathbb T.$

Mathematical framework

Identification

Model identification? Find the most suitable function *F* which explains and depicts the observed responses of a system

ヘロト ヘロト ヘビト ヘビト

Identification

Model identification? Find the most suitable function *F* which explains and depicts the observed responses of a system

What makes easier the model identification task?

- A priori knowledge \rightarrow predetermined "shapes" for the function *F*.
- A very limited number of components \rightarrow reduce the search space.
- A wide panel of perturbations and sensors \rightarrow discriminate the models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Where is the complexity?

The search space exponentially grows with the number of measured components

Experimental omics data

- → Large-scale
- → Knowledge incompleteness
- \rightarrow Noise

\rightarrow Most biomolecular systems are not uniquely identifiable from large-scale datasets

イロト 不得 トイヨト イヨト 二日

How to analyse biomolecular networks in the complex of omics data?

Strategy: develop methods to reason over a complete family of feasible models instead of selecting one model

- Discrete Dynamical Systems → Reduce the space of feasible models.
- Knowledge reasoning \rightarrow Precisely describe the search space.
- Solve combinatorial problem → Extract robust information common to all models in the search space.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Signaling networks

They dictate the cell response to diverse signals in its environment

Highlights

- Lack of kinetic information
- Fast and slow reactions can often be discriminated
- ON/OFF switch-like behavior at the protein level

Modeling signaling networks

- イロト イロト イヨト イヨト ヨー のへぐ

Updating scheme

	synchronous [Kauffman'69]	asynchronous [Thomas'73]
Updates	all at the same time	one at a time
Time-scales	similar	various
Simulation	Tractable	Demanding
Training	Demanding	-

Assumption: synchronous updates are rough but reasonable models of the (early) response in signaling networks

ヘロト 人間 とくき とくきとう

Phospho-proteomics data ... in theory

а	Ь	с	d	fм
Т	I	Т	Т	I
I	I	Ι	0	0

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Experimental assay

- Green nodes can be forced to be activated.
- Red nodes can be forced to be inhibited
- Blue nodes can be measured after a lapse-time.

Response to perturbations

Measure the system response after a certain number of perturbations.

Several hundreds of different perturbations can be tested on a same sample.

(Exact) learning issue

Inputs

- An interaction graph based on prior knowledge
- The results of several combinations of activators and inhibitors over readout

Search space

All logical models compatible with the interaction graph \rightarrow for the previous example, the search space contains 2¹³ models.

Output

One or several logical models

- Compatible with the interaction graph
- Whose logical response is compatible with experimentations
- With minimal size (parsimony assumption)

Identify the most simple models that can explain the observed responses.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

			Read	iouts
#	а	b	с	d
1	0	1	0	1
2	1	0	1	0
3	0	0	0	0
4	1	1	1	0

Experiments #1, #2

ヘロト ヘ回ト ヘヨト ヘヨト

Figures

・ロト ・聞ト ・ヨト ・ヨト

Figures

ヘロン 人間 とくほど 人ほど 一日

When *a* and *b* are activated, an additional effect over *d* emerges.

The output of the learning problem is not monotone

Increasing the set of observed responses drastically changes the family of models which are solution to the identification problem.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Phospho-proteomics data ... in practice

Phosphorylation activity is an average-value.

→ Introduce a fitness score between boolean values and numerical experimental measurements

Residual score = $(0.2 - 0)^2 + (1 - 0.7)^2$ **=0.13**

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Learning as an optimization problem

Combinatorial issue. Find logical signaling networks which satisfy the following conditions:

- Structural condition : networks supported by interaction graph.
- Parsimonious assumption: minimize model complexity.
- Fitting condition: minimize the distance between measured observations and predictions of the logical network.

arg min $(Score_{rss}((V, \phi), (P_1, \ldots, P_n)), Score_{size}((V, \phi)))$ $(V,\phi) \in \mathbb{M}_{(V,E,\sigma)}$ residual sum of squares complexitv

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Phospho-proteomics data ... in very practice (1)

\rightarrow The search space grows exponentially

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Phospho-proteomics data ... in very practice (2)

Several non-observable species (white nodes) \rightarrow uncertainty at the level of internal mechanisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Phospho-proteomics data ... in very practice (3)

Experimental data are highly noisy

- \rightarrow Numerical value have to be considered up to 10% of noise
 - \rightarrow This may have a strong impact on the residual score.

イロト 不良 とくほ とくほう 一日

Learning as a RELAXED optimization problem

Find logical signaling networks such that:

- Structural condition : networks supported by interaction graph
- Parsimonious assumption: minimize model complexity.
- Fitting condition: minimize the distance between measured observations and predictions
- Noise tolerance condition: Find all models whose MSE are at most 10% higher than the minimal MSE

 $\textbf{Data-noise} \rightarrow \textbf{new sub-optimal combinatorial problem}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Answer Set Programming: what? instead of how?

- Knowledge representation and reasoning problems
- Logical paradigm
- NP combinatorial problems → Constraint satisfaction, diagnosis...

Potassco: Potsdam Answer Set Solving Collection http://potassco.sourceforge.net

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Modeling langage \rightarrow gringo

Propositional logics

Solver \rightarrow *clasp*

Boolean constraints resolution technics

Added value

High-level modeling langage

expresivity: $ASP \simeq Prolog$

(日)

- PROPOSITIONAL LOGICS
 - \rightarrow ASP program can only consider a finite number of atoms
- NEGATION : smart semantic.
 - \rightarrow A predicate is false until any fact can predit it is true.

Added value

High-level modeling langage

expresivity: $ASP \simeq Prolog$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- PROPOSITIONAL LOGICS
 - \rightarrow ASP program can only consider a finite number of atoms
- NEGATION : smart semantic.
 - \rightarrow A predicate is false until any fact can predit it is true.

High level solving capability

$\textbf{ASP} \simeq \textbf{SAT, ILP}$

- Combination of SAT and deductive databases resolution techniques.
 - \rightarrow No program rewriting
 - \rightarrow The order of clauses has (nearly) no impact
 - \rightarrow NO INFINITE LOOPS in the problem resoution
- **OPTIMISATION** is possible with preferences.

Application to solve the learning issue

 $Data \rightarrow Guess \rightarrow Check \rightarrow Solution$ × . Learn

Data: PKN and phospho-proteomics dataset (facts)

node(tnfa). node(p38). edge(tnfa,p38,1). exp(1,tnfa,1). obs(1,p38,0).

Guess: Generate candidates models (non-deterministic)

```
{clause(A,N)} :- hyperedge(A,N).
```

Check: Eliminate invalid models (integrity constraints)

```
:- clause(A,N), clause(B,M), A!=B, redundant(A,B).
```

Learn: Loop between "guess" and "check"

Optimize: Minimize cost function (weighted sum of atoms)

```
#minimize[mismatch(E,R,W) = W, clause(A,N) : param(P) = N*P].
```

ASP (answer set programming) methodologies are suitable to solve such combinatorial issues

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Implementation

caspo software toolbox: http://bioasp.github.io/caspo/

🔶 🖯 bearp.git

caspo

ZPFie

Python package

pip install caspo

- command-line interface (for end-users)
- python interface (for developers)
- several dependencies
- included in CellNOpt software.

All inclusive distribution: docker container (prototype) docker pull svidela/caspo

ub.io/caspo/		ッ C (注+ DuciDucids 9) 合 自 🕹 合
() +∎CO	🔁 Google Maps	🔯 Google+ 🔛 Perso + 🔛 Activities + 🔛 Hist, Tutelles + 🔛 Biblio + 🎃 Dicas + 🔛 Assoc
		Reasoning on the response of logical signaling networks
		The manual identification of logic rules underlying a biological system is often hard.
response of	logical signaling	error-prone and time consuming. Further, it has been shown that, if the inherent
rewer Set Pro	gramming	experimental noise is considered, many different logical networks can be compatible
on Citta A		with a set of experimental observations. Thus, automated inference of logical
		networks from experimental data would allow for identifying admissible
		large-scale logic models saving a lot of efforts and without any a priori blas. Next,
TAC Dal	Gitlan	once a naminy a topical neovories has been identified, one can suggest or design new
		can look for intervention strategies 0.6. inclusion minimal sets of knock-ins and
		knock-outs) that force a set of target species or compounds into a desired steady
		state. Altogether, this constitutes a pipeline for automated reasoning on logical
		signaling networks. Hence, the aim of caspo is to implement such a pipeline providing
		a powerful and easy-to-use software tool for systems biologists.
		Installation
		If our come describes where the description of the same should be added to be table of databatic ferrors.
		proj simoly by number
		\$ pip install caspo
		If you are not unline Pothers and the NorelPo release shift the solid fee detailed
		instructions.
		Usage
		Ask for help by running
		\$ caspohelp
		usage: caspo [-h] [quiet] [out 0] [version]
		<pre>(control,visualize,design,learn,test,analyze)</pre>
		Reasoning on the response of logical signaling networks wi
		antiana) annanata.
		-hhalo show this halo messoon and avit
		sulet do not print enviting to standard
		out 0 output directory path (Default to
		version show program's version number and
n nam d0 Dy E	and the second se	
b Pages — Th	eme by	<pre>compo subcommands: for specific help on each subcommand use: cospo {cmd}</pre>
		formed also black halos have been and and
		{control,visualize,design,learn,test,analyze}

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Few optimal models (0% data noise)

◆ロ▶ ◆□▶ ◆国▶ ◆国▶ ○国・ ∕の≪⊙

More sub-optimal models (2% data noise)

But quite many sub-optimal models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

But quite many sub-optimal models

The combinatorics of white nodes introduces a huge disorder

16 optimal models and 5306 admissible logical networks within 10% of noise tolerance

[Guzioloswki, ..., Saez-Rodriguez et al., Bioinformatics'13]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dependance to noise tolerance

Non-uniform distribution of logical networks among behaviors

[Guzioloswki et al, Bioinformatics'13]

- Half of sub-optimal models were found by 1000 executions of celln-opt
- 4% of tolerance already yields \simeq 2300 different models.

An exhaustive search of models is mandatory to have a complete view of the variability

Possible causes to variability?

- Not enough observations.
- Parsimony principle \rightarrow loops are not learnt \rightarrow how to learn more complex models ?
- Early steady-state assumption → use time-series data?
- o synchronous update → impact over trajectories and accessibility?

 \rightarrow How can we take time-series data into account?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A novel dataset: introducing time-series data

Data and example from [mac namara and al; 2014]

Loops are recovered in none of the networks based on the early steady state assumption

From static to time-series : main issues

Main issues of the early steady-state problem

Learning problem Test all possible networks in a large search space.

Interpretation problem Networks must be mapped to an information which can be confronted to observation data.

Early steady-state interpretation Optimize according to steady states.

 \rightarrow loops are naturally removed by the optimization procedure (makes things much simpler).

Additional issues for time-series data interpretation?

Time-series data interpretation?

Computing and verifying all dynamical traces is not possible !

(ロ) (同) (三) (三) (三) (三) (○) (○)

From static to time-series learning procedure: strategy

Abstract the dynamical traces so that they reach a fixed point within a bounded number of steps.

(日)

Leverage the effect of the over-approximation

[Paulevé et at, CMSB 2015, Biosystems 2016]

Consider a general updating scheme

$$\forall x, x' \in \mathbb{B}^n, x \neq x', \qquad x \to x' \Leftrightarrow \forall i \in \{1, \dots, n\}, x_i \neq x'_i \Rightarrow x'_i = f_i(x)$$

Non-deterministic dynamics; possibility of loops

Verifying if $x \to^* x'$ is hard (exact model-checking; NP-complete) \Rightarrow check a weaker condition first.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Over-approximating trajectories with meta-states

Meta-states

- Each node has its value in $\mathbb{M} = \{ 0, 1, 0, 1 \}$.
- If $u \in \mathbb{M}^n$, $S(u) = \{x \in \mathbb{B}^n \mid \forall i \in \{1, \ldots, n\}, x_i \in u_i\}$

Mixing 0 and 1 in a meta-state 0 1 if necessary

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Meta-states dynamics

$$\left(\begin{array}{c}u_{1..i-1}\\ \boxed{a}\\ u_{i+1..n}\end{array}\right) \Rightarrow \left(\begin{array}{c}u_{1..i-1}\\ \boxed{0}\\ u_{i+1..n}\end{array}\right) \qquad \text{if } \exists x \in u : f_i(x) \neq a$$

Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Verifying u \rightrightarrows^* v is easier than x \rightarrow^* y:

- \Rightarrow is strictly monotonous (S(*u*) \subsetneq S(*v*));
- no cycles;
- traces have at most *n* steps (until fixed point).

Handling time-series data and asynchronous processes?

We want all models (Logical Networks)

- compatible with the prior knowledge network (topology);
- that can reproduce the time series data.

Necessary conditions for reproducing time series data

- Quickly invalidate models with the over-approximation criteria.
- False positives can be filtered out: a posteriori use of model-checking.

Distance between Logical Networks and time series data

- When no valid models exist, find close ones (optimization of MSE).
- "On-The-Fly" linear-like computation the mse
- Several options wrt parsimony: minimal size, subset-minimal, complete enumeration.

Implementation using Answer-Set Programming (ASP)

- Declarative approach.
- Efficient solver for solution enumeration and optimization.

work with Paulevé, M. Ostrowski, T. Schaub and C. Guziolowski [CMSB 2015]

(ロ) (同) (三) (三) (三) (○) (○)

Implementation: caspo time-series

Python package

git clone https://github.com/pauleve/caspots

@ 10 commits	ÿ 1 branch	© 0 releases	AL 1 contributor				
Branch: master - New	pull request		Find file Clone or download				
pauleve addnetworks	s option to identify to force domain		Latest commit 842c17e 15 hours age				
aspots	addnetworks option to identify to force domain	n	15 hours ag				
datasets	renaming benchmarks		5 days a				
.gitignore	initial import		6 days ag				
Dockerfile	initial import		6 days ag				
MANIFEST.in	initial import		6 days ag				
README.md	update doc		22 hours ag				
ii) cli.py	initial import		6 days ag				
esults2csv	initial import		6 days ag				
setup.pv	setup.pv: dependencies		23 hours ag				

Caspots - Boolean network inference from time series data with perturbations

All inclusive distribution: docker container (prototype)

docker pull pauleve/caspots docker run --volume "\$PWD":/wd --workdir /wd pauleve/caspots

Toy example: cardinal minimality

Toy example: subset minimality

Performance and accuracy

Tests on synthetic time-series data.

		ci	ardinal-minim	al		subset-minimal						
Model	Space	First	Total	TP	First	Total	TP					
Case-Study A		<1s	8 (1s)	100%	< 1s	54 (2s)	100%					
$TNF\alpha$ -EGF [5]	221	1s	12 (5s)	100%	1s	64 (3s)	100%					
13 nodes, 16 edges		<1s	4 (1s)	100%	<1s	36 (3s)	100%					
Case-Study B.1		1s	18 (5s)	100%	1s	5,544 (3min)	100%					
TCR signaling [20]	237	1s	2 (5s)	100%	1s	2,901 (90s)	100%					
14 nodes, 22 edges		1s	8 (5s)	100%	1s	6,510 (4min)	100%					
Case-Study B.2		2s	4 (12s)	100%	1s	73,962 (1h40)	100%					
TCR signaling [20]	249	3s	4 (25s)	0%	1s	68,338 (1h30)	78%					
16 nodes, 25 edges		3s	20 (23s)	90%	1s	74,757 (1h40)	96%					
Case-Study B.3		4s	8 (90s)	-	5s	>100,000	-					
TCR signaling [*] [20]	2 ¹⁰⁶	6s	8 (90s)	-	58	>100,000	-					
40 nodes, 58 edges		4s	8 (60s)	-	5s	>100,000	-					
Case-Study C		7s	19 (7min)	42%	6s	>100,000	-					
ERBB [21]	2174	3s	2 (2min)	100%	58	>100,000	-					
19 nodes, 50 edges		5s	69 (6min)	19%	5s	>100,000	-					

[Paulevé et al, Biosystems (in revision)]

- Performance Cardinal minimality is very efficient [faster by several orders of magnitude than MILP implementation]
- Enumeration mode Subset minimality explodes in terms of solutions
- Accuracy Model-checking reported that most over-approximated networks are correct.

Nearly all inferred BN verifying the over-approximated constraint also satisfied the "real" time-series constraint

Partial summary

Early response: 3,506 models with minimal size when adding 10% noise to the optimal mse.

ightarrow Still too many models !!

- Not enough observations.
- Variability within single-cells ?

ightarrow Too many uncertainties to choose a single model within the family

Time-series: 2,901 model with minimal mse and subset minimality property

Towards discriminations of data?

(intermediate) take-home message

- Numerous sub-optimal models
- Many explanation to such a variability

Can we reduce the size of the sub-optimal family by adding experimentations?

Illustration of the discrimination process

The models can be discriminated either by exp. 3 or by exp. 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Illustration of the discrimination process

The models can be discriminated either by exp. 3 or by exp. 4

Introducing size tolerance reports new models that can be discriminated by exp. 4

A loop for experimental design requires to play with tolerances

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Experimental design as combinatorial optimization

State-of-the-art [Sharan'13, see also ECCB'14]

Find an input maximizing the difference of the outputs of the rival models

・ロト ・個ト ・ヨト ・ヨト 三日

- Optimize Shannon entropy wrt possible experiments
- find one experiment to be performed in the same time.
- ILP-based sketched algorithm

Experimental design as combinatorial optimization

State-of-the-art [Sharan'13, see also ECCB'14]

Find an input maximizing the difference of the outputs of the rival models

- Optimize Shannon entropy wrt possible experiments
- find one experiment to be performed in the same time.
- ILP-based sketched algorithm

Cell-type specific experimental data

Stimuli	Inhibitors	Readouts
$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$	0000000	0.23 0.84 0.15 0.45 0.98
0000000	000001	0.12 0.78 0.01 0.32 0.02
0 1 0 0 0 0 0	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0$	0.98 0.34 0.29 0.13 0.75
Combir	natorial	Cellular
perturk	pations	response

Main issue: technologies perform many experimentations at the same time!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Extended combinatorial problem

Find a set of experimentations to be performed <u>at the same time</u> to reduce the variability

- Reduce the family of studied networks to early-response truth-tables
- Find the minimum number of perturbations which can discriminate all pairs of truth-tables
- Maximize the sum of pairwise differences over all pairs
- Minimize the number of active stimuli and inhibitions

 $(\forall \beta, \beta' \in \mathbf{B} :: (\exists p \in \mathbf{D} :: \beta(p) \neq \beta'(p))).$

Let us denote with $\mathcal{D}_{(k,s,i)}$ the set of all $D \subseteq P$ with |D| = k

$$\Theta_{diff}(\boldsymbol{B},\boldsymbol{D}) = \sum_{\boldsymbol{\beta},\boldsymbol{\beta}'\in\boldsymbol{B}} \sum_{\boldsymbol{p}\in\boldsymbol{D}} \mathcal{H}(\boldsymbol{\beta}(\boldsymbol{p}),\boldsymbol{\beta}'(\boldsymbol{p}))$$
(2)

where \mathcal{H} denotes the Hamming distance over Boolean vectors,

$$D^{*}_{(k,s,i)} = \operatorname*{arg\,max}_{oldsymbol{D}\in\mathcal{D}_{(k,s,i)}} \Theta_{diff}\left(oldsymbol{B},oldsymbol{D}
ight).$$

$$orall \mathbf{D}^{*} \in \mathcal{D}^{*}_{(k,s,i)}, \quad \Theta_{U}\left(\mathbf{D}^{*}
ight) = \sum_{p \in \mathbf{D}^{*}} \sum_{u_{j} \in U} p_{j}$$

$$\mathcal{D}_{opt} = \operatorname*{arg\,min}_{\boldsymbol{D}^{*} \in \mathcal{D}^{*}_{(k,s,i)}} \left(\Theta_{V_{S}} \left(\boldsymbol{D}^{*}
ight), \Theta_{V_{I}} \left(\boldsymbol{D}^{*}
ight)
ight)$$

・ コット (雪) (小田) (コット 日)

Novel problem formulation for experimental design [Videla et al, Frontiers, 2015]

Implementation: caspo design

Modeling & solving with ASP

- incremental solving (on the number of experiments)
- lexicographic multi-objective optimization

Python package

https://github.com/bioasp/caspo/wiki/caspo-design

bioasp / ca	ispo					6	Watch	٥	* Star	3	Y Fork	•
O Dode 👘 🤇	baues (\$	i) Puli requests (0	65 Wiki	$+ p_{2} _{be}$	🗄 Oraphs							
caspo d	esign											
lantiago Videla	edited this peg	on 9 Jul 2015 - 6 re	visions									
he goal of ca	ispo design is	to find optimal ex	penmental	pesigns to c	discriminate ser	veral		÷ 6	🖸 asger			
he goal of ca ogical behavio ogical networ	ispo destign it ora. In this ca ks for each in	to find optimal ex ie, there are two n put-output behavi	perimental equired args or and the p	pesigns to c uments, nan ihospho-pro	discriminate ser nely, the repres steomics datas	veral sentative set. The		₩ P	10200 () Ye			
he goal of ici ogical behavio ogical networ apresentative (the	spo destan it ors. In this ca ks for each in logical netw	to find optimal ex ie, there are two ri put-output behavior inks must be given deut file, behavior	perimental equired args or and the p t in a CSV fil	pesigns to c aments, nan hospho-pro le. In partics	discriminate ser nely, the represi ateomics clatas dar, after the e	veral sentative set. The secution		+ F	lages () Ye po snałyz			
The goal of isa ogical behavio ogical networ epresentative of the caspo a The dataset in	spo destan it ors. In this ca ks for each in logical netwo nalyze, the or a MIDAS file	to find optimal ex at, there are two n put-output behavior into must be given itput file behavior is required only to	penmental equired argi or and the p i in a CSV fi s.csv can b estract the	pesigns to c aments, nan ihospho-pro ie. In particu e used direr information	Scriminate ser nely, the repres steomics datas dar, after the e ctly as an input about inputs	veral sentative set. The secution t here.		+ F Hor cas	indes () Le bo sustA bo coupo bo coupo			
The goal of isa ogical behavio ogical networi epresentative of the caspo a The dataset in trimuli or inhib	spo destan it ars. In this ca ks for each in logical netwinalyze, the o a MDAS file itors, and ou	to find optimal ex is, there are two in put-output behavior into must be given itput file behavior is required only to puts, i.e., readout	penmental equired args or and the p in a CSV fil s.csv can b extract the s (this may	pesigns to c aments, nen hospho-pro le. In particu e used direr information change in fu	discriminate ser nely, the repres steomics datas ular, after the e city as an input about inputs, uture versions).	veral sentative set. The secution t here. i.e.,	1	+ F Hor cas cas	teges () ne po snatyz po contro po design			
The goal of isa ogical behavio ogical networi epresentative of the caspo a the dataset in ctimuli or inhib	spo testan it ara. In this ca ks for each in logical netwinalyze, the or a MIDAS file ators, and ou s help on use	to find optimal ex is, there are two in put-output behavior into must be given itput file behavior is required only to puts, i.e., readout on dealers unity?	penmental equired args or and the p i in a CSV fil s.csv can b extract the s (this may)	eesigns to c aments, nen hospho-pro le. In particu e used direr information change in fu	Scriminate ser nely, the repres steomics datas ular, after the e city as an input r about inputs, uture versions).	veral sentative set. The secution t here. i.e.,	1	+ F Hor cas cas cas	te te po snalyz po contro po design po learn	n I		
The goal of a ogical behavio ogical networ epresentative of the caspo a the dataset in timuli or inhib 'ou can ask fo	spo destan it ans. In this ca ks for each in logical netwin alyze, the o a MIDAS file shore, and ou in help on cas	to this optimal ex- la, there are two in put-output behavior riths must be given stput file behavior is required only to puts, i.e., readout po design using:	permental equired args or and the p in a CSV fil s.cex can b extract the s (this may	pesigns to c aments, nan hospho-pro e. In particu e. used direr information change in fu	discriminate ser nely, the represi teomics clates dar, after the e city as an input about inputs, uture versions).	veral sentative at. The secution t here. i.e.,		+ F Hot cas cas cas cas cas	ne po analyz po contro po design po learn po visuali	n il ize		
The goal of iso ogical behavio ogical networi epresentative of the catego a The dataset in timuli or inhib fou can ask fo \$ caspo dest	spo destan it ars. In this ca ks for each in logical netwo malyze, the o a MIDAS file intors, and ou in help on cas gshelp	to third optimal ex- is, there are two in put-output behavio- ris input file behavior- is required only to puts, i.e., readout po design using:	perimental equired args or and the p in a CSV R s.csv. can b extract the s (this may	pesigns to c aments, nan ihospho-pro e. In particu e used direc information change in fu	discriminate ser nely, the represi oteomics clatas alar, after the e city as an input e about inputs, uture versions).	veral sentative set. The secution there. i.e.,		+ F Cas Cas Cas Cas	ne po snatyz po contro po design po learn po visuali	se il h		
The goal of iss ogical behavio ogical networi apresentative of the catego a fine dataset in timuli or inhit fou can ask fo \$ caspo dest usage: caspo	spo destan is ans. In this ca ks for each in ilogical netwo melyze, the o a MIDAS file intors, and ou in help on cas gshelp destan [-h]	to tind optimal etc. III, there are two mout-output behavior into must be given intput file behavior is required only to puts, i.e., readout po destign using: [clingo C] [at	perimental equired args or and the p in a CSV fi s.csv can b extract the s (this may- timult 5) [- -relax]	obsigns to c amenta, nan hospho-pro e. In particu e used dire information change in fu	discriminate ser maky, the represi ateomics datase aller, after the e city as an input e about inputs, share versione).	veral sentative at. The secution t here. 1.e.,		+ F Hor can can can can can can can	tegas () ne po analyz po contro po design po leann po visuali a this wiki	il il ize	y	
he gool of si ogical behavin gereisentative f the catego a he dataset in timuli or inhib bu can ask fo \$ caspo dest unage: caspo	spo festign it are. In this ca is for each in logical netwo nalyze, the o a MIDAS file itors, and ou it help on cas gshelp destign [-h] [-m] netwo	to indo opportal ex- up, there are two m- up-cutput the harvi- riks must be given dput file behaviorn is required only to puts, i.e., readout por design using: [climgo C] (st ris et] (list t) ris atdas	perimental equired args or and the p in a CSV Ri s.csv can b extract the s (this may- timuli S) [- [rebax]	obsigns to c amenta, nan hospho-pro e. In partics e used direc information change in fu	Escriminate ser naly, the repres deemics datas dar, after the e city as an input about inputs, stare versions).	veral sentative at. The secution t here. 1.e.,		+ F Hor can can can can can can can can can can	tegas () re po analyz po contro po design po learn po visuali e this wiki po://gith	il il ite ilocalt	y n/bšas	8
The gool of ice ogical behavin ogical networ expresentative of the catpo a The dataset in timuli or inhib fou can ask fo \$ caspo dest usage: caspo positional a	spo festion is and, in this cal- ks for each in logical netwo- nelyze, the o- a MIDAS file ibors, and ou- r help on cas gshelp design [-h] (-m) netwo- rgueents:	to indo optimal ex- put-output behavio- trika matt be given tiput file behavion is required only to puts, i.e., readout- po design using: [clingo C] [st [clingo C] [st ika mddas	perimental equined args or and the p in a CBV fit succer can be extract the s (this may- timula 5) [- relax]	besigns to c aments, nan hospho-pro e. In partics e used direct information change in fu	Scriminate ser nely, the repres Internics clatas Jar, after the e ctly as an input a about inputs, there versione). 1]	verai sentative at. The secution t here. 1.e.,		+ F Hor can can can can can can can can can can	teges () ne po analyz po contro po design po design po visuali a this ucki po ://gith Clone in D	ia il ize i localt nab.com	y n/bios	8

All inclusive distribution: docker container

docker pull svidela/caspo docker run -v -ti /absolute-path-to/output:/opt/out svidela/caspo

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of application

2 perturbations are required to discriminate the 144 models

There are 2 different relevant pairs of perturbations

암 🖽 💿 🗟 🚔	X 🖥 f	i 💰 🖬		٠Σ	• 23 •	₩.	fx	<u>e</u> 1	10	- 20%	0										Q	r (Re						
Accueil Mise	en page T	ableaux	Graph	ques	Smar	tArt	Form	ules	Dor	nnées	Ré	/ision																v
A1 \$	🕄 🔘 (= _fx	IFNg																										
A B C 1 IFNg IGF1 IL1a	D E ILG UPS	F C TGFa TN	G H Fa GSK3I	100	J JNK12i	K MEK12	L. PI3Ki	M mTORJ	N p38i	O AKT	P GSK3	Q Ikb	R JNK12	5 p38	p7056	U 5 p90F	V RSK STA	T3 cJL	N C	X REB	Y HistH3	Z HSP27	AA IRS1s	ME	B . (12 p5	AC 53	AD pairs	AE
2 0 1 1	0 0	0	0	0	0 0	1	0	1		0	0 1	0 1	0	0	0	3	0	0	0	0	0			0	0	3	5	
3 0 1 1	0 0	0	0	0	0 0	0	0	0	1	1	0 1	0 1	0	0	0	0	3	0	0	- 3	0			3	3	- 3	5	
안 🛗 💷 🗒 🚔	X 🐁 🛍	i 🔮 🖬		• Σ	* 👌 *	¥.	fx		10	- XOX	0										Q	r (Re						
Accueil Mise	en page 🛛 T	ableaux	Oraphi	∗ Σ iques	* 👷 *	TArt	Form	illes	b 10 Doe	nnées	() Ré	ision									9	- (Re						× \$*
	en page T 3 0 (* <i>f</i> x	ableaux IFNg	Oraphi	∗ ∑ iques	* 🚖 * Smar	TArt	Form	intes a	Doe	nnées	Ré	/ision									9	.≖ (Re					: •	× \$*
A B C	en page T O O O fx D E	ableaux IFNg F 0	G v 🕅 Graphi G H	× Σ iques	× 20 × Smar	tArt K	Form	iules M	Dor	nnées 0	Ré	vision	R	s	T	U			N	x	(Q	.▼ (Re	cherci	her da	ins la	feuille	AD	✓ ⊕ • AE
Accueil Mise A1 I IFNg IGF1 ILLa	en page T O O (~ fx D E IL6 LP5	ableaux IFNg F C TGFa TNF	Oraphi G H Fa GSK3	× Σ iques	× ∲⊗ × Smar JNK12i	tArt K MEK12i	Form Form PI3Ki	mules M mTORi	Dor Dor 9384	onnées O AKT	P GSK3	vision Q Ikb	R JNK12	5 p38	T ρ7056	U 5 p90F	V RSK STA	/ / T3 c/L	N C	X	Y HistH3	z HSP27	AA IRS1s	Al	ms la 8 1 (12 p5	AC 53	AD pairs	✓ [‡] · AE
Accueil Mise A1 : A B C 1 IFNg IGF1 ILLa 2 0 1 1	en page T O (fx D E IL6 LP5 0 0	ableaux IFNg F C TGFa TNI 0	G + M Graphi G H Fa GSK3i O	× Σ iques IKKi 0	* 20 * Smar JNK12i 0 0	tArt K MEK12i 0	Form Form PI3Ki 0	M mTORi 0	Dor Dor 9381	ON - nnées AKT 1	P GSK3 0	vision Q Ikb	R JNK12 0	S p38 0	τ ρ7056 0	U 5 p90F 0	V RSK STA 3	73 c/U 0	N C	X XEB 3	Y HistH3	z HSP27	AA IRS1s	Al MEP 3	ms la 8 4 (12 p5 3	AC 53 3	AD pairs 5	✓ & · AE
Accueil Mise A1 : A B C I FNg IGF1 ILLa 2 0 1 1 3 0 0 1	en page T O O (~ fx D E 1.6 LPS 0 0 0 0	ableaux IFNg F C TGFa TNH 0 1	Craphi Graphi G H Fa GSK3i O O	• E	• 20 • Smar JNK12i 0 0 0 0	K MEK12i 0 1	Form Form PI3Ki 0 0	M mTORi 0 1	N p38i 0	ON = nnées AKT 1	P GSK3 0	vision Rb D I	R JNK12 0 0	5 p38 0	τ ρ7056 0	U 5 p90F 0 3	V RSK STA 3 0	13 cJL 0 0		X REB 3 0	Y HistH3 0	z HSP27 0	AA IRS1s	Al MER 3 0	8 1 (12 p5 3 0	AC 53 3 3	AD pairs 5	 <!--</td-->
Accueil Mise A1 : A B C A1 : B B C A1 : A B C A C A C A C A C A B C A	X I en page T O - D E IL6 LP5 0 0 0 0	ableaux IFNg TGFa TNI 0 1	C + C Oraphi C H Fa GSK3 0 0	• E iques IKKI 0 0	* 20 * Smar JNK12i 0 0 0 0	K MEK12i 0 1	Form Form PI3Ki 0 0	M mTORi 0	N p38i 1 0	OOX = nnées AKT 1 0	P G5K3 0	vision Rb D I	R JNK12 0	5 p38 0	т р705е 0	U 5 p90F 0 3	V ISK STA 3 0	/ 1 T3 c/L 0	N C 0 0	X REB 3 0	Y HistH3 0	.* (Ro Z HSP27 (AA IRS1s	Al MEP 3 0	8 1 (12 pS 3 0	AC 53 3 3	AD pairs 5 5	 > ∧E
Accueil Mise A1 : IFNg IGF1 IL1a 2 0 1 1 3 0 0 1 4	X I en page T O - D E L6 LPS 0 0 0 0 o 0 o 0	ableaux IFNg F C TGFa TNI 0 1	Craphi G H Fa GSK3 0 0	· Σ iques IKKi 0	 20 Smar JNK12i 0 0 0 	K MEK12i 0 1	Form PI3Ki 0 0	M mTORi 0 1	N p38i	ON - nnées AKT 1 0	P G5K3 0	vision Q Ikb D	R JNK12 0	S p38 0 0	τ ρ705ε 0 0	5 p90F 0 3	ISK STA 3 0	/ 13 0 0	N C O O	X REB 3 0	Y HistH3 0	,∗ (Ro Z HSP27 C	AA IRS1s	Al ME 3 0	8 1 612 p5 3 0	AC 53 3 3	AD pairs 5 5	 <!--</td-->
Accueil Mise A1 1 A B I IFNg I IGF1 I ILIA 3 0 4 Image: International Accueil Accue	X I en page T O fs D E L6 LPS O O o O o O o O o O o O o O	ableaux IFNg F C TGFa TNI 0 1 :sv +	G + (2) Oraphi G H Fa GSK3 0 0	· Σ iques HXG 0	 20 Smar JNK12i 0 0 0 	K MEK12i 0 1	Form Form PI3Ki 0 0	M mTORi 0 1	N p381	ON - nnées AKT 1 0	P GSK3 0	Vision Ikb D I	R JNK12 0	5 p38 0	7 p7056 0	U 5 p90P 3	ISK STA 3 0	73 cJL 0 0	N IN C 0	X REB 3 0	Y HistH3 0	Z HSP27 C	AA IRS1s	Al MEP 3 0	8 , (12 p5 3 0	AC 53 3 3	AD pairs 5 5	 <!--</td-->

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Scalability?

Search perturbations with up to 3 stimuli and 2 inhibitors (572 exps)

tolerance	behaviors	experiments	t _{exp}	t _{opt}
2%	4	2	0.061s	0.061s
4%	31	5	5.297s	146.5s
6%	38	5	9.329s	152.5s
8%	66	7	70.52s	\sim 5h
10%	91	7	160.1s	\sim 18h

Highlights

- 7 experiments needed to discriminate all behaviors pairwise
- $\binom{572}{7}$ = 3.8 × 10¹⁵ possible experimental designs

Highly computationally demanding but handled by ASP

How to test the soundness of the algorithm?

Prerequisite: Database DB of experimentations: family of perturbations coupled with their impact on readouts

- Init Select a set of experimentations \mathbb{E}_{learn} to train Boolean Networks.
- Learn a family **BN**(\mathbb{E}_{learn}) optimizing the MSE according to \mathbb{E}_{learn} .
- Discriminate $BN(\mathbb{E}_{learn})$ with the best perturbations P in DB.
- Increment the family of experimentations

 $\mathbb{E}_{\textit{learn}} \leftarrow \mathbb{E}_{\textit{learn}} \cup \{ \text{result of the discriminative perturbations in } \mathbf{P} \}$

- Iterate Learn a new family **BN**(𝔼_{learn}) (...)
- When there is a single BN, extend the search space of BNs to suboptimals.

Soundness?

Do we recover the best BN?

• The learning procedure may be too restrictive enough to select the good BNs.

Behavior of the minimal score of $BN(\mathbb{E}_{learn})$ with respect to the complete database of perturbations \mathbb{DB} ?

・ロト ・ 同ト ・ ヨト ・ ヨト

Artificial case-study

- Exhaustive DB: all possible 2¹⁴ experiments simulated from a golden network.
- Init: 64 exp. with 0 or 1 stimuli and inhibitors & more complex exp. (from 10 to 16).

・ロト ・四ト ・ヨト ・ヨト

- Discrimination criteria: at most 5 experiments at each run
- Ending criteria 80 perturbations in \mathbb{E}_{learn} .

Artificial case-study

- Exhaustive DB: all possible 2¹⁴ experiments simulated from a golden network.
- Init: 64 exp. with 0 or 1 stimuli and inhibitors & more complex exp. (from 10 to 16).
- Discrimination criteria: at most 5 experiments at each run
- Ending criteria 80 perturbations in \mathbb{E}_{learn} .

Average score wrt to the exhaustive perturbation database, procedure applied 100 times

- The best MSE wrt to the full database is non monotonous.
- Optimal BNs are nearly always identified
- Much better results than random procedure.

Good convergence to the best MSE wrt to the full database after 10 experimentations.

Real case-study

- Network: PKN from [Melas et al, 2012] (12 stimuli, 3 inhibitors, 16 readouts)
- Partial DB: 120 combinatorial experimentations (real data)
- Init: 12 screening perturbations (only 1 stimuli/inhibitor in each experiment).
- Discrimination criteria: at most 5 experiments at each run
- Ending criteria 50 perturbations in \mathbb{E}_{learn} .

Average score wrt to the 120 perturbation database, procedure applied 100 times

The Best MSE slowly decreases but does not reach the optimal one

[Videla et al, Frontiers, 2015]

イロト 不良 とくほ とくほう 一日

What did happen?

● Init The initial set 𝔅_{learn} used to learn **BN** consisted of 12 different perturbations of a single node.

 \rightarrow not enough combinatorial process to constrain the search

● Database of perturbations There were only 120 different perturbations to select. → not enough variability to discriminate

() < </p>

What did happen?

● Init The initial set 𝔼_{learn} used to learn **BN** consisted of 12 different perturbations of a single node.

 \rightarrow not enough combinatorial process to constrain the search

● Database of perturbations There were only 120 different perturbations to select. → not enough variability to discriminate

Average score wrt to the ongoing learnt perturbations \mathbb{E}_{learn}

- At first step (screening data), very good MSE.
- When adding the readouts of new perturbations, the best score becomes ugly.

The discrimination procedure highly depends on the initial perturbation datasets and experimental possibilities

[Videla et al, Frontiers, 2015]

イロト 不良 とくほ とくほう 一日

Application to the complete 120 perturbation datasets

The best follow-up set of perturbations to 120 existing perturbations can be computed

... Although the process is far from being ended

Conclusion

Revisiting the loop relying on Answer Set Programming allows gaining robustness

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Experimental design: Impact of loop and asynchronous dynamics?

Biology: Test experimental design on real experimentations?

- → Core-reason of variability: single-cell studies?
- \rightarrow Impact of the parsimony assumption

A more generic question...

The main trick that we used: early steady state, causal abstraction, three value abstraction... allow us to highly simplify the dynamics by reasoning on a single attractor.

Morality: We reason over input/output behaviors rather than on the dynamics. '

One logical network \rightarrow one truth table at (pseudo)-steady state

イロト 不良 とくほ とくほう 一日

A more generic question...

The main trick that we used: early steady state, causal abstraction, three value abstraction... allow us to highly simplify the dynamics by reasoning on a single attractor.

Morality: We reason over input/output behaviors rather than on the dynamics. '

One logical network \rightarrow one truth table at (pseudo)-steady state

Question 1: can we define an extended truth table by mapping an initial state to several attractors ?

Question 2: can we reason over such an extended truth table?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Coming back to dynamical systems

Historical motivation

Modeling the evolution of a set of components $\mathbb A$ of a system over time over a domain $\mathbb T.$

Mathematical framework

Physics-inspired hypotheses

- Physical laws are precisely set up.
- Sensors enable the measurements of high-level number of components.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Components are independent.

Coming back to dynamical systems

Historical motivation

Modeling the evolution of a set of components $\mathbb A$ of a system over time over a domain $\mathbb T.$

Mathematical framework

Physics-inspired hypotheses

- Physical laws are precisely set up.
- Sensors enable the measurements of high-level number of components.
- Components are independent.

Biological hypotheses?

- Biological laws are empirical.
- Sensors are rather limited.
- Components are not independent : we often recover the same compound under several shapes (gene, complex, protein...) within the same network.

Meta-question: how the hidden dependencies impact the analyses that we are currently performing?

Which novel paradigms are required to handle dependencies?

Credits Dyliss - IRISA, Rennes, France

- Anne Siegel
- Santiago Videla
- Jacques Nicolas
- Sven Thiele (now at Max Planck)
- IRCCYN Ecole Centrale Nantes, France & LRI (Orsay)
 - Carito Guziolowski
 - Loic Paulevé

EBI, UK & Greece

- Julio Saez-Rodriguez
- Federica Eduarti
- Thomas Coekaler
- Leonidas Alexopoulos

Potsdam university, Germany

- Torsten Schaub
- Martin Gebser
- Roland Kaminski
- Max Ostrowski

